Polyphenolic Compounds Analysis of Old and New Apple Cultivars and Contribution of Polyphenolic Profile to the In Vitro Antioxidant Capacity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sample Details and Preparation
2.3. Food Extraction
2.3.1. Polyphenolic Compounds Analysis
2.3.2. Antioxidant Capacity (AOC) Assays
2.4. HPLC Analysis of Polyphenols
2.5. Antioxidant Capacity (AOC)
2.5.1. Total Phenolic Content (TPC) Assay
2.5.2. Hydrophilic Trolox Equivalent Antioxidant Capacity (H-TEAC) Assay
2.5.3. Hydrophilic Oxygen Radical Absorbance Capacity (H-ORAC) Assay
2.6. Vitamin C Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Quantification of Polyphenolic Compounds and Vitamin C
3.2. Antioxidant Capacity (AOC)
3.3. Relative Contribution to AOC
3.4. Comparison of Old and New Apple Cultivars
4. Conclusions
Supplementary Materials
Author Contributions
Conflicts of Interest
References
- Hyson, D.A. A comprehensive review of apples and apple components and their relationship to human health. Adv. Nutr. 2011, 2, 408–420. [Google Scholar] [CrossRef] [PubMed]
- Scalbert, A.; Morand, C.; Manach, C.; Rémésy, C. Absorption and metabolism of polyphenols in the gut and impact on health. Biomed. Pharmacother. 2002, 56, 276–282. [Google Scholar] [CrossRef]
- Tsao, R.; Yang, R.; Xie, S.; Sockovie, E.; Khanizadeh, S. Which polyphenolic compounds contribute to the total antioxidant activities of apple? J. Agric. Food. Chem. 2005, 53, 4989–4995. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, K.; Wu, X.; Liu, R.H. Antioxidant activity of apple peels. J. Agric. Food. Chem. 2003, 51, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Bundesministerium für Ernährung und Landwirtschaft. Pressemitteilung Nr. 232. 2013. Available online: http://www.bmel.de/SharedDocs/Pressemitteilungen/2013/232-Zahl-der-Woche-Obstverbrauch.html?nn=312878 (accessed on 25 April 2017).
- Han, X.; Shen, T.; Lou, H. Dietary polyphenols and their biological significance. Int. J. Mol. Sci. 2007, 8, 950–988. [Google Scholar] [CrossRef]
- Lee, K.W.; Kim, Y.J.; Kim, D.; Lee, H.J.; Lee, C.Y. Major phenolics in apple and their contribution to the total antioxidant capacity. J. Agric. Food. Chem. 2003, 51, 6516–6520. [Google Scholar] [CrossRef] [PubMed]
- Wojdyło, A.; Oszmiański, J.; Laskowski, P. Polyphenolic compounds and antioxidant activity of new and old apple varieties. J. Agric. Food. Chem. 2008, 56, 6520–6530. [Google Scholar] [CrossRef] [PubMed]
