Antioxidant Activity of Spices and Their Impact on Human Health: A Review
Abstract
:1. Introduction
2. Chemical Composition of Spices and Their Antioxidant Activity
2.1. Rosmarinic Acid in Spices
2.2. Flavonoids in Spices
3. Methods for Antioxidant Extraction and Determination
3.1. Extraction Techniques for Antioxidant in Spices
3.2. Analytical Methods Applied to Antioxidant Capacities Determination in Spices
4. Effect of Spices on Human Health and Other Applications
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Baselga-Escudero, L.; Souza-Mello, V.; Pascual-Serrano, A.; Rachid, T.; Voci, A.; Demori, I.; Grasselli, E. Beneficial effects of the Mediterranean spices and aromas on non-alcoholic fatty liver disease. Trends Food Sci. Technol. 2017, 61, 141–159. [Google Scholar] [CrossRef]
- Patra, K.; Jana, K.; Mandal, D.P.; Bhattacharjee, S. Evaluation of the antioxidant activity of extracts and active principles of commonly consumed Indian spices. J. Environ. Pathol. Toxicol. Oncol. 2016, 35, 299–315. [Google Scholar] [CrossRef] [PubMed]
- Singhal, P.; Singla, N.; Sakhare, D.; Sharma, K.A. A comparative evaluation of in vitro antioxidant activity of some commonly used spices of northern India. Nat. Prod. J. 2017, 7, 131–136. [Google Scholar] [CrossRef]
- Ene-Obong, H.; Onuoha, N.; Aburime, L.; Mbah, O. Chemical composition and antioxidant activities of some indigenous spices consumed in Nigeria. Food Chem. 2017. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.; Lim, J.; Henry, C.J. Spices in the management of diabetes mellitus. Food Chem. 2017, 217, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Serafini, M.; Peluso, I. Functional foods for health: The interrelated antioxidant and anti-inflammatory role of fruits, vegetables, herbs, spices and cocoa in humans. Curr. Pharm. Des. 2016, 22, 6701–6715. [Google Scholar] [CrossRef] [PubMed]
- Peter, K.V. Handbook of Herbs and Spices; Woodhead Publishing Limited and CRC Press LLS: Cambridge, UK, 2001; Volume 1. [Google Scholar]
- Peter, K.V. Handbook of Herbs and Spices; Woodhead Publishing Limited: Cambridge, UK, 2004; Volume 2. [Google Scholar]
- McCormick. The History of Spices. Available online: http://www.mccormickscienceinstitute.com/resources/history-of-spices (accessed on 30 May 2017).
- Surh, Y.J. Chemopreventive Phenolic Compounds in Common Spices; Taylor and Francis: New York, NY, USA, 2006. [Google Scholar]
- Parthasarathy, V.A.; Chempakam, B.; Zachariah, T.J. Chemistry of Spices; CABI: Oxfordshire, UK, 2008. [Google Scholar]
- Charles, D.J. Antioxidant Properties of Spices, Herbs and Other Sources; Springer: New York, NY, USA, 2013; p. 612. [Google Scholar]
- Choi, I.S.; Cha, H.S. Physicochemical and antioxidant properties of black garlic. Molecules 2014, 19, 16811–16823. [Google Scholar] [CrossRef] [PubMed]
- Samah, N.A.; Mahmood, M.R.; Muhamad, S. The role of nanotechnology application in antioxidant from herbs and spices for improving health and nutrition: A review. Selangor Sci. Technol. Rev. 2014, 1, 17–23. [Google Scholar]
- Sobolev, A.P.; Carradori, S.; Capitani, D.; Vista, S.; Trella, A.; Marini, F.; Mannina, L. Saffron samples of different origin. An NMR study of microwave-assisted extracts. Foods 2014, 3, 403–419. [Google Scholar] [CrossRef] [PubMed]
- Yesiloglu, Y.; Audin, H.; Kilic, I. In vitro antioxidant activity of various extracts of ginger seed. Asian J. Chem. 2013, 25, 3573–3578. [Google Scholar]
- Asha Devi, S.; Umasanker, M.E.; Babu, S. A comparative study of antioxidant properties in common Indian spices. Int. Res. J. Pharm. 2012, 3, 465–468. [Google Scholar]
- Panpatil, V.V.; Tattari, S.; Kota, N.; Polasa, K. In vitro evaluation on antioxidant and antimicrobial activity of spice extracts of ginger, turmeric and garlic. J. Pharmacogn. Phytochem. 2013, 2, 143–148. [Google Scholar]
- Tchombe, N.L.; Louajri, A.; Benajiba, M.N. Therapeutical effects of Ginger. ISESCO J. Technol. 2012, 8, 64–69. [Google Scholar]
- Islam, S.; Nasrin, S.; Khan, M.A.; Hossain, A.S.; Islam, F.; Khandokhar, P.; Mollah, M.N.H.; Rashid, M.; Sadik, G.; Rahman, M.A.A.; et al. Evaluation of antioxidant and anticancer properties of the seed extracts of Syzygium fruticosum Roxb. growing in Rajshahi, Bangladesh. BMC Complement. Altern. Med. 2013, 13, 142. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, K. Antioxidant potential of spices and their active constituents (on line). Crit. Rev. Food Sci. Nutr. 2014, 54, 352–372. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, K. Dietary spices as beneficial modulators of lipid profile in condition of metabolic disorders and disease. Food Funct. 2013, 4, 503–521. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, S.; Sengupta, A. Spices in cancer prevention—An overview. Internet J. Nutr. Wellness 2008, 7, 1–16. [Google Scholar]
- Kaefer, C.M.; Milner, J.A. The role of herbs and spices in cancer prevention. J. Nutr. Biochem. 2008, 19, 347–354. [Google Scholar] [CrossRef] [PubMed]
- AllwynSundarRaj, A.; Aaron, S.; Seinenbalg, S.S.; Tiroutchelvamaa, D.; Ranganathan, T.V. Review on recent trends in isolation of antioxidants from spices and its biological effects of essential oils. J. Eng. Res. Appl. 2014, 4, 75–84. [Google Scholar]
- USDA Database for the Flavonoid Content of Selected Foods. Release 3.1 (May 2014). Available online: https://www.ars.usda.gov/ARSUserFiles/80400525/Data/Flav/Flav_R03-1.pdf (accessed on 30 May 2017).
