Alpha-Glucosidase and Alpha-Amylase Inhibitory Activities of Novel Abietane Diterpenes from Salvia africana-lutea
Abstract
:1. Introduction
2. Experimental Section
2.1. General Information
2.2. Plant Material
2.3. Extraction and Purification of Chemical Constituents
2.4. Alpha-Glucosidase Inhibitory Activity
2.5. Alpha-Amylase Inhibitory Activity
2.6. Antioxidant Assays
2.6.1. Ferric-Ion Reducing Antioxidant Power (FRAP) Assay
2.6.2. Trolox Equivalent Absorbance Capacity (TEAC) Assay
2.6.3. Oxygen Radical Absorbance Capacity (ORAC) Assay
2.7. Statistical Analysis
3. Results and Discussion
3.1. Chemical Characterization of the Isolated Compounds
3.2. In Vitro Bioactivity
3.2.1. Alpha-Glucosidase and Alpha-Amylase Activities
3.2.2. Antioxidant Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cao, A.; Tang, Y.; Liu, Y. Novel Fluorescent Biosensor for α-Glucosidase Inhibitor ScreeningBased on Cationic Conjugated Polymers. ACS Appl. Mater. Interfaces 2012, 4, 3773–3778. [Google Scholar] [CrossRef] [PubMed]
- Mamun-or-Rashid, A.N.M.; Hossain, M.S.; Hassan, N.; Dash, B.K.; Sapon, M.A.; Kumer, S.M.A. Review on medicinal plants with antidiabetic activity. J. Pharmacogn. Phytochem. 2014, 3, 149–159. [Google Scholar]
- Ullah, A.; Khan, A.; Khan, I. Diabetes mellitus and oxidative stress––A concise review. Pharm. J. 2016, 24, 547–553. [Google Scholar]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [PubMed]
- Wright, E.S.B. Oxidative stress in type 2 diabetes: The role of fasting and postprandial glycaemia. Int. J. Clin. Pract. 2006, 60, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Giacco, F.B. Oxidative stress and diabetic complications. Circ. Res. 2010, 107, 1058–1070. [Google Scholar] [CrossRef] [PubMed]
- Mohiuddin, M.; Arbain, D.; Shafiqul Islam, A.K.M.; Ahmad, M.S.; Ahmad, M.N. Alpha-glucosidase enzyme Biosensor forthe Electrochemical Measurement ofAntidiabetic Potential of Medicinal Plants. Nanoscale Res. Lett. 2016, 11, 95. [Google Scholar] [CrossRef]
- Mohammed, A.; Ibrahim, M.A.; Islam, M.S. African Medicinal Plants with Antidiabetic Potentials: A Review. Planta Med. 2014, 80, 354–377. [Google Scholar] [CrossRef] [Green Version]
- Lorenzati, B.; Zucco, C.; Miglietta, S.; Lamberti, F.; Bruno, G. Oral Hypoglycemic Drugs: Pathophysiological Basis of Their Mechanism of Action. Pharmaceuticals 2010, 3, 3005–3020. [Google Scholar] [CrossRef]
- Marín-Peñalver, J.J.; Martín-Timón, I.; Sevillano-Collantes, C.; del Cañizo-Gómez, F.J. Type 2 diabetes and cardiovascular disease: Have all risk factors the same strength. World J. Diabetes 2016, 7, 354–395. [Google Scholar] [CrossRef]
- Sofowora, A.; Ogunbodede, E.; Onayade, A. The Role and Place of Medicinal Plants in the Strategies for Disease Prevention. Afr. J. Tradit. Complement. Altern. Med. 2013, 10, 210–229. [Google Scholar] [CrossRef] [PubMed]
- Manning, J.; Goldblatt, P. Plants of the Greater Cape Floristic Region 1: The Core Cape flora; South African National Biodiversity Institute: Pretoria, South Africa, 2012. [Google Scholar]