- Łata, B.; Trampczynskab, A.; Paczesnaa, J. Cultivar variation in apple peel and whole fruit phenolic composition. Sci. Hortic. 2009, 121, 176–181. [Google Scholar] [CrossRef]
- Guyot, S.; Marnet, N.; Djamel, L.; Sanoner, P.; Drilleau, J.F. Reversed-phase HPLC following thiolysis for quantitative estimation and characterization of the four main classes of phenolic compounds in different tissue zones of a French cider apple variety (Malus domestica Var. Kermerrien). J. Agric. Food Chem. 1998, 46, 1698–1705. [Google Scholar] [CrossRef]
- Tsao, R.; Yang, R.; Young, J.C.; Zhu, H. Polyphenolic profiles in eight apple cultivars using High-Performance Liquid Chromatography (HPLC). J. Agric. Food. Chem. 2003, 51, 6347–6353. [Google Scholar] [CrossRef] [PubMed]
- Van der Sluis, A.A.; Dekker, M.; de Jager, A.; Jongen, W. Activity and concentration of polyphenolic antioxidants in apple: Effect of cultivar, harvest year, and storage conditions. J. Agric. Food. Chem. 2001, 49, 3606–3613. [Google Scholar] [CrossRef] [PubMed]
- Vrhovsek, U.; Rigo, A.; Tonon, D.; Mattivi, F. Quantitation of polyphenols in different apple varieties. J. Agric. Food. Chem. 2004, 52, 6532–6538. [Google Scholar] [CrossRef] [PubMed]
- Bitsch, R.; Netzel, M.; Frank, T.; Strass, G.; Bitsch, I. Bioavailability and biokinetics of anthocyanins from red grape juice and red wine. J. Biomed. Biotechnol. 2004, 5, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Liaudanskas, M.; Viškelis, P.; Jakštas, V.; Raudonis, R.; Kviklys, D.; Milašius, A.; Janulis, V. Application of an optimized HPLC method for the detection of various phenolic compounds in apples from Lithuanian cultivars. J. Chem. 2014, 2014, 1–10. [Google Scholar] [CrossRef]
- Abad-García, B.; Berrueta, L.A.; López-Márquez, D.M.; Crespo-Ferrer, I.; Gallo, B.; Vicente, F. Optimization and validation of a methodology based on solvent extraction and liquid chromatography for the simultaneous determination of several polyphenolic families in fruit juices. J. Chromatogr. A 2007, 1154, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Müller, L.; Gnoyke, S.; Popken, A.M.; Böhm, V. Antioxidant capacity and related parameters of different fruit formulations. LWT-Food Sci. Technol. 2010, 43, 992–999. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food. Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef] [PubMed]
- Al-Duais, M.; Müller, L.; Böhm, V.; Jetschke, G. Antioxidant capacity and total phenolics of Cyphostemma digitatum before and after processing: Use of different assays. Eur. Food. Res. Technol. 2009, 228, 813–821. [Google Scholar] [CrossRef]