- Shan, B.; Cai, Y.Z.; Sun, M.; Corke, H. Antioxidant capacity of 26 extracts of spices and characterization their phenolic components. J. Agric. Food Chem. 2005, 53, 7749–7759. [Google Scholar] [CrossRef] [PubMed]
- Carlsen, M.H.; Halvorsen, B.L.; Holte, K.; Bøhn, S.K.; Dragland, S.; Sampson, L.; Willey, C.; Senoo, H.; Umezono, Y.; Sanada, C.; et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr. J. 2010, 9, 3–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dragland, S.; Senoo, H.; Wake, K.; Holte, K.; Blomhoff, R. Several Culinary and medicinal herbs are important sources of dietary antioxidants. J. Nutr. 2003, 133, 1286–1290. [Google Scholar] [PubMed]
- Otunola, G.A.; Afolayan, A.J. Evaluation of the polyphenol contents and some antioxidant properties of aqueous extracts of garlic, ginger, cayenne pepper and their mixture. J. Appl. Bot. Food Qual. 2013, 86, 66–70. [Google Scholar]
- Gulcin, I. The antioxidant and radical scavenging activities of black pepper (Piper nigrum) seeds. Int. J. Food Sci. Nutr. 2005, 56, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Singh, N.; Saini, B.S.; Rao, H.S. In vitro antioxidant activity of pet ether extract of black pepper. Indian J. Pharmacol. 2008, 40, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Alvarez, D.; Giuffrida, F.; Golay, P.A.; Cotting, C.; Lardeau, A.; Keely, B.J. Antioxidant activity of oregano, parsley, and olive mill wastewaters in bulk oils and oil-in-water emulsions enriched in fish oil. J. Agric. Food Chem. 2008, 56, 7151–7159. [Google Scholar] [CrossRef] [PubMed]
- Spiridon, I.; Colceru, S.; Anghel, N.; Teaca, C.A.; Bodirlau, R.; Armatu, A. Antioxidant and total phenolic contents of oregano (Origanum vulgare), lavender (Lavandula angus and lemon balm (Melissa officinalis) from Romania. Nat. Prod. Res. 2011, 25, 1657–1661. [Google Scholar] [CrossRef] [PubMed]
- Shim, S.M.; Yi, H.L.; Kim, Y.S. Bioaccessibility of flavonoids and total phenolic content in onions and its relationship with antioxidant activity. Int. J. Food Sci. Nutr. 2011, 62, 835–838. [Google Scholar] [CrossRef] [PubMed]
- Cazzola, R.; Camerotto, C.; Cestaro, B. Anti-oxidant, anti-glycant, and inhibitory activity against a-amylase and a glucosidase of selected spices and culinary herbs. Int. J. Food Sci. Nutr. 2011, 62, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Amira, S.; Dade, M.; Schinella, G.; Rios, J.L. Anti-inflammatory, anti-oxidant, and apoptotic activities of four plant species used in folk medicine in the Mediterranean basin. Pak. J. Pharm. Sci. 2012, 25, 65–72. [Google Scholar] [PubMed]
- Mimica-Dukic, N.; Bugarin, D.; Grbovic, S.; Mitic-Culafic, D.; Vukovic-Gacic, B.; Orcic, D.; Jovin, E.; Couladis, M. Essential oil of Myrtus communis L. as a potential antioxidant and anti-mutagenic agents. Molecules 2010, 15, 2759–2770. [Google Scholar] [CrossRef] [PubMed]
- Romani, A.; Coinu, R.; Carta, S.; Pinelli, P.; Galardi, C.; Vincieri, F.F.; Franconi, F. Evaluation of antioxidant effect of different extracts of Myrtus communis L. Free Radic. Res. 2004, 38, 97–103. [Google Scholar] [CrossRef] [PubMed]
- El-Ghorab, A.H.; Nauman, M.; Anjum, F.M.; Hussain, S.; Nadeem, M.A. Comparative study on chemical composition and antioxidant activity of ginger (Zingiber officinale) and cumin (Cuminum cyminum). J. Agric. Food Chem. 2010, 58, 8231–8233. [Google Scholar] [CrossRef] [PubMed]
- Thippeswamy, N.B.; Naidu, A. Antioxidant potency of cumin varieties—Cumin, black cumin and bitter cumin—On antioxidant systems. Eur. Food Res. Technol. 2005, 220, 472–476. [Google Scholar] [CrossRef]
- Kim, I.S.; Yang, M.R.; Lee, O.H.; Kang, S.N. Antioxidant activities of hot water extracts from various spices. Int. J. Mol. Sci. 2011, 12, 4120–4131. [Google Scholar] [CrossRef] [PubMed]
- Samojlik, I.; Laki, N.; Mimica-Duki, N.; Dakovi-Svajcer, K.; Bozin, B. Antioxidant and hepatoprotective potential of essential oils of coriander (Coriandrum sativum L.) and caraway (Carum carvi L.) (Apiaceae). J. Agric. Food Chem. 2010, 58, 8848–8853. [Google Scholar] [CrossRef] [PubMed]
- Hlavackova, H.; Samuelsen, A.B.; Malterud, K.E. Antioxidant activity in extracts from coriander. Food Chem. 2004, 88, 293–297. [Google Scholar]
- Dudonné, S.; Vitrac, X.; Coutiere, P.; Woillez, M.; Merillon, J.M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Sang, W.; Zhou, M.; Ren, G. Phenolic composition and antioxidant activities of 11 celery cultivars. J. Food Sci. 2010, 75, C9–C13. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Xu, Z.; Wu, C.T.; Janes, M.; Prinyawiwatkul, W.; No, H.K. Antioxidant activities of different colored sweet bell peppers (Capsicum annuum L.). J. Food Sci. 2007, 72, S98–S102. [Google Scholar] [CrossRef] [PubMed]
- Dall’Acqua, S.; Cervellati, R.; Speroni, E.; Costa, S.; Guerra, M.C.; Stella, L.; Greco, E.; Innocenti, G. Phytochemical composition and antioxidant activity of Laurus nobilis L. leaf infusion. J. Med. Food 2009, 12, 869–876. [Google Scholar] [CrossRef] [PubMed]
- Ozcan, B.; Esen, M.; Sangun, M.K.; Coleri, A.; Caliskan, M. Effective antibacterial and antioxidant properties of methanolic extract of Laurus nobilis seed oil. J. Environ. Biol. 2010, 31, 637–641. [Google Scholar] [PubMed]
- Deepa, G.; Ayesha, S.; Nishta, K.; Thankamani, M. Comparative evaluation of various total antioxidant capacity assays applied to phytochemical compounds of Indian culinary spices. Int. Food Res. J. 2013, 20, 1711–1716. [Google Scholar]
