Analysis of Popcorn (Zea Mays L. var. Everta) for Antioxidant Capacity and Total Phenolic Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Chemicals
2.3. Sample Preparation
2.4. Sample Treatment
2.4.1. Chemical Hydrolysis
2.4.2. In Vitro Digestion
2.5. Analysis Methods
2.6. Interference Testing
2.7. Statistical Analysis
3. Results
3.1. Free Polyphenols
3.2. Folin–Ciocalteu and FRAP Assays after Chemical Hydrolysis
3.3. Folin and FRAP Assays after In Vitro Digestion
4. Discussion
4.1. Quantity of Antioxidants
4.2. Popcorn as a Source of Dietary Antioxidants
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zizza, C.A.; Xu, B. Snacking is Associated with Overall Diet Quality among Adults. J. Acad. Nutr. Diet. 2012, 112, 291–296. [Google Scholar] [CrossRef] [PubMed]
- United States Department of Agriculture; United States Department of Health and Human Services. 2015–2020 Dietary Guidelines for Americans; USDA: Washington, DC, USA, 2015.
- Albertson, A.M.; Reicks, M.; Joshi, N.; Gugger, C.K. Whole grain consumption trends and associations with body weight measures in the United States: Results from the cross sectional National Health and Nutrition Examination Survey 2001–2012. Nutr. J. 2015, 15, 8. [Google Scholar] [CrossRef] [PubMed]
- Sette, S.; D’Addezio, L.; Piccinelli, R.; Hopkins, S.; Le Donne, C.; Ferrari, M.; Mistura, L.; Turrini, A. Intakes of whole grain in an Italian sample of children, adolescents and adults. Eur. J. Nutr. 2017, 56, 521–533. [Google Scholar] [CrossRef] [PubMed]
- Mejborn, H.; Ygil, K.H.; Fagt, S.; Trolle, E.; Kørup, K.; Christensen, T. Danskernes fuldkornsindtag 2011–2013. E-Artikel fra DTU Fødevareinstitutet 2014, 2014, 1–7. [Google Scholar]
- Grandjean, A.C.; Fulgoni, V.L.; Reimers, K.J.; Agarwal, S. Popcorn Consumption and Dietary and Physiological Parameters of US Children and Adults: Analysis of the National Health and Nutrition Examination Survey (NHANES) 1999–2002 Dietary Survey Data. J. Am. Diet. Assoc. 2008, 108, 853–856. [Google Scholar] [CrossRef] [PubMed]
- Lillioja, S.; Neal, A.L.; Tapsell, L.; Jacobs, D.R. Whole grains, type 2 diabetes, coronary heart disease and hypertension: Links to the aleurone preferred over indigestible fiber. BioFactors 2013, 39, 242–258. [Google Scholar] [CrossRef] [PubMed]
- Marquart, L.; Wiemer, K.L.; Jones, J.M.; Jacob, B. Whole grain health claims in the USA and other efforts to increase whole-grain consumption. Proc. Nutr. Soc. 2003, 62, 151–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Z.; Egashira, Y.; Sanada, H. Phenolic Antioxidants Richly Contained in Corn Bran Are Slightly Bioavailable in Rats. J. Agric. Food Chem. 2005, 53, 5030–5035. [Google Scholar] [CrossRef]
- Adom, K.K.; Liu, R.H. Antioxidant Activity of Grains. J. Agric. Food Chem. 2002, 50, 6182–6187. [Google Scholar] [CrossRef]
- Van Hung, P. Phenolic Compounds of Cereals and Their Antioxidant Capacity. Crit. Rev. Food Sci. Nutr. 2016, 56, 25–35. [Google Scholar] [CrossRef]