- Petkovsek, M.M.; Stampar, F.; Veberic, R. Parameters of inner quality of the apple scab resistant and susceptible apple cultivars (Malus domestica Borkh). Sci. Hortic. 2007, 114, 37–44. [Google Scholar] [CrossRef]
- Escarpa, A.; González, M.C. High-performance liquid chromatography with diode-array detection for the determination of phenolic compounds in peel and pulp from different apple varieties. J. Chromatogr. A 1998, 823, 331–337. [Google Scholar] [CrossRef]
- Napolitano, A.; Cascone, A.; Graziani, G.; Ferracane, R.; Scalfi, L.; Di Vaio, C.; Ritieni, A.; Fogliano, V. Influence of variety and storage on the polyphenol composition of apple flesh. J. Agric. Food Chem. 2004, 52, 6526–6531. [Google Scholar] [CrossRef] [PubMed]
- Oleszek, W.; Lee, C.Y.; Jaworski, A.W.; Price, K.R. Identification of some phenolic compounds in apples. J. Agric. Food Chem. 1988, 36, 430–432. [Google Scholar] [CrossRef]
- Wach, A.; Pyrzynska, K.; Biesaga, M. Quercetin content in some food and herbal samples. Food Chem. 2007, 100, 699–704. [Google Scholar] [CrossRef]
- Burda, S.; Oleszek, W.; Lee, C.Y. Phenolic compounds and their changes in apples during maturation and cold storage. J. Agric. Food. Chem. 1990, 38, 945–948. [Google Scholar] [CrossRef]
- Khanizadeh, S.; Tsao, R.; Rekika, D.; Yang, R.; Charles, M.T.; Rupasinghe, V. Polyphenol composition and total antioxidant capacity of selected apple genotypes for processing. J. Food Compos. Anal. 2008, 21, 396–401. [Google Scholar] [CrossRef]
- Raudone, L.; Raudonis, R.; Liaudanskas, M.; Viskelis, J.; Pukalskas, A.; Janulis, V. Phenolic profiles and contribution of individual compounds to antioxidant activity of apple powders. J. Food Sci. 2016, 81, C1055–C1061. [Google Scholar] [CrossRef] [PubMed]
- Planchon, V.; Lateur, M.; Dupont, P.; Lognay, G. Ascorbic acid level of Belgian apple genetic resources. Sci. Hortic. 2004, 100, 51–61. [Google Scholar] [CrossRef]
- Pissard, A.; Pierna, J.A.F.; Baeten, V.; Sinnaeve, G.; Lognay, G.; Mouteau, A.; Dupont, P.; Rondia, A.; Lateur, M. Non-destructive measurement of vitamin C, total polyphenol and sugar content in apples using near-infrared spectroscopy. J. Sci. Food Agric. 2013, 93, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Łata, B.; Tomala, K. Apple peel as a contributor to whole fruit quantity of potentially healthful bioactive compounds. Cultivar and year implication. J. Agric. Food Chem. 2007, 55, 10795–10802. [Google Scholar] [CrossRef] [PubMed]
