Antioxidant Compound Extraction from Maqui (Aristotelia chilensis [Mol] Stuntz) Berries: Optimization by Response Surface Methodology
Abstract
:1. Introduction
2. Methods
2.1. Materials
2.2. Extraction Protocol
2.3. Determination of Antioxidant Capacity by ORAC Method
2.4. Design of Experiment and Statistical Analysis
3. Results and Discussion
3.1. Model Evaluation
3.2. Model Interpretation
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Escribano-Bailón, M.T.; Alcalde-Eon, C.; Muñoz, O.; Rivas-Gonzalo, J.C.; Santos-Buelga, C. Anthocyanins in Berries of Maqui [Aristotelia chilensis (Mol.) Stuntz]. Phytochem. Anal. 2006, 14, 8–14. [Google Scholar] [CrossRef]
- Brauch, J.E.; Buchweitz, M.; Schweiggert, R.M.; Carle, R. Detailed analyses of fresh and dried maqui (Aristotelia chilensis (Mol.) Stuntz) berries and juice. Food Chem. 2016, 190, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Rottmann, S.; Aspillaga, A.; Pérez, D.; Vasquez, L.; Martinez, A.; Leighton, F. Juice and Phenolic Fractions of the Berry Aristotelia chilensis Inhibit LDL Oxidation in Vitro and Protect Human Endothelial Cells against Oxidative Stress. J. Agric. Food Chem. 2002, 50, 7542–7547. [Google Scholar] [CrossRef] [PubMed]
- Gironés-Vilaplana, A.; Baenas, N.; Villaño, D.; Speisky, H.; García-Viguera, C.; Moreno, D. Evaluation of Latin-American fruits rich in phytochemicals with biological effects. J. Funct. Foods 2014, 7, 599–608. [Google Scholar] [CrossRef]
- Cespedes, L.C.; Alarcon, J.; Avila, J.G.; Nieto, A. Anti-inflammatory Activity of Aristotelia chilensis Mol. (Stuntz) (Elaeocarpaceae). Boletín Latinoam Y Del Caribe Plantas Med Y Aromáticas 2010, 9, 91–99. [Google Scholar]
- González, B.; Vogel, H.; Razmilic, I.; Wolfram, E. Polyphenol, anthocyanin and antioxidant content in different parts of maqui fruits (Aristotelia chilensis) during ripening and conservation treatments after harvest. Ind. Crops Prod. 2015, 76, 158–165. [Google Scholar] [CrossRef]
- Brigatto Fontes, L.C.; Ferraz da Silva Torres, A.E.; Yonekura, L. Optimization of the extraction of antioxidants from guarana (Paullinia cupana) and grape (Vitis labrusca var. Izabel ) pomace using response surface methodology. Afr. J. Food Sci. Technol. 2014, 5, 53–59. [Google Scholar]
- Segovia, F.; Lupo, B.; Peiró, S.; Gordon, M.H.; Almajano, M.P. Extraction of Antioxidants from Borage (Borago officinalis L.) Leaves—Optimization by Response Surface Method and Application in Oil-in-Water Emulsions. Antioxidants 2014, 3, 339–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khoddami, A.; Wilkes, M.A.; Roberts, T.H. Techniques for Analysis of Plant Phenolic Compounds. Molecules 2013, 18, 2328–2375. [Google Scholar] [CrossRef] [PubMed]
- Fredes, C.; Yousef, G.G.; Robert, P.; Grace, M.H.; Lila, M.A.; Gómez, M.; Gebauer, M.; Montenegro, G. Anthocyanin profiling of wild maqui berries (Aristotelia chilensis [Mol.] Stuntz) from different geographical regions in Chile. J. Sci. Food Agric. 2014, 94, 2639–2648. [Google Scholar] [CrossRef] [PubMed]
- Diem, Q.; Elisa, A.; Tran-nguyen, P.L.; Huong, L.; Edi, F.; Ismadji, S. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Anal. 2014, 22, 296–302. [Google Scholar]
