Optimization of the Aqueous Extraction of Phenolic Compounds from Olive Leaves
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Reagents
2.2. Sample Preparation
2.3. Response Surface Methodology (RSM)
2.4. Total Phenolic Compounds
Independent Parameters | Symbols of the Parameters | Original Values of the Parameters | Parameter Coded Forms * |
---|---|---|---|
Temperature (°C) | X1 | 70 | − |
80 | 0 | ||
90 | + | ||
Time (min) | X2 | 50 | − |
60 | 0 | ||
70 | + | ||
Ratio (mg/mL) | X3 | 10 | − |
55 | 0 | ||
100 | + |
2.5. Antioxidant Activity Assays
2.6. Statistical Analysis
3. Results and Discussion
3.1. Fitting the Models for the Prediction of Total Phenolic Compounds and Antioxidant Capacity
Sources of Variation | TPC | Antioxidant Capacity | ||
---|---|---|---|---|
FRAP | CUPRAC | DPPH | ||
Lack of fit (p-value) | 0.1991 | 0.0168 * | 0.1369 | 0.1377 |
R2 | 0.8 | 0.95 | 0.97 | 0.92 |
Adjusted R2 | 0.44 | 0.87 | 0.92 | 0.78 |
PRESS | 1149.1 | 1500.72 | 1097.5 | 1988.1 |
F-ratio of model | 2.2025 | 11.54 | 19.6 | 6.639 |
p of model > F | 0.1991 | 0.0075 * | 0.0022 * | 0.0258 * |
3.2. The Effect of the Different Variables on the Total Phenolic Compounds
Parameter | DF | TPC | Antioxidant Capacity | ||||||
---|---|---|---|---|---|---|---|---|---|
Frap | DPPH | CUPRAC | |||||||
F | Prob > F | F | Prob > F | F | Prob > F | F | Prob > F | ||
β0 | 1 | 26.02 | <0.0001 | 64.66 | <0.0001 | 60.08 | <0.0001 | 104.53 | <0.0001 |
β1 | 1 | 1.31 | 0.37 | 10.51 | 0.001 * | 9.29 | 0.004 * | 11.76 | 0.0003 * |
β2 | 1 | 0.42 | 0.77 | 4.58 | 0.031 * | 0.39 | 0.84 | 1.91 | 0.22 |
β3 | 1 | 4.88 | 0.01 * | 7.45 | 0.005 * | 7.02 | 0.01 * | 11.31 | 0.0004 * |
β12 | 1 | −0.14 | 0.94 | 3.05 | 0.22 | 0.68 | 0.8 | 2.06 | 0.34 |
β13 | 1 | 1.42 | 0.49 | 2.16 | 0.37 | −3.4 | 0.25 | −6.14 | 0.02 * |
β23 | 1 | 1.91 | 0.36 | −2.66 | 0.28 | −8.98 | 0.02 * | −2.27 | 0.29 |
β11 | 1 | 0.09 | 0.96 | 7.39 | 0.02 * | 4.43 | 0.16 | 1.01 | 0.63 |
β22 | 1 | 3.79 | 0.11 | 7.64 | 0.02 * | 2.71 | 0.36 | 6.45 | 0.02 * |
β33 | 1 | 1.23 | 0.56 | 1.4 | 0.56 | −3.03 | 0.31 | −5.33 | <0.05 * |
3.3. The Effect of the Different Variables on Antioxidant Activity
3.4. Optimization of Aqueous Extraction Conditions for Maximizing the Total Phenolic Content and Antioxidant Capacity of Olive Leaf Extract
Assay | Values of TPC and Antioxidant Capacity | |
---|---|---|
Predicted | Experimental (n = 3) | |
TPC (mg GAE/g) | 32.42 ± 8.66 | 32.4 ± 2.06 |
FRAP (mg TE/g) | 98.6 ± 9.71 | 91.03 ± 6.13 |
DPPH (mg TE/g) | 76.96 ± 11.56 | 85.26 ± 3.54 |
CUPRAC (mg TE/g) | 127.97 ± 8.62 | 121.97 ± 5.45 |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Trichopoulou, A.; Lagiou, P.; Kuper, H.; Trichopoulos, D. Cancer and Mediterranean dietary traditions. Cancer Epidemiol. Biomark. Prev. 2000, 9, 869–873. [Google Scholar]
- Covas, M.I. Olive oil and the cardiovascular system. Pharmacol. Res. 2007, 55, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Cicerale, S.; Conlan, X.A.; Sinclair, A.J.; Keast, R.S. Chemistry and health of olive oil phenolics. Crit. Rev. Food Sci. Nutr. 2009, 49, 218–236. [Google Scholar] [CrossRef] [PubMed]