- Arief, M.M.H.; Hussein, A.A.F.; Mohammed, A.; Elmwafy, H.M. Chemical and Bioactivity Studies on Salvia sfricana-Lutea: Cytotoxicity and Apoptosis Induction by Abietane Diterpenes Isolated from Salvia Africana-Lutea. J. Basic Environ. Sci. 2018, 5, 72–79. [Google Scholar]
- Hussein, A.; Meyer, J.M.; Jimeno, M.L.; Rodrıguez, B. Bioactive Diterpenes from Orthosiphon labiatus and Salvia africana-lutea. J. Nat. Prod. 2007, 70, 293–295. [Google Scholar] [CrossRef]
- Gonzalez, M.A. Aromatic abietane diterpenoids: Their biological activity and synthesis. Nat. Prod. Rep. 2015, 32, 684–704. [Google Scholar] [CrossRef]
- Nazaruk, J.; Borzym-Kluczyk, M. The role of triterpenes in the management of diabetes mellitus and its complications. Phytochem. Rev. 2015, 14, 675–690. [Google Scholar] [CrossRef] [PubMed]
- Mao Song, H.; Li, X.; Liu, Y.Y.; Lu, W.P.; Cui, Z.H.; Zhou, L.; Yao, D.; Zhang, H.M. Carnosic acid protects mice from high-fat diet-induced NAFLD by regulating MARCKS. Int. J. Mol. Med. 2018, 42, 193–207. [Google Scholar] [Green Version]
- Lipina, C.; Hundal, H.S. Carnosic acid stimulates glucose uptake in skeletal muscle cells via a PME-1/PP2A/PKB signalling axis. Cell Signal 2014, 26, 2343–2349. [Google Scholar] [CrossRef]
- Samarghandian, S.; Borji, A.; Farkhondeh, T. Evaluation of Antidiabetic Activity of Carnosol (Phenolic Diterpene in Rosemary) in Streptozotocin-Induced Diabetic Rats. Cardiovasc. Hematol. Disord. Drug Targets 2017, 17, 11–17. [Google Scholar] [CrossRef]
- Vlavcheski, F.; Baron, D.; Vlachogiannis, I.A.; MacPherson, R.E.K.; Tsiani, E. Carnosol Increases Skeletal Muscle Cell Glucose Uptake via AMPK-Dependent GLUT4 Glucose Transporter Translocation. Int. J. Mol. Sci. 2018, 19, 29. [Google Scholar] [CrossRef]
- Castellano, J.M.; Guinda, A.; Delgado, T.; Rada, M.; Cayuela, J.A. Biochemical Basis of the Antidiabetic Activity of Oleanolic Acid and Related Pentacyclic Triterpenes. Diabetes 2013, 62, 1791–1799. [Google Scholar] [CrossRef] [Green Version]
- Ramu, R.; Shirahatti, P.S.; Nanjunda, S.S.; Zameer, F.; Dhananjaya, B.L.; Nagendra, P.M.N. Assessment of In Vivo Antidiabetic Properties of Umbelliferone and Lupeol Constituents of Banana (Musa sp. var. Nanjangud Rasa Bale) Flower in Hyperglycaemic Rodent Model. PLoS ONE 2016, 11, e0151135. [Google Scholar]
- Silva, F.S.G.; Oliveira, P.J.; Duarte, M.F. Oleanolic, Ursolic, and Betulinic Acids as Food Supplements orPharmaceutical Agents for Type 2 Diabetes: Promise or Illusion? J. Agric. Food Chem. 2016, 64, 2991–3008. [Google Scholar] [CrossRef] [PubMed]
- Telagari, M.; Hullatti, K. In-vitro α-amylase and α-glucosidase inhibitory activity of Adiantum caudatum Linn. and Celosia argentea Linn. extracts and fractions. Indian J. Pharmacol. 2015, 47, 425–429. [Google Scholar]
- Benzie, I.F.F.J.; Strain, J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modifies version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [PubMed]