- Campos-Requena, V.H.; Rivas, B.L.; Perez, M.; Contreras, D.; Muñoz, E. Optimization of processing parameters for the synthesis of low-density polyethylene/organically modified montmorillonite nanocomposites using X-ray diffraction with experimental design. Polym. Int. 2013, 62, 548–553. [Google Scholar] [CrossRef]
- Nwabueze, T.U. Review article: Basic steps in adapting response surface methodology as mathematical modelling for bioprocess optimisation in the food systems. Int. J. Food Sci. Technol. 2010, 45, 1768–1776. [Google Scholar] [CrossRef]
- Ye, C.; Liu, X. Extraction of flavonoids from Tetrastigma Hemsleyanum Diels ET Gilg and their antioxidant activity. J. Food Process. Preserv. 2015, 39, 2197–2205. [Google Scholar] [CrossRef]
- Ferri, M.; Gianotti, A.; Tassoni, A. Optimisation of assay conditions for the determination of antioxidant capacity and polyphenols in cereal food components. J. Food Compos. Anal. 2013, 30, 94–101. [Google Scholar] [CrossRef]
- Saha, J.; Debnath, M.; Saha, A.; Ghosh, T.; Sarkar, P.K. Response surface optimisation of extraction of antioxida;nts from strawberry fruit, and lipid peroxidation inhibitory potential of the fruit extract in cooked chicken patties. J. Sci. Food Agric. 2011, 91, 1759–1765. [Google Scholar] [CrossRef] [PubMed]
- Campos-Requena, V.H.; Rivas, B.L.; Pérez, M.A.; Garrido-Miranda, K.A.; Pereira, E.D. Polymer/clay nanocomposite films as active packaging material: Modeling of antimicrobial release. Eur. Polym. J. 2015, 71, 461–475. [Google Scholar] [CrossRef]
- Shiby, V.K.; Radhakrishna, K.; Bawa, A.S. Development of whey-fruit-based energy drink mixes using D-optimal mixture design. Int. J. Food Sci. Technol. 2013, 48, 742–748. [Google Scholar] [CrossRef]
- Puskas, V.; Miljic, U. The application of D-optimal design for modelling the red wine ageing process. Food Control 2012, 28, 362–367. [Google Scholar] [CrossRef]
- Sproll, C.; Ruge, W.; Andlauer, C.; Godelmann, R.; Lachenmeier, D.W. HPLC analysis and safety assessment of coumarin in foods. Food Chem. 2008, 109, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Mannarswamy, A.; Munson-McGee, S.H.; Andersen, P.K. D-optimal designs for the Cross viscosity model applied to guar gum mixtures. J. Food Eng. 2010, 97, 403–409. [Google Scholar] [CrossRef]
- Balsa-Canto, E.; Rodriguez-Fernandez, M.; Banga, J.R. Optimal design of dynamic experiments for improved estimation of kinetic parameters of thermal degradation. J. Food Eng. 2007, 82, 178–188. [Google Scholar] [CrossRef]
- Peerapattana, J.; Ngamsupsiri, T.; Cheucharoenvasuchai, N.; Saikaew, C. Optimization of metronidazole sustained-release films using D-optimal design. Int. J. Pharm. 2015, 484, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Cacace, J.E.; Mazza, G. Optimization of Extraction of Anthocyanins from Black Currants with Aqueous Ethanol. J. Food Sci. 2003, 68, 240–248. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J.; Hogan, S.; Chung, H.; Welbaum, G.E.; Zhou, K. Inhibitory effect of raspberries on starch digestive enzyme and their antioxidant properties and phenolic composition. Food Chem. 2010, 119, 592–599. [Google Scholar] [CrossRef]