- Sarni-Manchado, P.; Le Roux, E.; Le Guernevé, C.; Lozano, Y.; Cheynier, V. Phenolic Composition of Litchi Fruit Pericarp. J. Agric. Food Chem. 2000, 48, 5995–6002. [Google Scholar] [CrossRef] [PubMed]
- Nardini, M.; Cirillo, E.; Natella, F.; Mencarelli, D.; Comisso, A.; Scaccini, C. Detection of bound phenolic acids: Prevention by ascorbic acid and ethylenediaminetetraacetic acid of degradation of phenolic acids during alkaline hydrolysis. Food Chem. 2002, 79, 119–124. [Google Scholar] [CrossRef]
- Liu, C.-S.; Glahn, R.P.; Liu, R.H. Assessment of Carotenoid Bioavailability of Whole Foods Using a Caco-2 Cell Culture Model Coupled with an in Vitro Digestion. J. Agric. Food Chem. 2004, 52, 4330–4337. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Agbor, G.A.; Vinson, J.A.; Donnelly, P.E. Folin-Ciocalteau Reagent for Polyphenolic Assay. Int. J. Food Sci. Nutr. Diet. 2014, 3, 147–156. [Google Scholar] [CrossRef]
- Bunzel, M. Chemistry and occurrence of hydroxycinnamate oligomers. Phytochem. Rev. 2009, 9, 47–64. [Google Scholar] [CrossRef]
- Dudonné, S.; Vitrac, X.; Coutière, P.; Woillez, M.; Mérillon, J.-M. Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest Using DPPH, ABTS, FRAP, SOD and ORAC Assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef]
- Dewanto, V.; Wu, X.; Liu, R.H. Processed Sweet Corn Has Higher Antioxidant Activity. J. Agric. Food Chem. 2002, 50, 4959–4964. [Google Scholar] [CrossRef]
- Nayak, B.; Liu, R.H.; Tang, J. Effect of processing on phenolic antioxidants of fruits, vegetables and grains—A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 887–919. [Google Scholar] [CrossRef]
- Li, W.; Pickard, M.D.; Beta, T. Effect of thermal processing on antioxidant properties of purple wheat bran. Food Chem. 2007, 104, 1080–1086. [Google Scholar] [CrossRef]
- Ti, H.; Zhang, R.; Li, Q.; Wei, Z.; Zhang, M. Effects of cooking and in vitro digestion of rice on phenolic profiles and antioxidant activity. Food Res. Int. 2015, 76, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Burgess-Champoux, T.L.; Larson, N.I.; Neumark-Sztainer, D.R.; Hannan, P.J.; Story, M.T. Longitudinal and secular trends in adolescent whole-grain consumption, 1999–2004. Am. J. Clin. Nutr. 2010, 91, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Andreasen, M.F.; Kroon, P.A.; Williamson, G.; Garcia-Conesa, M.-T. Esterase Activity Able to Hydrolyze Dietary Antioxidant Hydroxycinnamates is Distributed along the Intestine of Mammals. J. Agric. Food Chem. 2001, 49, 5679–5684. [Google Scholar] [CrossRef] [PubMed]
- Kern, S.M.; Bennett, R.N.; Mellon, F.A.; Kroon, P.A.; Garcia-Conesa, M.-T. Absorption of Hydroxycinnamates in Humans after High-Bran Cereal Consumption. J. Agric. Food Chem. 2003, 51, 6050–6055. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.-C.; Hong, Q.; Wang, Y.-G.; Tan, H.-L.; Xiao, C.-R.; Liang, Q.-D.; Zhang, B.-L.; Gao, Y. Ferulic Acid Protects Human Umbilical Vein Endothelial Cells from Radiation Induced Oxidative Stress by Phosphatidylinositol 3-Kinase and Extracellular Signal-Regulated Kinase Pathways. Biol. Pharm. Bull. 2010, 33, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Salinas-Moreno, Y.; García-Salinas, C.; Ramírez-Díaz, J.L.; Alemán-de la Torre, I. Phenolic Compounds in Maize Grains and Its Nixtamalized Products. In Phenolic Compounds—Natural Sources, Importance and Applications; Soto-Hernández, M., Palma-Tenango, M., Garcia-Mateos, M.D.R., Eds.; InTech: London, UK, 2017. [Google Scholar] [Green Version]