- Drogoudi, P.D.; Michailidis, Z.; Pantelidis, G. Peel and flesh antioxidant content and harvest quality characteristics of seven apple cultivars. Sci. Hortic. 2008, 115, 149–153. [Google Scholar] [CrossRef]
- Giomaro, G.; Karioti, A.; Bilia, A.R.; Bucchini, A.; Giamperi, L.; Ricci, D.; Fraternale, D. Polyphenols profile and antioxidant activity of skin and pulp of a rare apple from Marche region (Italy). Chem. Cent. J. 2014, 8, 45. [Google Scholar] [CrossRef] [PubMed]
- Van der Sluis, A.A.; Dekker, M.; Skrede, G.; Jongen, W.M.F. Activity and concentration of polyphenolic antioxidants in apple juice. 1. Effect of existing production methods. J. Agric. Food. Chem. 2002, 50, 7211–7219. [Google Scholar] [CrossRef] [PubMed]
- Chinnici, F.; Bendini, A.; Gaiani, A.; Riponi, C. Radical scavening activities of pees and pulps from cv. Golden Delicious apples as related to their phenolic composition. J. Agric. Food. Chem. 2004, 52, 4684–4689. [Google Scholar] [CrossRef] [PubMed]
- Stracke, A.B.; Rüfer, C.E.; Bub, A.; Weibel, F.P.; Kunz, C.; Watzl, B. Three-year comparison of the polyphenol contens and antioxidant capacities in organically and conventionally produced apples (Malus domestica Bork. Cultivar Golden Delicious). J. Agric. Food Chem. 2009, 57, 4598–4605. [Google Scholar] [CrossRef] [PubMed]
- Renard, C.M.; Dupont, N.; Guillermin, P. Concentrations and characteristics of procyanidins and other phenolics in apples during fruit growth. Phytochemistry 2007, 68, 1128–1138. [Google Scholar] [CrossRef] [PubMed]
- Bannier, H. Moderne Apfelzüchtung: Genetische Verarmung und Tendenzen zur Inzucht. Vitalitätsverluste erst bei Verzicht auf Fungizideinsatz sichtbar. Erwerbs-Obstbau 2011, 52, 85–110. [Google Scholar] [CrossRef]
Group of Polyphenols | Phenolic Compound | Synonyms | tR [min] | λmax [nm] | λ [nm] |
---|---|---|---|---|---|
Flavanols | Procyanidin B1 | 21.09 | 281 | 280 | |
(+)-Catechin | 25.71 | 281 | 280 | ||
Procyanidin B2 | 29.04 | 281 | 280 | ||
Procyanidin C1 | 39.87 | 275 | 280 | ||
(−)-Epicatechin | 43.11 | 280 | 280 | ||
Procyanidin A2 | 68.85 | 280 | 280 | ||
Phenolic acids | Gallic acid | Chlorogenic acid | 12.64 | 272 | 280 |
Protocatechuic acid | 18.80 | 261, 298 | 254 | ||
5-O-Caffeoylquinic acid | 31.12 | 326 | 320 | ||
Caffeic acid | 36.05 | 324 | 320 | ||
p-Coumaric acid | 57.10 | 310 | 320 | ||
Ferulic acid | 66.15 | 324 | 320 | ||
Dihydrochalcones | Phloretin-2-O-β-glucoside | Phloridzin * | 106.84 | 287 | 280 |
Flavonols | Quercetin-3-O-galactoside | Hyperoside | 94.19 | 259, 348 | 254 |
Quercetin-3-O-glucoside | Isoquercitrin | 96.96 | 259, 351 | 254 | |