- Eriksson, L.; Johansson, E.; Kettaneh-Wold, N.; Wikström, C.; Wold, S. Design of Experiments: Principles and Applications, 3rd ed.; Umetrics Academy: Umea, Sweden, 2000. [Google Scholar]
- Rojo, L.E.; Ribnicky, D.; Logendra, S.; Poulev, A.; Rojas-Silva, P.; Kuhn, P.; Dorn, R.; Grace, M.H.; Raskin, I. In vitro and in vivo anti-diabetic effects of anthocyanins from Maqui Berry (Aristotelia chilensis). Food Chem. 2012, 131, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Arancibia-Avila, P.; Namiesnik, J.; Toledo, F.; Werner, E.; Martinez-Ayala, A.L.; Rocha-Guzmán, N.E.; Gallegos-Infante, J.A.; Gorinstein, S. The influence of different time durations of thermal processing on berries quality. Food Control 2012, 26, 587–593. [Google Scholar] [CrossRef]
- Sadilova, E.; Stintzing, F.C.; Kammerer, D.R.; Carle, R. Matrix dependent impact of sugar and ascorbic acid addition on color and anthocyanin stability of black carrot, elderberry and strawberry single strength and from concentrate juices upon thermal treatment. Food Res. Int. 2009, 42, 1023–1033. [Google Scholar] [CrossRef]
- Heras, I.; Alvis, A. Optimización del Proceso de Extracción de Antocianinas y Evaluación de la Capacidad Antioxidante de Berenjena (Solana melonera L.) Optimization of the Anthocyanin Extraction Process and Evaluation of the Antioxidant Capacity of Eggplant (Solanum melong). Inf. Tecnol. 2013, 24, 93–102. [Google Scholar] [CrossRef]
- Liyana-Pathirana, C.; Shahidi, F. Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chem. 2005, 93, 47–56. [Google Scholar] [CrossRef]
Qualitative Variables | Type | ||
---|---|---|---|
x1: Type of solvent | Methanol | Ethanol | Acetone |
Level | |||
Quantitative variables | Low (–1) | Medium (0) | High (+1) |
x2: Solvent concentration (% v/v) | 20 | 60 | 100 |
x3: Extraction time (min) | 15 | 127.5 | 240 |
y: Response variable | Antioxidant capacity (ORAC) µmol TE/100 g |
Candidate Set | |
Extreme vertices | 60 |
Edge points | 60 |
Centroids of high dimensional surface | 15 |
Total runs | 135 |
D-optimal | |
Objective | Optimization |
Model type | Quadratic |
G-efficiency (%) | 76.19 |
Condition number | 4.88 |
Design runs | 42 |
Runs | Variables | Response | ||
---|---|---|---|---|
x1 Type of Solvent | x2 Solvent Concentration (% v/v) | x3 Extraction Time (min) | y Antioxidant Capacity (µmol TE/100 g) | |
1 | methanol | 20 (–1)a | 127.5 (0) | 13,893.9 |
2 | methanol | 100 (+1) | 127.5 (0) | 11,870.4 |
3 | methanol | 60 (0) | 15 (–1) | 14,112.3 |
4 | methanol | 60 (0) | 240 (+1) | 13,445.0 |
5 | methanol | 20 (–1) | 127.5 (0) | 12,267.6 |
6 | methanol | 100 (+1) | 127.5 (0) | 11,720.2 |
7 | methanol | 60 (0) | 15 (–1) | 13,595.0 |
8 | methanol | 60 (0) | 240 (+1) | –b |
9 | ethanol | 20 (–1) | 127.5 (0) | 11,574.7 |
10 | ethanol | 100 (+1) | 127.5 (0) | 5413.5 |
11 | ethanol | 60 (0) | 15 (–1) | 15,931.4 |
12 | ethanol | 60 (0) | 240 (+1) | 13,179.7 |
13 | ethanol | 20 (–1) | 127.5 (0) | 10,572.9 |
14 | ethanol | 100 (+1) | 127.5 (0) | 5560.0 |
15 | ethanol | 60 (0) | 15 (–1) | 12,438.1 |
16 | ethanol | 60 (0) | 240 (+1) | 13,179.7 |
17 | acetone | 20 (–1) | 15 (–1) | 18,920.9 |