- Bolhuis, D.P.; Costanzo, A.; Newman, L.P.; Keast, R.S.J. Salt Promotes Passive Overconsumption of Dietary Fat in Humans. J. Nutr. 2016, 146, 838–845. [Google Scholar] [CrossRef]
- Aaron, K.J.; Sanders, P.W. Role of dietary salt and potassium intake in cardiovascular health and disease: A review of the evidence. Mayo Clin. Proc. 2013, 88, 987–995. [Google Scholar] [CrossRef]
- Holt, S.H.; Miller, J.C.; Petocz, P.; Farmakalidis, E. A satiety index of common foods. Eur. J. Clin. Nutr. 1995, 49, 675–690. [Google Scholar] [PubMed]
- Nguyen, V.; Cooper, L.; Lowndes, J.; Melanson, K.; Angelopoulos, T.J.; Rippe, J.M.; Reimers, K. Popcorn is more satiating than potato chips in normal-weight adults. Nutr. J. 2012, 11, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naruszewicz, M.; Zapolska-Downar, D.; Kośmider, A.; Nowicka, G.; Kozłowska-Wojciechowska, M.; Vikström, A.S.; Törnqvist, M. Chronic intake of potato chips in humans increases the production of reactive oxygen radicals by leukocytes and increases plasma C-reactive protein: A pilot study. Am. J. Clin. Nutr. 2009, 89, 773–777. [Google Scholar] [CrossRef] [PubMed]
- Vinson, J.A.; Cai, Y. Nuts, especially walnuts, have both antioxidant quantity and efficacy and exhibit significant potential health benefits. Food Funct. 2012, 3, 134–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | Folin Assay (mg catechin/g) | FRAP Assay (mg catechin/g) |
---|---|---|
brand 1 | 4.66 ± 0.31 | 10.5 ± 0.4 |
brand 2 | 5.23 ± 0.27 | 11.1 ± 0.5 |
brand 3A | 5.49 ± 0.10 | 9.76 ± 0.15 |
brand 3B | 6.01 ± 0.04 | 11.6 ± 0.2 |
brand 3C | 5.29 ± 0.19 | 8.73 ± 0.12 |
brand 3D | 6.02 ± 0.10 | 12.0 ± 0.2 |
brand 4 | 6.07 ± 0.02 | 12.8 ± 0.5 |
brand 5A | 7.20 ± 0.04 | 11.1 ± 0.9 |
brand 5B | 7.47 ± 0.05 | 13.4 ± 0.1 |
Average | 5.93 ± 0.92 | 11.2 ± 1.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coco, M.G., Jr.; Vinson, J.A. Analysis of Popcorn (Zea Mays L. var. Everta) for Antioxidant Capacity and Total Phenolic Content. Antioxidants 2019, 8, 22. https://doi.org/10.3390/antiox8010022
Coco MG Jr., Vinson JA. Analysis of Popcorn (Zea Mays L. var. Everta) for Antioxidant Capacity and Total Phenolic Content. Antioxidants. 2019; 8(1):22. https://doi.org/10.3390/antiox8010022
Chicago/Turabian StyleCoco, Michael G., Jr., and Joe A. Vinson. 2019. "Analysis of Popcorn (Zea Mays L. var. Everta) for Antioxidant Capacity and Total Phenolic Content" Antioxidants 8, no. 1: 22. https://doi.org/10.3390/antiox8010022
APA StyleCoco, M. G., Jr., & Vinson, J. A. (2019). Analysis of Popcorn (Zea Mays L. var. Everta) for Antioxidant Capacity and Total Phenolic Content. Antioxidants, 8(1), 22. https://doi.org/10.3390/antiox8010022