- Przyrodzka, M.; Zielinska, D.; Ciesarova, Z.; Kukurova, K.; Zielinski, H. Comparison of methods for evaluation of the antioxidant capacity and phenolic compounds in common spices. LWT Food Sci. Technol. 2014, 58, 321–326. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.L.; Rejueiro, J.; Martínez-Huélamo, M.; Alvarenga, J.F.R.; Leal, L.N.; Lamuela-Raventos, R.M. A comprehensive study on the phenolic profile of widely used culinary herbs and spices: Rosemary, thyme, oregano, cinnamon, cumin and bay. Food Chem. 2014, 154, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Nagy, T.O.; Solar, S.; Sontag, G.; Koenig, J. Identification of phenolic components in dried spices and influence of irradiation. Food Chem. 2011, 128, 530–534. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Wang, S.Y. Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem. 2001, 49, 5165–5170. [Google Scholar] [CrossRef] [PubMed]
- Cook, N.C.; Samman, S. Flavonoids-Chemistry, metabolism, cardiopretective effects and dietary sources. J. Nutr. Biochem. 1996, 7, 66–76. [Google Scholar] [CrossRef]
- Wojdylo, A.; Oszmiański, J.; Czemerys, R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 2007, 105, 940–949. [Google Scholar] [CrossRef]
- Yao, L.H.; Jiang, Y.M.; Shi, J.; Tomás-Barberán, F.A.; Datta, N.; Singanusong, R.; Chen, S.S. Flavonoids in food and their health benefits, Flavanones in cumin, peppermint, Flavones in parsley, thyme and Flavonols in onions. Plant Foods Hum. Nutr. 2004, 59, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Dinitrios, B. Sources of natural phenolic antioxidants. Trends Food Sci. Technol. 2006, 17, 505–512. [Google Scholar] [CrossRef]
- Kähkönen, M.P.; Hopia, A.I.; Vuorela, H.J.; Rauha, J.; Pihlaja, K.; Kujala, T.S.; Heinonen, M. Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 1999, 47, 3954–3962. [Google Scholar] [CrossRef] [PubMed]
- Embuscado, M. Spices and herbs: Natural sources of antioxidants—A mini review. J. Funct. Foods 2015, 18, 811–819. [Google Scholar] [CrossRef]
- Jorgustin, K. Top 100 High ORAC Value Antioxidant Foods. Available online: http://modernsurvivalblog.com/health/high-orac-value-antioxidant-foods-top-100/ (accessed on 3 June 2014).
- Haytowitz, D.B.; Bhagwat, S. USDA Database for the Oxygen Radical Absorbance Capacity (ORAC) of Selected Foods, Release 2. Available online: http://www.drmarcofranzreb.com/wp-content/uploads/2013/04/ORAC-de-alimentos-2.pdf (accessed on 30 May 2017).
- Xu, D.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.; Li, H. Nautral antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int. J. Mol. Sci. 2017, 18, 96. [Google Scholar] [CrossRef] [PubMed]
- Ereifej, K.I.; Feng, H.; Rababah, T.M.; Tachtoush, S.H.; Al-U’datt, M.; Gammoh, S.; Al-Rabadi, G.J. Effect of extractant and temperature on phenolic compounds and antioxidant activity of selected spices. Food Nutr. Sci. 2016, 7, 362–370. [Google Scholar] [CrossRef]
- Chowdhury, A.; Selvaraj, K.; Bhattacharjee, C.; Chowdhury, R. Optimization of the solvent extraction of phenolics and antioxidants from waste Cauliflower leaves (Brassica oleracea L.) using response surface methodology (RSM). IJBLST 2013, 5, 4–12. [Google Scholar]
- Katalinic, V.; Milos, M.; Kulisic, T.; Juki, M. Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem. 2006, 94, 550–557. [Google Scholar] [CrossRef]
- Magalhaes, L.M.; Segundo, M.A.; Reis, S.; Lima, J.L.F.C. Methodological aspects about in vitro evaluation of antioxidant properties. Anal. Chim. Acta 2008, 613, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods, and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, D.; Wiczkowski, W.; Piskula, M.K. Evaluation of photochemiluminescent, spectrophotometric and cyclic voltammetry methods for the measurement of the antioxidant capacity: The case of roots separated from buckwheat sprouts. Pol. J. Food Nutr. Sci. 2008, 58, 65–72. [Google Scholar]
- Pisoschi, A.M.; Pop, A.; Cimpeanu, C.; Predoi, G. Antioxidant capacity determination in plants and plant-derived products: A review. Oxid. Med. Cell. Longev. 2016, 2016, 9130976. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Zhang, Z.; Zhao, X.; Zhang, S.; Lu, H. The rapid determination of total polyphenols content and antioxidant activity in Dendrobium officinale using near-infrared spectroscopy. Anal. Method 2016, 8, 4584–4589. [Google Scholar] [CrossRef]
- Lu, X.; Rasco, B.A.; Jabal, J.M.F.; Aston, D.E.; Lin, M.; Kondel, M.E. Investigating antibacterial effects of garlic (Allium sativum) concentrate and garlic-derived organosulfur compounds on Campylobacter jejuni by using fourier transform infrared spectroscopy, raman spectroscopy, and electron microscopy. Appl. Environ. Microbiol. 2011, 77, 5257–5269. [Google Scholar] [CrossRef] [PubMed]
- Venetsanou, A.; Anastasaki, E.; Gardeli, C.; Tarantilis, P.A.; Pappas, C.S. Estimation of antioxidant activity of different mixed herbal infusions using attenuated total reflectance Fourier transform infrared spectroscopy and chemometrics. Emir. J. Food Agric. 2017, 29, 149–155. [Google Scholar] [CrossRef]
- Romero, M.P.R.; Brito, R.E.; Palma, A.; Montoya, M.R.; Mellado, J.M.R.; Rodríguez-Amaro, R. An electrochemical method for the determination of antioxidant capacities applied to components of spices and condiments. J. Electrochem. Soc. 2017, 164, B97–B102. [Google Scholar] [CrossRef]