Quercetin-3-O-rutinoside | Rutin * | 97.68 | 259, 348 | 254 | |
Quercetin-3-O-xyloside | Reynoutrin | 101.23 | 260, 348 | 254 | |
Quercetin-3-O-arabinoside | Avicularin | 112.03 | 260, 347 | 254 | |
Quercetin-3-O-rhamnoside | Quercitrin | 116.37 | 260, 347 | 254 | |
Quercetin | 145.33 | 256, 372 | 254 |
Apple Cultivars | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
vitamin C | 207.5 | 215.7 | 196.9 | 155.5 | 186.4 | 124.3 | 225.8 | 99.2 | 117.4 | 184.0 | 189.1 | 210.2 | 256.0 | 300.9 | 204.4 |
procyanidin B1 | n.d. | n.d. | 1.3 | 4.8 | n.d. | n.d. | 0.9 | n.d. | 1.8 | 1.0 | n.d. | 0.9 | n.d. | 1.3 | n.d. |
(+)-catechin | 2.3 | 4.9 | 2.7 | 6.8 | 9.0 | 1.5 | 3.5 | 3.4 | 3.2 | 3.0 | 8.3 | 7.4 | 11.7 | 7.4 | 3.6 |
procyanidin B2 | 7.5 | 7.2 | 7.8 | 5.2 | 9.0 | 8.2 | 9.6 | 5.1 | 4.4 | 6.8 | 7.6 | 8.3 | 8.2 | 6.2 | 6.7 |
procyanidin C1 | 6.6 | 7.0 | 5.2 | 6.6 | 9.5 | n.d | 6.6 | 6.9 | n.d. | 5.3 | 7.7 | 7.6 | 8.3 | 8.4 | 5.9 |
(−)-epicatechin | 13.2 | 11.4 | 3.0 | 8.9 | 18.5 | 1.1 | 7.9 | 3.1 | 2.2 | 4.2 | 16.4 | 13.2 | 17.8 | 11.3 | 6.4 |
procyanidin A2 | 4.1 | 10.5 | 7.7 | 7.3 | 10.4 | 5.1 | 10.2 | 2.6 | 12.4 | 12.1 | 9.8 | 5.1 | 8.7 | 5.7 | 5.0 |
total flavanols | 33.7 | 41.0 | 27.7 | 39.5 | 56.4 | 15.8 | 38.7 | 21.0 | 23.9 | 32.3 | 49.8 | 42.4 | 54.7 | 40.4 | 27.5 |
SD | ±4.2 | ±2.7 | ±2.7 | ±1.5 | ±4.1 | ±3.3 | ±3.6 | ±1.8 | ±4.4 | ±3.8 | ±3.7 | ±4.1 | ±3.6 | ±3.3 | ±1.3 |
gallic acid | 4.3 | 3.9 | 3.8 | 4.9 | 3.8 | 4.0 | 7.2 | 3.5 | 4.8 | 4.7 | 4.2 | 4.8 | 4.3 | 3.9 | 3.7 |
protocatechuic acid | 1.0 | 1.3 | 1.5 | 2.3 | 1.9 | 0.6 | 1.9 | 0.8 | 1.1 | 1.3 | 2.0 | 3.8 | 1.9 | 2.4 | 2.5 |
chlorogenic acid | 18.1 | 4.9 | 4.8 | 7.0 | 5.3 | 5.9 | 5.1 | 5.2 | 3.9 | 4.0 | 6.7 | 6.1 | 7.1 | 5.5 | 5.2 |
caffeic acid | 6.6 | 1.1 | 0.4 | 11.1 | 1.2 | 0.6 | 6.2 | 0.1 | 3.2 | 0.8 | 1.2 | 1.4 | 10.4 | 3.5 | 2.2 |
p-coumaric acid | 2.6 | 1.8 | 1.7 | 5.9 | 2.3 | 1.4 | 3.5 | 1.4 | 2.4 | 1.9 | 2.0 | 2.3 | 4.1 | 1.9 | 2.2 |
ferulic acid | 1.1 | 0.4 | 1.0 | 2.3 | 0.7 | 1.3 | 2.3 | 0.7 | 0.7 | 0.7 | 1.4 | 1.4 | 1.4 | 1.0 | 1.4 |
total phenolic acids | 33.6 | 13.5 | 13.2 | 33.6 | 15.2 | 13.7 | 26.2 | 11.7 | 16.1 | 13.4 | 17.5 | 19.7 | 29.3 | 18.1 | 17.1 |
SD | ±6.5 | ±1.8 | ±1.7 | ±3.3 | ±1.7 | ±2.2 | ±2.1 | ±2.0 | ±1.6 | ±1.7 | ±2.1 | ±1.9 | ±3.4 | ±1.6 | ±1.4 |
phloridzin | 37.1 | 4.6 | 1.5 | 6.1 | 8.3 | 1.5 | 63.8 | 0.8 | 15.3 | 6.1 | 8.8 | 14.5 | 6.8 | 6.9 | 8.0 |
hyperoside | 94.7 | 103.5 | 91.2 | 44.7 | 102.8 | 18.31 | 83.4 | 28.6 | 8.0 | 80.3 | 168.1 | 190.9 | 60.2 | 189.4 | 79.3 |