- Fellegrini, N.; Re, R.; Yang, M.; Rice-Evans, C.A. Screening of dietary carotenoid-rich fruit extracts for antioxidant activities applying ABTS radical cation decolorisation assay. Method Enzymol. 1999, 299, 379–389. [Google Scholar]
- Prior, R.L.; Hoang, H.; Gu, L.; Wu, X.; Bacchiocca, M.; Howard, L.; Hampschwoodill, M.; Huang, D.; Ou, B.; Jacob, R. Assays for hydrophilic antioxidant capacity (ORACFL). J. Agric. Food Chem. 2003, 51, 3273–3279. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.B.; Yang, S.J.; Yan, Z.R.; Zhang, X.J.; Pu, D.B.; Wang, L.X.; Li, X.L.; Zhang, R.H.; Xiao, W.L. Isolation, Characterization, and Structure−Activity Relationship Analysis of Abietane Diterpenoids from Callicarpa bodinieri as Spleen Tyrosine Kinase Inhibitors. Nat. Prod. 2018, 81, 998–1006. [Google Scholar] [CrossRef] [PubMed]
- Kang, V.K.; BajpaiSun, C. Tyrosinase and α-Glucosidase Inhibitory Effects of an Abietane Type Diterpenoid Taxodone from Metasequoia glyptostroboides. Natl. Acad. Sci. Lett. 2015, 38, 399–402. [Google Scholar]
- Nickavar, B.; Abolhasani, L.; Izadpanah, H. α-Amylase Inhibitory Activities of Six Salvia Species. Iran. J. Pharm. Res. 2008, 7, 297–303. [Google Scholar]
- Batista, O.; Simoes, M.F.; Nascimento, J.; Riberio, S.; Duarte, A.; Rodriguez, B.; De La Torre, M.C. A rearranged abietane diterpenoid from plectranthus hereroensis. Phytochemistry 1996, 41, 571–573. [Google Scholar] [CrossRef]
- Etsassala, N.G.E.R.; Adeloye, A.O.; El-Halawany, A.; Hussein, A.A.; Iwuoha, E.I. Investigation of In-Vitro Antioxidant and Electrochemical Activities of Isolated Compounds from Salvia chamelaeagnea P.J.Bergius Extract. Antioxidants 2019, 8, 98. [Google Scholar] [CrossRef] [PubMed]
- Bustos-Brito, C.; Joseph-Nathan, P.; Burgueño-Tapia, E.; Martínez-Otero, D.; Nieto-Camacho, A.; Calzada, F.; Yépez-Mulia, L.; Esquivel, B.; Quijano, L. Structure and Absolute Configuration of Abietane Diterpenoids from Salvia clinopodioides: Antioxidant, Antiprotozoal, and Antipropulsive Activities. J. Nat. Prod. 2019, 82, 1207–1216. [Google Scholar] [CrossRef] [PubMed]
- Thilagam, E.; Parimaladevi, B.; Kumarappan, C.; Mandal, S.C.J. α-Glucosidase and a-Amylase Inhibitory Activity of Senna surattensis. Acupunct. Meridian Stud. 2013, 6, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.W.; Xing, Y.; Wen, C.; Yu, X.X.; Sun, W.L.; Xiu, Z.L.; Dong, Y.S. Pentacyclic triterpenes as a-glucosidase and a-amylase inhibitors: Structure-activity relationships and the synergism with acarbose. Bioorg. Med. Chem. Lett. 2017, 27, 5065–5070. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Fons, L.; Garzón, M.T.; Micol, V. Relationship between the antioxidant capacity and effect of rosemary (Rosmarinus officinalis L.) polyphenols on membrane phospholipid order. J. Agric. Food Chem. 2010, 58, 161–171. [Google Scholar] [CrossRef]
- Apak, R.; Ozyurek, M.; Güclu, K.; Çapanoglu, E. Antioxidant Activity/Capacity Measurement. 2. Hydrogen Atom Transfer (HAT)-Based, Mixed-Mode (Electron Transfer (ET)/HAT), and Lipid Peroxidation Assays. J. Agric. Food Chem. 2016, 64, 1028–1045. [Google Scholar] [CrossRef]