- Bogani, P.; Galli, C.; Villa, M.; Visiolia, F. Postprandial anti-inflammatory and antioxidant effects of extra virgin olive oil. Atherosclerosis 2007, 190, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Goulas, V.; Exarchou, V.; Troganis, A.N.; Psomiadou, E.; Fotsis, T.; Briasoulis, E.; Gerothanassis, I.P. Phytochemicals in olive-leaf extracts and their antiproliferative activity against cancer and endothelial cells. Mol. Nutr. Food Res. 2009, 53, 600–608. [Google Scholar] [CrossRef] [PubMed]
- Fabiani, R.; de Bartolomeo, A.; Rosignoli, P.; Servili, M.; Montedoro, G.F.; Morozzi, G. Cancer chemoprevention by hydroxytyrosol isolated from virgin olive oil through G1 cell cycle arrest and apoptosis. Eur. J. Cancer Prev. 2002, 11, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, G.K.; Keast, R.S.J.; Morel, D.; Lin, J.; Pika, J.; Han, Q.; Lee, C.-H.; Smith, A.B.; Breslin, P.A.S. Phytochemistry: Ibuprofen-like activity in extra-virgin olive oil. Nature 2005, 437, 45–46. [Google Scholar] [CrossRef] [PubMed]
- Bisignano, G.; Tomaino, A.; Lo Cascio, R.; Crisafi, G.; Uccella, N.; Saija, A. On the in vitro antimicrobial activity of oleuropein and hydroxytyrosol. J. Pharm. Pharmacol. 1999, 51, 971–974. [Google Scholar] [CrossRef] [PubMed]
- Hashim, Y.Z.; Rowland, I.R.; McGlynn, H.; Servili, M.; Selvaggini, R.; Taticchi, A.; Esposto, S.; Montedoro, G.; Kaisalo, L.; Wähälä, K.; et al. Inhibitory effects of olive oil phenolics on invasion in human colon adenocarcinoma cells in vitro. Int. J. Cancer 2008, 122, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Tsatsanis, C.; Androulidaki, A.; Venihaki, M.; Margioris, A.N. Signalling networks regulating cyclooxygenase-2. Int. J. Biochem. Cell Biol. 2006, 38, 1654–1661. [Google Scholar] [CrossRef] [PubMed]
- Sebolt-Leopold, J.S.; Herrera, R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat. Rev. Cancer 2004, 4, 937–947. [Google Scholar] [CrossRef] [PubMed]
- Femia, A.P.; Dolara, P.; Servili, M.; Esposto, S.; Taticchi, A.; Urbani, S.; Giannini, A.; Salvadori, M.; Caderni, G. No effects of olive oils with different phenolic content compared to corn oil on 1,2-dimethylhydrazine-induced colon carcinogenesis in rats. Eur. J. Nutr. 2008, 47, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Xynos, N.; Papaefstathioua, G.; Gikasb, E.; Argyropouloua, A.; Aligiannisa, N.; Skaltsounisa, A.-L. Design optimization study of the extraction of olive leaves performed with pressurized liquid extraction using response surface methodology. Sep. Purif. Technol. 2014, 122, 323–330. [Google Scholar] [CrossRef]
- Taamalli, A.; Arráez-Román, D.; Ibañez, E.; Zarrouk, M.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Optimization of microwave-assisted extraction for the characterization of olive leaf phenolic compounds by using HPLC-ESI-TOF-MS/IT-MS2. J. Agric. Food Chem. 2012, 60, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Şahin, S.; Şamlı, R. Optimization of olive leaf extract obtained by ultrasound-assisted extraction with response surface methodology. Ultrason. Sonochem. 2013, 20, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Robards, K.; Obied, H.K.; Bedgood, D.R., Jr.; Prenzler, P.D. Bioscreening of Australian olive mill waste extracts: Biophenol content, antioxidant, antimicrobial and molluscicidal activities. Food Chem. Toxicol. 2007, 45, 1238–1248. [Google Scholar] [CrossRef] [PubMed]