isoquercitrin | 30.9 | 19.1 | 8.1 | 12.6 | 18.5 | 4.87 | 44.8 | 11.0 | 5.6 | 9.7 | 29.6 | 18.9 | 13.8 | 24.5 | 9.8 |
Rutin | 24.3 | 6.6 | 1.4 | 14.5 | 7.2 | 1.16 | 1.9 | 2.4 | 1.9 | 0.9 | 9.8 | 1.9 | 1.9 | 15.5 | 6.8 |
reynoutrin | 18.6 | 19.6 | 15.6 | 10.6 | 19.3 | 6.99 | 15.7 | 11.2 | 4.1 | 10.2 | 27.9 | 39.8 | 20.1 | 40.0 | 15.4 |
avicularin | 35.0 | 19.6 | 30.3 | 18.1 | 28.4 | 12.79 | 23.7 | 13.3 | 9.7 | 22.7 | 33.1 | 62.4 | 29.5 | 51.4 | 23.8 |
quercitrin | 36.2 | 19.7 | 18.4 | 25.5 | 17.9 | 15.94 | 15.4 | 23.4 | 15.4 | 24.0 | 50.2 | 40.6 | 17.1 | 84.1 | 20.9 |
quercetin | 17.7 | 13.5 | 16.9 | 7.6 | 13.8 | 8.54 | 12.5 | 8.8 | 7.3 | 14.0 | 22.4 | 32.5 | 12.0 | 25.1 | 9.5 |
total flavonols | 257.3 | 201.6 | 181.8 | 133.4 | 207.9 | 68.6 | 197.4 | 98.6 | 52.0 | 161.8 | 340.9 | 386.9 | 154.4 | 430.0 | 165.5 |
SD | ±26.6 | ±33.3 | ±30.1 | ±12.7 | ±32.8 | ±6.2 | ±27.7 | ±8.9 | ±4.3 | ±26.4 | ±54.0 | ±62.7 | ±18.8 | ±60.9 | ±25.3 |
total polyphenols | 361.7 | 260.8 | 224.2 | 212.5 | 287.8 | 99.6 | 326.1 | 132.1 | 107.3 | 213.5 | 416.9 | 463.5 | 245.2 | 495.3 | 218.1 |
SD | ±22.2 | ±22.7 | ±20.4 | ±9.7 | ±22.5 | ±5.4 | ±22.2 | ±7.8 | ±4.6 | ±17.7 | ±37.8 | ±42.9 | ±13.5 | ±44.0 | ±17.5 |
TPC | 889.6 | 926.0 | 687.6 | 889.5 | 1320.4 | 521.9 | 1238.2 | 581.0 | 638.8 | 772.5 | 1224.2 | 1212.8 | 1590.5 | 1078.7 | 960.6 |
TEAC | 5.3 | 6.0 | 4.4 | 5.9 | 8.5 | 2.4 | 7.7 | 3.4 | 3.4 | 5.0 | 9.1 | 9.9 | 12.8 | 8.3 | 6.1 |
ORAC | 21.1 | 20.6 | 16.3 | 19.2 | 29.0 | 8.6 | 22.0 | 13.6 | 15.3 | 18.3 | 24.6 | 24.4 | 31.4 | 26.2 | 19.3 |
Apple Cultivars | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
vitamin C | 108.0 | 112.3 | 99.5 | 83.2 | 67.7 | 50.4 | 94.7 | 54.7 | 77.0 | 85.5 | 57.4 | 118.2 | 124.8 | 134.4 | 106.8 |
procyanidin B1 | 0.5 | 0.5 | n.d. | 6.8 | n.d. | 0.2 | 0.3 | n.d. | 0.8 | 0.7 | n.d. | 4.0 | 0.4 | n.d. | n.d. |
(+)-catechin | 0.8 | 0.5 | 1.4 | 1.6 | 2.5 | 0.3 | 0.8 | 1.8 | 0.3 | 1.1 | 0.5 | 4.9 | 1.0 | 1.5 | 1.3 |
procyanidin B2 | 0.9 | 1.3 | 1.9 | 2.5 | 1.8 | 1.4 | 1.7 | 1.4 | 1.4 | 1.6 | 2.0 | 2.7 | 1.9 | 2.3 | 2.0 |
procyanidin C1 | 1.3 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 1.3 | n.d. | 1.7 | n.d. | n.d. | n.d. |
(−)-epicatechin | 0.3 | 0.5 | 1.2 | 2.2 | 2.0 | 0.3 | 1.4 | 1.5 | 0.8 | 1.4 | 0.7 | 4.7 | 1.5 | 2.2 | 1.5 |
procyanidin A2 | 2.0 | 1.4 | 6.6 | 3.5 | 4.5 | 2.1 | 2.4 | 1.6 | 5.3 | 11.0 | 3.1 | 5.9 | 5.0 | 2.6 | 4.0 |
total flavanols | 5.9 | 4.2 | 11.1 | 16.6 | 10.8 | 4.4 | 6.6 | 6.3 | 8.6 | 17.1 | 6.3 | 23.8 | 9.6 | 8.6 | 8.8 |