- Hlavackova Assayed, M.E. Radioprotective effects of black seed (Nigella sativa) oil against hemopoietic damage and immunosuppression in gamma-irradiated rats. Immunopharmacol. Immunotoxicol. 2010, 32, 284–296. [Google Scholar] [CrossRef] [PubMed]
- Castellan, M.L.; Perrella, A.; Conti, F.; Salini, V.; Tete, S.; Madhappan, B.; Vecchiet, J.; De Lutiis, M.A.; Caraffa, A.; Cerulli, G. Role of quercetin (a natural herbal compound) in allergy and inflammation. J. Biol. Regul. Homeost. Agents 2006, 20, 47–52. [Google Scholar]
- El Babili, F.; Bouajila, J.; Souchard, J.P.; Bertrand, C.; Bellvert, F.; Fouraste, I.; Moulis, C.; Valentin, A. Oregano: Chemical analysis and evaluation of its antimalarial, antioxidant, and cyto-toxic activities. J. Food Sci. 2011, 76, C512–C518. [Google Scholar] [CrossRef] [PubMed]
- Naidu, A.K.; Thippeswamy, N.B. Inhibition of human low density lipoprotein oxidation by active principles from spices. Mol. Cell. Biochem. 2002, 229, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Dearlove, R.P.; Greenspan, P.; Hartle, D.K.; Swanson, R.B.; Hargrove, J.L. Inhibition of protein glycation by extracts of culinary herbs and spices. J. Med. Food 2008, 11, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Islam, R.; Khan, M.H. Antibacterial activity of natural spices on multiple drug resistant Escherichia coli isolated from drinking water, Bangladesh. Ann. Clin. Microbiol. Antimicrob. 2011, 10, 10. [Google Scholar]
- Devi, K.P.; Nisha, S.A.; Sakthivel, R.; Pandian, S.K. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J. Ethnopharmacol. 2010, 130, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Hlavackova, D.; Toroglu, S. Studies on antimicrobial activities of solvent extracts of different spices. J. Environ. Biol. 2011, 32, 251–256. [Google Scholar]
- Ailahverdiyev, A.; Duran, N.; Ozguven, M.; Koltas, S. Antiviral activity of the volatile oils of Melissa officinalis L. against Herpes simplex virus type-2. Phytomedicine 2004, 11, 657–661. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.E.; Kim, H.Y.; Cha, J.D. Synergistic effect between clove oil and its major compounds and antibiotics against oral bacteria. Arch. Oral Biol. 2011, 56, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Gruenwald, J.; Freder, J.; Armbruester, N. Cinnamon and health. Crit. Rev. Food Sci. Nutr. 2010, 50, 822–834. [Google Scholar] [CrossRef] [PubMed]
- Butt, M.S.; Sultan, M.T.; Butt, M.S.; Igbal, J. Garlic: Nature’s protection against physiological threats. Crit. Rev. Food Sci. Nutr. 2009, 49, 538–551. [Google Scholar] [CrossRef] [PubMed]
- Butt, M.S.; Sultan, M.T. Nigella sativa-reduces the risk of various maladies. Crit. Rev. Food Sci. Nutr. 2010, 50, 654–655. [Google Scholar] [CrossRef] [PubMed]
- Stajner, D.; Canadanovic-Brunet, J.; Pavlovic, A. Allium species. Phytother. Res. 2008, 22, 113–117. [Google Scholar] [PubMed]
- Vinda-Martos, M.; Ruiz-Navajos, Y.; Fernandes-Lopes, J.; Perez-Alvarez, J.A. Spices as functional foods. Crit. Rev. Food Sci. Nutr. 2011, 51, 13–28. [Google Scholar] [CrossRef] [PubMed]
- Gorinstein, S.; Leontowicz, H.; Leontowicz, M.; Namiesnik, J.; Najman, K.; Drzewiecki, J.; Cvikrova, M.; Martincova, O.; Katrich, E.; Trakhtenberg, S. Comparison of the main bioactive compounds and antioxidant activities in garlic and white and red onions after treatment protocols. J. Agric. Food Chem. 2008, 56, 4418–4426. [Google Scholar] [CrossRef] [PubMed]
- Gorinstein, S.; Leontowicz, H.; Leontowicz, M.; Jastrzebski, Z.; Najman, K.; Tashma, Z.; Katrich, E.; Heo, B.G.; Cho, J.Y.; Park, Y.J.; et al. The influence of raw and processed garlic and onions on plasma classical and non-classical atherosclerosis indices: Investigations in vitro and in vivo. Phytother. Res. 2010, 24, 706–714. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, S.; Mohan Pandey, M.; Kumar Singh Rawat, A. Spices: Therapeutic potential in cardiovascular health. Curr. Pharm. Des. 2017, 23, 989–998. [Google Scholar] [CrossRef] [PubMed]
- Hwang, I.K.; Lee, C.H.; Yoo, K.Y.; Choi, J.H.; Park, O.K.; Lim, S.S.; Kang, I.J.; Kwon, D.Y.; Park, J.; Yi, J.S.; et al. Neuroprotective effects of onion extract and quercetin against ischemic neuronal damage in the gerbil hippocampus. J. Med. Food 2009, 12, 990–995. [Google Scholar] [CrossRef] [PubMed]
- Mills, E.; Koren, G. From type 2 diabetes to antioxidant activity: A systematic review of the safety and efficacy of common and cassia cinnamon bark. Can. J. Physiol. Pharmacol. 2007, 85, 837–847. [Google Scholar]
- Khan, A.; Zaman, G.; Anderson, R.A. Bay leaves improve glucose and lipid profile of people with type 2 diabetes. J. Clin. Biochem. Nutr. 2009, 44, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, M.H.; Gilani, A. Pharmacological basis for the medicinal use of black pepper and piperine in gastrointestinal disorders. J. Med. Food 2010, 13, 1086–1096. [Google Scholar] [CrossRef] [PubMed]
- Speroni, E.; Cervellati, R.; Dall’Acqua, S.; Guerra, M.C.; Greco, E.; Govoni, P.; Innocenti, G. Gastroprotective effect and antioxidant properties of different Laurus nobilis L. leaf extracts. J. Med. Food 2011, 14, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Edwards, R.L.; Lyon, T.; Litwin, S.E.; Rabovsky, A.; Symons, J.D.; Jalili, T. Quercetin reduces blood pressure in hypertensive subjects. J. Nutr. 2007, 137, 2405–2411. [Google Scholar] [PubMed]
- Davis, P.A.; Yokoyama, W. Cinnamon intake lowers fasting blood glucose: Meta-analysis. J. Med. Food 2011, 14, 884–889. [Google Scholar] [CrossRef] [PubMed]