- Busnena, B.A.; Foudah, A.I.; Melancon, T.; El Sayed, K.A. Olive secoiridoids and semisynthetic bioisostere analogues for the control of metastatic breast cancer. Bioorg. Med. Chem. 2013, 21, 2117–2127. [Google Scholar] [CrossRef] [PubMed]
- Scotece, M.; Gómez, R.; Conde, J.; Lopez, V.; Gómez-Reino, J.J.; Lago, F.; Smith, A.B., III; Gualillo, O. Oleocanthal inhibits proliferation and MIP-1α expression in human multiple myeloma cells. Curr. Med. Chem. 2013, 20, 2467–2475. [Google Scholar] [CrossRef]
- Malik, N.S.; Bradford, J.M. Recovery and stability of oleuropein and other phenolic compounds during extraction and processing of olive (Olea europaea L.) leaves. J. Food Agric. Environ. 2008, 6, 8–13. [Google Scholar]
- Vuong, Q.V.; Stathopoulos, C.E.; Golding, J.B.; Nguyen, M.H.; Roach, P.D. Optimum conditions for the water extraction of l-theanine from green tea. J. Sep. Sci. 2011, 34, 2468–2474. [Google Scholar] [CrossRef] [PubMed]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef]
- Vuong, Q.V.; Hiruna, S.; Roach, P.D.; Bowyer, M.C.; Phillips, P.A.; Scarletta, C.J. Effect of extraction conditions on total phenolic compounds and antioxidant activities of Carica papaya leaf aqueous extracts. J. Herb. Med. 2013, 3, 104–111. [Google Scholar] [CrossRef]
- Wang, J.; Sun, B.; Cao, Y.; Tian, Y; Li, X. Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chem. 2008, 106, 804–810. [Google Scholar] [CrossRef]
- Goldsmith, C.D.; Stathopoulos, C.E.; Golding, J.B.; Roach, P.D. Fate of phenolic compounds during olive oil production with the traditional press method. I. Food Res. J. 2014, 21, 101–109. [Google Scholar]
- Klen, T.J.; Vodopivec, B.M. The fate of olive fruit phenols during commercial olive oil processing: Traditional press versus continuous two- and three-phase centrifuge. LWT-Food Sci. Technol. 2012, 49, 267–274. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goldsmith, C.D.; Vuong, Q.V.; Stathopoulos, C.E.; Roach, P.D.; Scarlett, C.J. Optimization of the Aqueous Extraction of Phenolic Compounds from Olive Leaves. Antioxidants 2014, 3, 700-712. https://doi.org/10.3390/antiox3040700
Goldsmith CD, Vuong QV, Stathopoulos CE, Roach PD, Scarlett CJ. Optimization of the Aqueous Extraction of Phenolic Compounds from Olive Leaves. Antioxidants. 2014; 3(4):700-712. https://doi.org/10.3390/antiox3040700
Chicago/Turabian StyleGoldsmith, Chloe D., Quan V. Vuong, Costas E. Stathopoulos, Paul D. Roach, and Christopher J. Scarlett. 2014. "Optimization of the Aqueous Extraction of Phenolic Compounds from Olive Leaves" Antioxidants 3, no. 4: 700-712. https://doi.org/10.3390/antiox3040700
APA StyleGoldsmith, C. D., Vuong, Q. V., Stathopoulos, C. E., Roach, P. D., & Scarlett, C. J. (2014). Optimization of the Aqueous Extraction of Phenolic Compounds from Olive Leaves. Antioxidants, 3(4), 700-712. https://doi.org/10.3390/antiox3040700