SD | ±0.6 | ±0.5 | ±2.6 | ±2.1 | ±1.2 | ±0.9 | ±0.8 | ±0.2 | ±2.0 | ±4.0 | ±1.2 | ±1.5 | ±1.8 | ±0.5 | ±1.2 |
gallic acid | 1.7 | 1.6 | 1.7 | 1.6 | 1.6 | 1.9 | 2.0 | 1.4 | 1.7 | 2.2 | 1.7 | 1.9 | 1.7 | 1.6 | 1.7 |
protocatechuic acid | 0.2 | 0.1 | 0. | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.1 | 0.3 |
chlorogenic acid | 8.4 | 2.0 | 3.2 | 10.8 | 3.6 | 1.4 | 5.8 | 1.7 | 3.3 | 3.3 | 2.1 | 4.4 | 8.3 | 7.6 | 8.6 |
caffeic acid | 5.6 | 0.6 | 1.5 | 6.8 | 1.7 | 0.5 | 1.0 | 0.5 | 0.6 | 0.7 | 0.4 | 2.2 | 5.0 | 3.8 | 6.0 |
p-coumaric acid | 0.7 | 0.4 | 0.6 | 0.8 | 0.6 | 0.4 | 0.7 | 0.4 | 0.7 | 0.6 | 0.5 | 0.7 | 0.9 | 0.7 | 0.8 |
ferulic acid | 0.2 | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 0.3 | 0.1 | 0.1 | 0.2 | 0.2 | 0.1 | 0.4 | 0.1 | 0.2 |
total phenolic acids | 16.7 | 4.8 | 7.1 | 20.3 | 7.6 | 4.4 | 9.9 | 4.2 | 6.5 | 7.1 | 5.0 | 9.4 | 16.4 | 13.9 | 17.5 |
SD | ±3.4 | ±0.8 | ±1.2 | ±4.4 | ±1.3 | ±0.7 | ±2.1 | ±0.7 | ±1.2 | ±1.3 | ±0.8 | ±1.6 | ±3.3 | ±2.9 | ±3.5 |
phloridzin | 7.3 | 0.7 | 2.3 | 4.7 | 3.6 | 0.9 | 5.2 | 0.7 | 2.3 | 2.3 | 0.7 | 3.6 | 2.9 | 7.4 | 12.3 |
total polyphenols | 29.8 | 9.6 | 20.5 | 41.6 | 20.8 | 9.6 | 21.7 | 11.2 | 17.4 | 26.5 | 12.0 | 36.8 | 28.9 | 29.9 | 38.6 |
SD | ±2.8 | ±0.6 | ±1.8 | ±3.4 | ±1.4 | ±0.7 | ±2.9 | ±0.7 | ±1.5 | ±2.9 | ±1.0 | ±1.9 | ±2.5 | ±2.6 | ±3.9 |
TPC | 220.7 | 143.6 | 219.8 | 300.3 | 276.4 | 136.5 | 252.0 | 163.3 | 174.9 | 246.3 | 177.5 | 361.7 | 242.9 | 217.6 | 334.1 |
TEAC | 1.1 | 0.8 | 1.3 | 1.8 | 1.5 | 0.8 | 1.2 | 0.9 | 0.9 | 1.5 | 1.0 | 2.3 | 1.5 | 1.2 | 2.0 |
ORAC | 5.7 | 4.9 | 5.2 | 6.1 | 6.7 | 2.4 | 4.5 | 4.0 | 4.5 | 5.9 | 5.0 | 8.1 | 5.4 | 4.7 | 6.9 |
Apple Flesh | Apple Peel | |||||
---|---|---|---|---|---|---|
Old Cultivars | New Cultivars | p | Old Cultivars | New Cultivars | p | |
ascorbic acid | 102.6 ± 19.3 | 68.5 ± 23.7 | <0.001 | 203.5 ± 50.5 | 162.9 ± 45.9 | 0.012 |
procyanidin B1 | 1.0 ± 1.9 | 1.0 ± 0.1 | 0.081 | 1.9 ± 1.6 | n.d. | - |
(+)-catechin | 1.5 ± 1.2 | 1.1 ± 0.9 | 0.351 | 5.1 ± 3.0 | 5.4 ± 3.0 | 0.745 |
procyanidin B2 | 1.9 ± 0.5 | 1.6 ± 0.3 | 0.061 | 7.1 ± 1.5 | 7.4 ± 1.4 | 0.427 |
procyanidin C1 | 1.5 ± 0.2 | n.d. | - | 6.7 ± 1.2 | 7.8 ± 1.1 | 0.016 |
(−)-epicatechin | 1.7 ± 1.2 | 1.0 ± 0.7 | 0.034 | 8.8 ± 4.9 | 10.1 ± 7.2 | 0.543 |
procyanidin A2 | 4.8 ± 2.6 | 2.5 ± 1.2 | <0.001 | 7.8 ± 2.9 | 7.7 ± 3.4 | 0.855 |
total flavanols | 11.2 ± 5.2 | 6.4 ± 2.5 | <0.001 | 36.1 ± 8.8 | 36.8 ± 16.5 | 0.883 |
gallic acid | 1.8 ± 0.2 | 1.6 ± 0.2 | 0.054 | 4.6 ± 1.0 | 3.9 ± 0.3 | 0.001 |
protocatechuic acid | 0.1 ± 0.1 | 0.1 ± 0.0 | 0.005 | 2.0 ± 0.8 | 1.3 ± 0.6 | 0.012 |