- Mallikarjuna, K.; Sahitya Chetan, P.; Sathyavelu Reddy, K.; Rajendra, W. Ethanol toxicity: Rehabilitation of hepatic antioxidant defense system with dietary ginger. Fitoterapia 2008, 79, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Beric, T.; Nikolic, B.; Stanojevic, J.; Vukovic-Gacic, B.; Knezevic-Vukcevic, J. Protective effect of basil (Ocimum basilicum L.) against oxidative DNA damage and mutagenesis. Food Chem. Toxicol. 2008, 46, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Alappat, L.; Awad, A.B. Curcumin and obesity: Evidence and mechanisms. Nutr. Rev. 2010, 68, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Karmakar, S.; Choudhury, M.; Das, A.S.; Maiti, A.; Majumdar, S.; Mitra, C. Clove (Syzygium aromaticum Linn) extract rich in eugenol and eugenol derivatives shows bone-preserving efficacy. Nat. Prod. Res. 2012, 26, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Kaviarasan, S.; Vijagalakshmi, K.; Anuradha, C.V. Polyphenol-rich extract of fenugreek seeds protect erythrocytes from oxidative damage. Plant Foods Hum. Nutr. 2004, 59, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Majdalawieh, A.F.; Carr, R.I. In vitro investigation of the potential immunomodulatory and anti-cancer activities of black pepper (Piper nigrum) and cardamom (Elettaria cardamomum). J. Med. Food 2010, 13, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.L. Immunomodulatory and therapeutic properties of Nigella Sativa L. seed. Int. Immunopharmacol. 2005, 5, 1749–1770. [Google Scholar] [CrossRef] [PubMed]
- Elbarbry, F.; Gazarin, S.; Shoker, A. The protective effect of thymoquinone, an anti-oxidant and anti-inflammatory agent, against renal injury: A review. Saudi J. Kidney Dis. Transpl. 2009, 20, 741–752. [Google Scholar]
- Mahmoud, M.F.; Diaai, A.A.; Ahmed, F. Evaluation of the efficacy of ginger, Arabic gum and Boswellia in acute and chronic renal failure. Ren. Fail. 2012, 34, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Hlavackova Singh, P.K.; Kaur, I.P. Synbiotic (probiotic and ginger extract) loaded floating beads: A novel therapeutic option in an experimental paradigm of gastric ulcer. J. Pharm. Pharmacol. 2012, 64, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Alex, A.F.; Spitznas, M.; Tittel, A.P.; Kurts, C.; Eter, N. Inhibitory effect of epigallocatechin gallate (EGCG), resveratrol, and curcumin on proliferation of human retinal pigment epithelial cells in vitro. Curr. Eye Res. 2010, 35, 1021–1033. [Google Scholar] [CrossRef] [PubMed]
- Atsumi, T.; Tonosaki, K. Smelling lavender and rosemary increases free radical scavenging activity and decreases cortisol level in saliva. Psychiatry Res. 2007, 150, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Shati, A.A.; Elsaid, F.G. Effects of water extracts of thyme (Thymus vulgaris) and ginger (Zingiber officinale Roscoe) on alcohol abuse. Food Chem. Toxicol. 2009, 47, 1945–1949. [Google Scholar] [CrossRef] [PubMed]
- Geoghegan, F.; Wong, R.W.; Rabie, A.B. Inhibitory effect of quercetin on periodontal pathogens in vitro. Phytother. Res. 2010, 24, 817–820. [Google Scholar] [PubMed]
- Nyo, S.N.T.; Williams, D.B.; Head, R.J. Rosemary and cancer prevention-preclinical perspectives. Crit. Rev. Food Sci. Nutr. 2011, 51, 946–954. [Google Scholar]
- Basnet, P.; Skalko-Basnet, N. Curcumin: An anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules 2011, 16, 4567–4598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goel, A.; Kunnumakkara, A.B.; Aggarwal, B.B. Curcumin as curecumin-from kitchen to clinic. Biochem. Pharmacol. 2008, 75, 787–809. [Google Scholar] [CrossRef] [PubMed]
- Rajasekaran, S.A. Therapeutical potential of curcumin in gastrointerestinal deaseases. World J. Gastrointest. Pathophysiol. 2011, 2, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, B.B.; Harikumar, K.B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int. J. Biochem. Cell Biol. 2009, 41, 40–59. [Google Scholar] [CrossRef] [PubMed]
- Al-Suhaimi, E.A.; Al-Riziza, N.A.; Al-Essa, R.A. Physiological and therapeutical roles of ginger and turmeric on endocrine functions. Am. J. Chin. Med. 2011, 39, 215–231. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, K. Ginger rhizomes (Zingiber officinale): A spice with multiple health beneficial potentials. FarmaNutition 2017, 5, 18–28. [Google Scholar] [CrossRef]
- Randhawa, M.A.; Alghamdi, M.S. Anticancer activity of Nigella sativa (black seed)—A review. Am. J. Chim. Med. 2011, 39, 1075–1091. [Google Scholar] [CrossRef] [PubMed]
- Shukla, Y.; Kolra, N. Cancer chemoprevention with garlic and its constituents. Cancer Lett. 2007, 247, 167–181. [Google Scholar] [CrossRef] [PubMed]
- Kundu, J.K.; Na, H.K.; Surth, Y.J. Ginger-derived phenolic substance with cancer preventive and therapentic potential. Forum Nutr. 2009, 61, 182–192. [Google Scholar] [PubMed]
- Aguilera, P.; Chanez-Cardenas, M.E.; Ortiz-Plata, A.; León-Aparicio, D.; Espinoza-Rojo, M.; Villeda-Hernández, J.; Sánchez-García, A.; Maldonado, P.D. Aged garlic extract delays the appearance of infarct, an effect likely conditioned by the cellular antioxidant systems. Phytomedicine 2010, 17, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Villegas, I.; Sanches-Fidalgo, S.; de la Lastra, A. New mechanisms and therapeutic potential of curcumin for colorectal cancer. Mol. Nutr. Food Res. 2008, 52, 1040–1061. [Google Scholar] [CrossRef] [PubMed]