- De Oliveira, F.D.; Aguiar, P.N.; Ribeiro, G.D.; de Amorim, M.L.; Guimaraes, P.S.; Mendonca Filho, C.V.; Sivieri, R.R.; Brandao, M.D.; dos Santos, W.T.; Grael, C.F. Antioxidant Activity and Phytochemical Screening of Extracts of Erythroxylum‘ suberosum A.St.-Hil (Erythroxylaceae). Res. J. Phytochem. 2015, 9, 68–78. [Google Scholar]
- Brewer, M.S. Natural Antioxidants: Sources, compounds, mechanisms of action, and potential applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–246. [Google Scholar] [CrossRef]
- Masuda, T.; Kirikihira, T.; Takeda, Y. Recovery of antioxidant activity from carnosol quinone: Antioxidants obtained from a water-promoted conversion of carnosol quinone. J. Agric. Food Chem. 2005, 53, 6831–6834. [Google Scholar] [CrossRef]
- Özgen, U.; Mavi, A.; Terzi, Z.; Kazaz, C.; Asci, A.; Kaya, Y.; Secen, H. Relationship between chemical structure and antioxidant activity of Luteolin and Its glycosides isolated from Thymus sipyleus subsp. sipyleus var. sipyleus. Rec. Nat. Prod. 2011, 5, 12–21. [Google Scholar] [CrossRef]
N° | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
δH (J in Hz) | δH (J in Hz) | δH (J in Hz) | δH (J in Hz) | δH (J in Hz) | δH (J in Hz) | |
1 | 3.47 br d (10.7) | 3.28 br d (15.5) | 3.22 br d (14.3) | 3.22 br d (13.4) | 3.34 br d (13.4) | 3.42 br d (13.0) |
1.16 * | 2.28 ddd (4.2, 14.3, 14.3) | 2.06 dd (5.2, 14.1) | 1.64 ddd (5.8, 11.0, 13.4) | 1.47 ddd (5.4, 13.4, 13.4) | 1.46 ddd (5.4, 13.4, 13.4) | |
2 | 2.42 m | 1.81 m | 1.53 ddddd (3.7, 14.0, 14.0, 14.0, 14.0) | 1.40 ddd (4.7, 13.3, 13.3) | 1.74 * | 1.73 * |
1.48 br d (15.2) | 1.62 m | 1.69 * | ||||
3 | 1.66 br d (13.7) | 4.66 dd (3.7, 12.1) | 1.83 br d (14.0) | 3.28 d (4.6) | 2.3 br d (13.5) | 2.3 br d (12.5) |
1.19 * | 1.23 d (6.8) | 1.64 br d (5.5) | 1.23 * | 1.21 * | ||
5 | 1.58 d (12.0) | 2.42 s | 2.38 s | 1.91 * | 1.61 br d (12.4) | 1.57 br d (13.4) |
6 | 1.47 br d (14.3) | 4.74 d (3.2) | 4.26 d (3.2) | 1.37 d (4.7) | 2.11 br d (13.5) | 2.11 br d (12.5) |
1.93 br d (16.7) | 1.92 d (2.2) | 1.31 ddd (5.4, 12.4, 12.4) | 1.43 ddd (5.4, 12.4, 12.4) | |||
7 | 2.75 br d (5.3) | 4.29 d (3.2) | 4.9 d (3.2) | 4.6 d (3.3) | 2.77 m | 2.8 m |
14 | 6.46 s | 6.79 s | 6.82 s | 6.54 s | 6.55 s | 6.56 s |
15 | 3.17 sept (6.8) | 3.04 sept (6.5) | 3.06 sept (7.0) | 3.23 sept (7.0) | 3.24 sept (7.0) | 3.28 sept (7.0) |
16 | 1.19 d (6.8) | 1.24 d (6.5) | 1.23 d (7.0) | 1.22 (7.0) | 1.23 d (7.0) | 1.2 d (7.0) |
17 | 1.17 d (6.8) | 1.24 d (6.5) | 1.23 d (7.0) | 1.22 (7.0) | 1.23 d (7.0) | 1.19 d (7.0) |
18 | 1.06 s | 1.01 s | 1.05 s | 1.19 s | 1.15 s | 1.13 s |
19 | 3.97 d (11.4) | 0.99 s | 4.05 s | 4.16 d (11.8) | 5.61 s | 5.61 s |
4.24 d (11.4) | 4.24 d (11.8) | |||||
OCOCH3 | 1.86 s | 2.07 s | 2.09 s | 2.08 s | ||
OCH3 | 3.75 s | 3.66 s | 3.66s | 3.76 s | 3.86 s |
N° | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
13C | 13C | 13C | 13C | 13C | 13C | |
1 | 34.6 | 25.3 | 27.1 | 28.3 | 35.4 | 35.0 |
2 | 19.7 | 24.3 | 18.4 | 20.9 | 21.2 | 21.0 |
3 | 37.1 | 77.5 | 33.2 | 28.3 | 32.5 | 32.7 |
4 | 36.9 | 36.0 | 51.0 | 45.0 | 37.0 | 36.9 |