chlorogenic acid | 6.4 ± 2.7 | 2.1 ± 0.8 | <0.001 | 6.7 ± 4.0 | 5.6 ± 0.7 | 0.159 |
caffeic acid | 3.3 ± 2.4 | 0.8 ± 0.5 | <0.001 | 4.6 ± 3.7 | 0.8 ± 0.5 | <0.001 |
p-coumaric acid | 0.7 ± 0.1 | 0.5 ± 0.1 | <0.001 | 2.8 ± 1.3 | 1.8 ± 0.4 | <0.001 |
ferulic acid | 0.2 ± 0.1 | 0.1 ± 0.1 | 0.003 | 1.3 ± 0.6 | 0.9 ± 0.4 | 0.007 |
total phenolic acids | 12.5 ± 4.9 | 5.2 ± 1.3 | <0.001 | 22.0 ± 7.7 | 14.3 ± 2.1 | <0.001 |
phloridzin | 5.0 ± 3.1 | 1.1 ± 0.7 | <0.001 | 16.6 ± 18.7 | 4.8 ± 3.5 | 0.002 |
hyperoside | n.d. | n.d. | - | 92.2 ± 55.8 | 84.2 ± 57.1 | 0.657 |
isoquercitrin | n.d. | n.d. | - | 17.8 ± 11.9 | 16.6 ± 8.6 | 0.716 |
rutin | n.d. | n.d. | - | 7.1 ± 7.9 | 5.4 ± 3.3 | 0.319 |
reynoutrin | n.d. | n.d. | - | 19.0 ± 11.5 | 17.0 ± 7.6 | 0.550 |
avicularin | n.d. | n.d. | - | 30.6 ± 15.2 | 21.4 ± 8.4 | 0.035 |
quercitrin | n.d. | n.d. | - | 29.8 ± 20.3 | 25.4 ± 13.1 | 0.455 |
quercetin | n.d. | n.d. | - | 15.5 ± 7.9 | 13.4 ± 5.2 | 0.366 |
total flavonols | n.d. | n.d. | - | 212.1 ± 112.3 | 183.5 ± 99.6 | 0.410 |
total polyphenols | 28.7 ± 7.4 | 12.6 ± 4.4 | <0.001 | 286.8 ± 118.8 | 239.4 ± 118.6 | 0.214 |
TPC | 257.0 ± 56.7 | 179.5 ± 52.3 | <0.001 | 995.9 ± 281.6 | 914.7 ± 331.3 | 0.163 |
TEAC | 1.5 ± 0.4 | 1.0 ± 0.3 | <0.001 | 6.9 ± 2.8 | 5.9 ± 2.7 | 0.051 |
ORAC | 5.7 ± 1.3 | 4.6 ± 1.6 | <0.001 | 21.4 ± 5.4 | 19.2 ± 7.8 | 0.060 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kschonsek, J.; Wolfram, T.; Stöckl, A.; Böhm, V. Polyphenolic Compounds Analysis of Old and New Apple Cultivars and Contribution of Polyphenolic Profile to the In Vitro Antioxidant Capacity. Antioxidants 2018, 7, 20. https://doi.org/10.3390/antiox7010020
Kschonsek J, Wolfram T, Stöckl A, Böhm V. Polyphenolic Compounds Analysis of Old and New Apple Cultivars and Contribution of Polyphenolic Profile to the In Vitro Antioxidant Capacity. Antioxidants. 2018; 7(1):20. https://doi.org/10.3390/antiox7010020
Chicago/Turabian StyleKschonsek, Josephine, Theresa Wolfram, Annette Stöckl, and Volker Böhm. 2018. "Polyphenolic Compounds Analysis of Old and New Apple Cultivars and Contribution of Polyphenolic Profile to the In Vitro Antioxidant Capacity" Antioxidants 7, no. 1: 20. https://doi.org/10.3390/antiox7010020
APA StyleKschonsek, J., Wolfram, T., Stöckl, A., & Böhm, V. (2018). Polyphenolic Compounds Analysis of Old and New Apple Cultivars and Contribution of Polyphenolic Profile to the In Vitro Antioxidant Capacity. Antioxidants, 7(1), 20. https://doi.org/10.3390/antiox7010020