- Wilken, R.; Veena, M.S.; Wang, M.B.; Srivatson, E.S. Curcumin: A review of anticancer properties and therapeutic activity in head and neck squamores cell carcinoma. Mol. Cancer 2011, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Amin, A.; Hamza, A.A.; Bajbouj, K.; Ashraf, S.S.; Daoud, S. Saffron: A potential candidate for a novel anticancer drug against hepatocellular carcinoma. Hepatology 2011, 54, 857–867. [Google Scholar] [CrossRef] [PubMed]
- Aung, H.H.; Wang, C.Z.; Ni, M.; Fishbein, A.; Mehendale, S.R.; Xie, J.T.; Shoyama, C.Y.; Yuan, C.S. Crocin from Crocus sativus possesses significant anti-proliferation effects on human colorectal cancer cells. Exp. Oncol. 2007, 29, 175–180. [Google Scholar] [PubMed]
- Das, I.; Das, S.; Saha, T. Saffron suppresses oxidative stress in DMBA-induced skin carcinoma-a histopathological study. Acta Histochem. 2010, 112, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Bommareddy, A.; Singh, S.V. Garlic constituent diallyl trisulfide suppresses x-linked inhibitor of apoptosis protein in prostate cancer cells in culture and in vivo. Cancer Prev. Res. 2011, 4, 897–906. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhuang, W.; Hu, W.; Liu, G.J.; Wu, T.X.; Wu, X.T. Consumption of large amounts of Allium Vegetables reduces risk for gastric cancer in a meta-analysis. Gastroenterology 2011, 141, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Dorant, E.; van den Brandt, P.A.; Goldbohm, R.A.; Sturmans, F. Consumption of onions and a reduced risk of stomach carcinoma. Gastroenterology 1996, 110, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Angelo, L.S.; Kurzrock, R. Turmeric and green tea: A recipe for the treatment of beta-chronic lymphocytic leukemia. Clin. Cancer Res. 2009, 15, 1123–1125. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Yokozawa, T.; Cho, E.J.; Cheigh, H.S.; Choi, J.S.; Chung, H.Y. In vitro and in vivo antioxidant effects of mustard leaf. Phytother. Res. 2003, 17, 465–471. [Google Scholar] [PubMed]
- Bhattacharya, A.; Li, Y.; Wade, K.L.; Paonessa, J.D.; Fahey, J.W.; Zhang, Y. Allyl isothiocyanate rich mustard seed powder inhibits bladder cancer growth and muscle invasion. Carciogenesis 2010, 31, 2105–2110. [Google Scholar] [CrossRef] [PubMed]
- Panza, E.; Tersigni, M.; Iorizzi, M.; Zollo, F.; De Marino, S.; Festa, C.; Napolitano, M.; Castello, G.; Lalenti, A.; Lanaro, A. Lauroside B-a megastigmane glycoside from Laurus nobilis (bay laurel) leaves, induces apoptosis in human melanoma cell lines by inhibitory NF-κB activation. J. Nat. Prod. 2011, 74, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Zhu, M.; Guo, W.; Jin, L.; Chen, W.; Brunk, U.T.; Zhao, M. Mustard seeds attenuate azoxymethane-induced colon carcinogenesis. Redox. Rep. 2011, 16, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Stavinoha, R.C.; Vattem, D.A. Potential neuroprotective effects of cinnamon. Int. J. Appl. Res. Nat. Prod. 2015, 8, 24–46. [Google Scholar]
- Wang, Y.S. Pharmacology and Applications of Chinese Materia Medica; Peoples Health Publishers: Beijing, China, 1983. [Google Scholar]
- Vasanthi, H.R.; Rarameswari, R.P. Indian spices for healthy heart—An overview. Curr. Cardiol. Rev. 2010, 6, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Bordia, A.; Verma, S.K.; Srivastava, K.C. Effect of ginger (Zingiber officinale Roscoe) and fenugreek (Trigonella foenumgraecum L.) on blood lipids, blood sugar and platelet aggregation in patients with coronary artery disease. Prostaglandins Leukot. Essent. Fatty Acids 1997, 56, 379–384. [Google Scholar] [CrossRef]
- Rahman, K. Historical perspective on garlic and cardiovascular disease. J. Nutr. 2001, 131, 977–979. [Google Scholar]
- Kleijnen, J.; Knipschild, P.; Terriet, G. Garlic onions and cardiovascular risk factors. A review of the evidence from human experiments with emphasis on commercially available preparations. Br. J. Clin. Pharmacol. 1989, 28, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Wani, S.A.; Kumar, P. Fenugreek: A review on its nutraceuticals properties and utilization in various food products. J. Saudi Soc. Agric. Sci. 2016. [Google Scholar] [CrossRef]
- Shan, B.; Cai, Y.Z.; Brooks, J.D.; Corke, H. Potential application of spices and herb extracts as natural preservatives in cheese. J. Med. Food 2011, 14, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Beddows, C.G.; Jagait, C.; Kelly, M.J. Preservation of alpha-tocopherol in sunflower oil by herbs and spices. Int. J. Food Sci. Nutr. 2000, 51, 327–339. [Google Scholar] [PubMed]
- Bhale, S.D.; Xu, Z.; Prinyawiwatkul, W.; King, J.M.; Godber, J.S. Oregano and rosemary extracts inhibit oxidation of long-chain n-3 fatty acids in menhaden oil. J. Food Sci. 2007, 72, C504–C508. [Google Scholar] [CrossRef] [PubMed]
- D’Evoli, L.; Huikko, L.; Lampi, A.M.; Lucarini, M.; Lombardi-Boccia, G.; Nicoli, S.; Piironen, V. Influence of rosemary (Rosmarinus officinalis, L.) on plant sterol oxidation in extra virgin olive oil. Mol. Nutr. Food Res. 2006, 50, 818–823. [Google Scholar] [CrossRef] [PubMed]
- Colindres, P.; Brewer, M.S. Oxidative stability of cooked, frozen, reheated beef patties: Effect of antioxidants. J. Sci. Food Agric. 2011, 91, 963–968. [Google Scholar] [CrossRef] [PubMed]
- Nayak, S.; Sashidnar, R.B. Metabolic intervention of aflatoxin B1 toxicity by curcumin. J. Ethnopharmacol. 2010, 127, 641–644. [Google Scholar] [CrossRef] [PubMed]