5 | 44.3 | 51.5 | 50.9 | 51.8 | 50.3 | 50.2 |
6 | 20.0 | 74.0 | 77.4 | 21.0 | 21.6 | 21.4 |
7 | 32.9 | 77.4 | 73.9 | 78.7 | 30.7 | 30.9 |
8 | 126.8 | 126.6 | 126.1 | 133.7 | 122.3 | 123.8 |
9 | 133.8 | 123.4 | 123.8 | 119.1 | 128.0 | 133.3 |
10 | 49.0 | 46.5 | 47.0 | 44.0 | 49.8 | 49.4 |
11 | 148.9 | 141.0 | 142.4 | 147.9 | 143.4 | 149.7 |
12 | 143.7 | 141.8 | 141.8 | 143.0 | 142.1 | 146.3 |
13 | 139.6 | 134.7 | 134.8 | 140.2 | 133.9 | 141.8 |
14 | 117.8 | 120.4 | 119.1 | 117.8 | 118.9 | 118.4 |
15 | 26.5 | 27.4 | 27.3 | 26.5 | 27.2 | 26.7 |
16 | 23.5 | 22.4 | 22.2 | 22.7 | 22.3 | 23.5 |
17 | 23.5 | 22.3 | 22.4 | 23.5 | 24.1 | 23.3 |
18 | 27.6 | 16.2 | 26.0 | 25.5 | 24.1 | 24.1 |
19 | 68.7 | 26.7 | 66.2 | 65.7 | 102.8 | 103.3 |
20 | 181.7 | 178.1 | 178.5 | 174.3 | 180.0 | 180.0 |
OCOCH3 | 172.5 | 170.7 | 170.8 | 170.9 | ||
OCOCH3 | 20.7 | 21.2 | 20.9 | 20.9 | ||
OCH3 | 61.1 | 58.4 | 58.4 | 61.9 | 58.6 |
Items | Alpha-GlucosidaseIC50 (µg/mL) | Alpha-AmylaseIC50 (µg/mL) |
---|---|---|
1 | NA | NA |
2 | NA | NA |
3 | NA | NA |
4 | NA | NA |
5 | NA | NA |
6 | 81.7 ± 2.1 | NA |
7 | 22.9 ± 2.0 | 12.5 ± 0.7 |
8 | 11.3 ± 1.0 | 66.1 ± 2.0 |
9 | 85.8 ± 2.3 | NA |
10 | 17.1 ± 1.0 | 76.6 ± 2.1 |
Acarbose | 610.4 ± 1.0 | 10.2 ± 0.6 |
Items | ORAC (µmole TE/g) | TEAC (µmole TE/g) | FRAP (µM AAE/g) |
---|---|---|---|
1 | 2588.2 ± 10.1 | 694.0 ±1.6 | 1217.4 ± 2.9 |
2 | 2233.9 ± 8.0 | 635.7 ± 0.8 | 2200.9 ± 14.2 |
3 | 735.4 ± 2.0 | 124.4 ± 0.6 | 1440.4 ± 9.1 |
4 | 559.7 ± 15.2 | 440.1 ± 1.5 | 1257.0 ± 6.7 |
5 | 2357.2 ± 0.1 | 862.2 ± 1.4 | 2262.9 ± 11.0 |
6 | 1502.5 ± 21.2 | 724.9 ± 1.3 | 1480.0 ± 3.9 |
7 | NA | NA | 347.8 ± 3.7 |
9 | NA | NA | 283.4 ± 3.9 |
8 | NA | NA | 778.9 ± 6.8 |
10 | NA | NA | 412.2 ± 13.0 |
EGCG | 3976.8 ± 3.8 | 4146.4 ± 19.8 | 7525.0 ± 4.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Etsassala, N.G.E.R.; Badmus, J.A.; Waryo, T.T.; Marnewick, J.L.; Cupido, C.N.; Hussein, A.A.; Iwuoha, E.I. Alpha-Glucosidase and Alpha-Amylase Inhibitory Activities of Novel Abietane Diterpenes from Salvia africana-lutea. Antioxidants 2019, 8, 421. https://doi.org/10.3390/antiox8100421
Etsassala NGER, Badmus JA, Waryo TT, Marnewick JL, Cupido CN, Hussein AA, Iwuoha EI. Alpha-Glucosidase and Alpha-Amylase Inhibitory Activities of Novel Abietane Diterpenes from Salvia africana-lutea. Antioxidants. 2019; 8(10):421. https://doi.org/10.3390/antiox8100421
Chicago/Turabian StyleEtsassala, Ninon G.E.R., Jelili A. Badmus, Tesfaye T. Waryo, Jeanine L. Marnewick, Christopher N. Cupido, Ahmed A. Hussein, and Emmanuel I. Iwuoha. 2019. "Alpha-Glucosidase and Alpha-Amylase Inhibitory Activities of Novel Abietane Diterpenes from Salvia africana-lutea" Antioxidants 8, no. 10: 421. https://doi.org/10.3390/antiox8100421
APA StyleEtsassala, N. G. E. R., Badmus, J. A., Waryo, T. T., Marnewick, J. L., Cupido, C. N., Hussein, A. A., & Iwuoha, E. I. (2019). Alpha-Glucosidase and Alpha-Amylase Inhibitory Activities of Novel Abietane Diterpenes from Salvia africana-lutea. Antioxidants, 8(10), 421. https://doi.org/10.3390/antiox8100421