18 | acetone | 100 (+1) | 15 (–1) | 4894.0 |
19 | acetone | 20 (–1) | 240 (+1) | 17,275.7 |
20 | acetone | 100 (+1) | 240 (+1) | 5869.2 |
21 | acetone | 20 (–1) | 15 (–1) | 16,240.9 |
22 | acetone | 100 (+1) | 15 (–1) | 4894.0 |
23 | acetone | 20 (–1) | 240 (+1) | 17,275.7 |
24 | acetone | 100 (+1) | 240 (+1) | 5429.6 |
25 | acetone | 20 (–1) | 15 (–1) | – |
26 | acetone | 100 (+1) | 15 (–1) | 3419.5 |
27 | acetone | 20 (–1) | 240 (+1) | 18,099.0 |
28 | acetone | 100 (+1) | 240 (+1) | 6796.7 |
29 | acetone | 20 (–1) | 15 (–1) | 16,864.7 |
30 | acetone | 100 (+1) | 15 (–1) | 6796.7 |
31 | acetone | 20 (–1) | 240 (+1) | 19,105.7 |
32 | acetone | 100 (+1) | 240 (+1) | 4817.3 |
33 | methanol | 60 (0) | 127.5 (0) | 15,083.9 |
34 | methanol | 60 (0) | 127.5 (0) | 15,808.7 |
35 | methanol | 60 (0) | 127.5 (0) | 14,346.8 |
36 | ethanol | 60 (0) | 127.5 (0) | 15,060.1 |
37 | ethanol | 60 (0) | 127.5 (0) | 12,399.5 |
38 | ethanol | 60 (0) | 127.5 (0) | 16,240.9 |
39 | acetone | 60 (0) | 127.5 (0) | 17,668.9 |
40 | acetone | 60 (0) | 127.5 (0) | 14,692.5 |
41 | acetone | 60 (0) | 127.5 (0) | 14,571.1 |
42 | acetone | 60 (0) | 127.5 (0) | 18,796.5 |
Criteria | Value |
---|---|
R2 | 0.8992 |
Q2 | 0.7801 |
Model validity | 0.5800 |
Reproducibility | 0.8698 |
Condition number (n = 40) | 4.10 |
Source | Degrees of Freedom | Sums of Squares | Mean Squares | F-Value | p-Value | Standard Deviation |
---|---|---|---|---|---|---|
Total corrected | 39 | 4.449 × 1017 | 1.141 × 1016 | 1.068 × 108 | ||
Regression | 11 | 4.001 × 1017 | 3.637 × 1016 | 22.706 | 0.000 | 1.907 × 108 |
Residual | 28 | 4.485 × 1016 | 1.602 × 1015 | 4.002 × 107 | ||
Lack of fit (model error) | 3 | 7.704 × 1015 | 2.568 × 1015 | 1.728 | 0.187 | 5.068 × 107 |
Pure error (replicate error) | 25 | 3.715 × 1016 | 1.486 × 1015 | 3.856 × 107 |
Variables | Value |
---|---|
x1 Type of solvent | Acetone |
x2 Solvent concentration (% v/v) | 29.13 |
x3 Extraction time (min) | 159.3 |
y Predicted response (µmol TE/100 g) | 18,289.6 |
y Experimental response (µmol TE/100 g) | 18,137.6 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quispe-Fuentes, I.; Vega-Gálvez, A.; Campos-Requena, V.H. Antioxidant Compound Extraction from Maqui (Aristotelia chilensis [Mol] Stuntz) Berries: Optimization by Response Surface Methodology. Antioxidants 2017, 6, 10. https://doi.org/10.3390/antiox6010010
Quispe-Fuentes I, Vega-Gálvez A, Campos-Requena VH. Antioxidant Compound Extraction from Maqui (Aristotelia chilensis [Mol] Stuntz) Berries: Optimization by Response Surface Methodology. Antioxidants. 2017; 6(1):10. https://doi.org/10.3390/antiox6010010
Chicago/Turabian StyleQuispe-Fuentes, Issis, Antonio Vega-Gálvez, and Víctor H. Campos-Requena. 2017. "Antioxidant Compound Extraction from Maqui (Aristotelia chilensis [Mol] Stuntz) Berries: Optimization by Response Surface Methodology" Antioxidants 6, no. 1: 10. https://doi.org/10.3390/antiox6010010
APA StyleQuispe-Fuentes, I., Vega-Gálvez, A., & Campos-Requena, V. H. (2017). Antioxidant Compound Extraction from Maqui (Aristotelia chilensis [Mol] Stuntz) Berries: Optimization by Response Surface Methodology. Antioxidants, 6(1), 10. https://doi.org/10.3390/antiox6010010