- Renzulli, C.; Galvano, F.; Pierdomenico, L.; Speroni, E.; Guerra, M.C. Effects of rosmarinic acid against aflatoxin Bl and ochratoxin-A-induced cell damage in a human hepatoma cell line (Hep G2). J. Appl. Toxicol. 2004, 24, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Puangsombat, K.; Smith, J.S. Inhibition of heterocyclic amine formation in beef patties by ethanolic extracts of rosemary. J. Food Sci. 2010, 75, T40–T47. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Liu, Y.; Jia, L.; Jiang, L.P.; Geng, C.Y.; Yao, X.F.; Kong, Y.; Jiang, B.N.; Zhong, L.F. Curcumin attenuates acrylamide-induced cytotoxicity and genotoxicity in HepG2 cells by ROS scavenging. J. Agric. Food Chem. 2008, 56, 12059–12063. [Google Scholar] [CrossRef] [PubMed]
- Srihari, T.; Sengottuvelan, M.; Nalini, N. Dose-dependent effect of oregano (Origanum vulgare L.) on lipid peroxidation and antioxidant status in 1,2-dimethylhydrazine-induced ran carcinogenesis. J. Pharm. Pharmacol. 2008, 60, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Ige, S.F.; Salawu, E.O.; Olaleye, S.B.; Adeeyo, O.A.; Badmus, J.; Adeleke, A.A. Onion (Allium cepa) extract prevents cadmium induced renal dysfunction. Indian J. Nephrol. 2009, 19, 140–144. [Google Scholar] [PubMed]
- Izawa, H.; Kohara, M.; Aizawa, K.; Suganuma, H.; Inakuma, T.; Watanabe, G.; Taya, K.; Sagai, M. Alleviative effects of quercetin and onion on male reproductive toxicity induced by diesel exhaust particles. Biosci. Biotechnol. Biochem. 2008, 72, 1235–1241. [Google Scholar] [CrossRef] [PubMed]
Spices and Herbs | Important Chemical Constituents |
---|---|
Cloves | Eugenol, isoeugenol, acetyleugenol, sesquiterpene, pinene, vanillin, gallic acid, flavonoids, phenolic acids |
Cinnamon | Eugenol, limonene, terpineol, catechins, proanthocyanidins, tannins, linalool, safrole, pinene, methyleugenol, benzaldehyde |
Cardamon | Limonene, 1,8-cineole, terpinolene, myrcene, caffeic acid, quercetin, kaempferol, luteolin, pelargonidin |
Coriander | Linalool, borneol, geraniol, terpineol, cumene, pinene, terpinene, quercetin, kaempferol, caffeic, ferulic, n-coumaric and vanillic acids, rutin, tocopherols, pyrogallol |
Saffron | Crocins (water soluble carotenoids), safranal, flavonoids, gallic, caffeic, ferulic, n-catechuic, syringic, salicylic, and vanillic acids |
Turmeric | Curcumins, essential oils, eugenol, carotene, ascorbic acid, caffeic, p-coumaric, protocatechuic, syringic, vanillic acid |
Ginger | Gingerol, turmeric, paradol, geraniol, geranial, borneol, linalool, camphene, zingerol, zingiberon |
Anise | Camphene, pinene, linalool, trans-, cis-anetholes, eugenol, acetanisole, rutin, luteolin-7-glucoside, apigenin-7-glucoside, isoorientin |
Caraway | Monoterpenes, sesquiterpene, aromatic aldehydes, terpene esters, terpenol, terpenal, terpenon, limonene, safranal, kaempferol, quercetin, tannins, caffeic, ferulic, p-coumaric, and chlorogenic acids |
Fenugreek | Sesquiterpenes, aromatic aldehydes, terpenes |
Black pepper | Piperine, pinene, camphene, limonene, terpenes, piperidine, isoquercetin, sarmentine |
Oregano | Apigenin, quercetin, luteolin, myricetin, diosmetin, eriodictyol, carvacrol, thymol, rosmarinic, caffeic, p-coumaric, protocatechuic acid |
Basil | Apigenin, catechins, quercetin, rutin, kaempferol, anthocyanins, eugenol, limonene, terpinene, carvacrol, geraniol, menthol, safrole, tannins, ursolic, p-coumaric, rosmarinic acids |
Bay leaf | 1,8-cineole, cinnamtannin |
Dill | Quercetin, kaempferol, myricetin, catechins, isorhamnetin, carvone, limonene |
Garlic | Allicin, diallyl sulfide, diallyl disulfide, diallyl trisulfide, allyl isothiocyanate, S-allyl cysteine |
Horseradish | Phenyl methyl isothiocyanate, allyl isothiocyanate, sinigrin, asparagine |
Allspice | Eugenol, gallic acid, pimentol, quercetin |
Marjoram | Limonene, pinene, terpinene, p-cumene, apigenin, ferulic, sinapinic, caffeic, syringic, rosmarinic, 4-hydroxybenzoic, vanillic acids |
Mustard | Allyl isothiocyanate, carotene, isorhamnetin, isorhamnetin-7-O-glucoside, kaempferol glucoside |
Fennelflower | Pinene, p-cumene, thymoquinone, thymohydroquinone, thymol, carvacrol, nigellicine, nigellidine, hederin |
Onion | Quercetin, apigenin, dipyridyl disulfide, rutin, quercetin-4-glucoside |
Parsley | Apigenin, luteolin, kaempferol, myricetin, quercetin, caffeic acid |
Red pepper | Capsaicin, tocopherol, lutein, carotene, capsanthin, quercetin, ascorbic acid |
Peppermint | Menthol, menthone, limonene, isomenthone, eriocitrin, hesperidin, apigenin, luteolin, rutin, carotenes, tocopherols, caffeic, rosmarinic, chlorogenic acid |
Rosemary | Carnosol, rosmanol, geraniol, pinene, limonene, apigenin, naringin, luteolin, rosmarinic, vanillic, ursolic, caffeic acids |
Sage | Geraniol, pinene, limonene, carnosol, saponin, catechins, apigenin, luteolin, rosmarinic, carnosine, vanillic, caffeic acids |
Nutmeg | Catechins, lignans, myricetin, orgentin, caffeic acid |
Myrtle | Anthocyanins, pinene, limonene, gallic and ellagic acids, myrtocommulone, myricetin-3-O-galactoside, myricetin-3-O-rhamnoside |
Lavender | Limonene, quercetin, apigenin, kaempferol glucoside, ferulic, rosmarinic, caffeic, p-coumaric acid |
Name | Flavonoid Content (mg per 100 g) | Total Flavonoid Content (mg per 100 g) |
---|---|---|
Parsley | Apigenin 4503.5, isorhamnetin 331.2, luteolin 19.7 | 4854.5 |
Mexican oregano | Luteolin 1028.7, naringenin 372.0, eriodictyol 85.3, quercetin 42.0, apigenin 17.7 | 1550.79 |
Celery seeds | Luteolin 762.4, apigenin 78.65 | 841.05 |
Capers | Kaempferol 259.19, quercetin 233.84 | 493.03 |
Saffron | Kaempferol 205.48 | 205.48 |
Dill | Quercetin 55.15, isorhamnetin 43.50, kaempferol 13.33, myricetin 0.70 | 112.68 |
Thyme | Luteolin 45.25, apigenin 2.50 | 47.75 |
Fennel | Quercetin 48.80, myricetin 19.80, isorhamnetin 9.30, kaempferol 6.50, luteolin 0.10 | 84.50 |
Coriander, leaves | Quercetin 52.90 | 52.90 |
Wormwood | Quercetin 10.0, kaempferol 11.0, isorhamnetin 5.0, luteolin 1.0 | 27.0 |
Rosemary | Naringenin 24.86, luteolin 2.0, apigenin 0.55 | 27.41 |
Ginger | Kaempferol 33.60 | 33.60 |
Mustard | Kaempferol 38.20, quercetin 8.80, isorhamnetin 16.20 | 62.90 |
Sage | Luteolin 16.70, apigenin 1.20 | 17.90 |
Red onion | Quercetin 20.30, isorhamnetin 4.58, delphinidin 4.28, cyanidin 3.19, peonidin 2.07, kaempferol 0.65, apigenin 0.24 | 35.31 |
Chile pepper | Quercetin 14.70 | 14.70 |
Yellow pepper | Quercetin 50.63, luteolin 6.93 | 57.56 |
Tasmanian pepper | Cyanidin 752.68 | 752.68 |
Garlic | Quercetin 1.74, myricetin 1.61, kaempferol 0.26 | 3.61 |
Spices | Active Substance | Formula |
---|---|---|
Ginger | Gingerol | |
Rosemary | Rosmarinic acid | |
Onion | Quercetin | |
Turmeric | Curcumin | |
Cloves | Eugenol | |
Fennelflower | Thymoquinone | |
Black pepper | Piperine | |
Garlic | Allicin, S-allyl cysteine | |
Red pepper | Capsaicin | |
Parsley | Apigenin | |
Oregano, celery (seeds) | Luteolin | |
Capers | Kaempferol | |
Tasmanian pepper | Cyanidin | |
Saffron | Crocetin, crocin |
Diseases | Spices | References |
---|---|---|
Cardiovascular diseases, including heart attack | Garlic, turmeric, ginger | [90,91,92] |
neurodegenerative diseases | Mint, onion | [93] |
Antidiabetic action | Cinnamon, bay leaf, wormwood, fenugreek, mustard, pomegranate | [94,95] |
Gastrointestinal diseases | Black pepper, bay leaf | [96,97] |
Hypertension | Cardamon, cinnamon | [98,99] |
Hepatic diseases | Caraway, cardamon | [43,100] |
Endocrine diseases | Ginger, turmeric | [87] |
Against DNA oxidation | Basil | [101] |
Obesity | Saffron, turmeric | [102] |
Bone diseases | Cloves | [103] |
Protection against oxidative damage to red blood cells | Fenugreek, garlic | [104] |
Immunomodulatory action | Turmeric | [105,106] |
Renal diseases | Garlic, fennelflower, ginger | [107,108] |
Antiulcer action | Ginger | [109] |
Pigment cell growth inhibition | Turmeric | [110] |
Reduction of cortisol level in saliva | Lavender, rosemary | [111] |
Against alcohol abuse | Thyme, ginger | [112] |
Against gum disease | Licorice | [113] |
Spices | Cancer Type | References |
---|---|---|
Turmeric | Rectal cancer, oral cancer, leukemia, carcinoma of the head and neck | [125,126] |
Saffron | Skin carcinoma, rectal cancer, hepatic carcinoma | [127,128,129] |
Garlic | Prostate cancer, colon cancer | [130,131] |
Onion | Gastric carcinoma | [132] |
Turmeric | Leukemia | [133] |
Mustard | Rectal carcinoma, bladder cancer | [134,135] |
Bay leaf | Inhibits melanoma cell growth | [136] |
Mustard (seeds) | Rectal carcinoma, bladder cancer | [137] |
Spices | Major Bioactive Compounds | Potential Beneficial Effects | Potential Mechanism for Anti-CVD Characteristics | References |
---|---|---|---|---|
Cinnamon | Procyanidin | Antioxidant | Increase coronary blood flow | [85,99] |
Cinnamaldehyde | Antimicrobial potential | Provoke pituitrin induced reduction of blood flow | [138,139,140] | |
Reduce peripheral vascular resistance | ||||
Increase cardiac contractile force | ||||
Ginger | Gingerol | Antioxidant | Reduction in platelet aggregation | [19,140,141] |
Shogaol | Anti-inflammatory | Reduce LDL cholesterol levels | ||
Zerumbone | Reduce LDL atherogenic modifications | |||
Reduction in the oxidative response of macrophages | ||||
Garlic | Allicin | Antioxidant | Inhibit enzymes involved in lipid synthesis | [140,141,142] |
Decrease platelet aggregation | ||||
Prevent lipid peroxidation of oxidized erythrocytes | ||||
Increase antioxidant status | ||||
Inhibit angiotensin-converting enzyme | ||||
Turmeric | Curcumin | Antioxidant | Reduce platelet aggregation | [140] |
Capsaicin | Anti-inflammatory | Decrease triglycerides | ||
Reduce thromboxane | ||||
Decrease serum cholesterol | ||||
Decrease cardiomyocytic apoptosis | ||||
Onion | Polyphenols | Antioxidant | Reduce platelet aggregation | [143] |
Flavonoids | Reduce cholestrol level | |||
Flavonols | Enhance blood fibrinolytic activity | |||
Red pepper | Curcumin | Antioxidant | Hypotriglyceridemic | [22] |
Capsaicin | Anti-inflammatory | Reduce cholestrol in blood and liver | ||
Fenugreek | Rhaponticin | Antioxidant | Lymphatic cleansing | [141,142,143,144] |
Isovitexin | Anticarcinogenic | Decrease blood pressure | ||
Hypoglycermic effect |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yashin, A.; Yashin, Y.; Xia, X.; Nemzer, B. Antioxidant Activity of Spices and Their Impact on Human Health: A Review. Antioxidants 2017, 6, 70. https://doi.org/10.3390/antiox6030070
Yashin A, Yashin Y, Xia X, Nemzer B. Antioxidant Activity of Spices and Their Impact on Human Health: A Review. Antioxidants. 2017; 6(3):70. https://doi.org/10.3390/antiox6030070
Chicago/Turabian StyleYashin, Alexander, Yakov Yashin, Xiaoyan Xia, and Boris Nemzer. 2017. "Antioxidant Activity of Spices and Their Impact on Human Health: A Review" Antioxidants 6, no. 3: 70. https://doi.org/10.3390/antiox6030070
APA StyleYashin, A., Yashin, Y., Xia, X., & Nemzer, B. (2017). Antioxidant Activity of Spices and Their Impact on Human Health: A Review. Antioxidants, 6(3), 70. https://doi.org/10.3390/antiox6030070