The Effect of Hydrogen Sulfide on Different Parameters of Human Plasma in the Presence or Absence of Exogenous Reactive Oxygen Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Exposure of Human Plasma to NaHS
2.2. Lipid Peroxidation Measurement
2.3. Carbonyl Group Measurement
2.4. Thiol Group Measurement
2.5. The Measurement of Hemostasis Parameters: APTT, TT, INR, Fibrin Polymerization, and Lysis in Plasma
2.6. Data Analysis
2.7. Statements about Research Involving Human Participants and/or Animals
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shibuya, N.; Koike, S.; Tanaka, M.; Ishigami-Yuasa, M.; Kimura, Y.; Ogasawara, Y.; Fukui, K.; Nagahara, N.; Kimura, H. A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat. Commun. 2013, 4, 1366. [Google Scholar] [CrossRef] [Green Version]
- Huges, M.N.; Centelles, M.N.; Moore, K.P. Making and working with hydrogen sulfide: The chemistry and generation of hydrogen sulfide in vitro and its measurement in vivo: A review. Free Radic. Biol. Med. 2009, 47, 1346–1353. [Google Scholar] [CrossRef] [PubMed]
- Tanizawa, K. Production of H2S by 3-mercaptopyruvate sulphurtransferase. J. Biochem. 2011, 149, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Wang, R. Physiological implications of hydrogen sulfide—A whiff exploration that lossomed. Physiol. Rev. 2012, 92, 791–896. [Google Scholar] [CrossRef] [Green Version]
- Di Masi, A.; Ascenzi, P. H2S: A “double face” molecule in health and disease. Biofactors 2013, 39, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Hancock, J.T.; Whiteman, M. Hydrogen sulfide and cell signaling: Team player or referee? Plant Physiol. Biochem. 2014, 78, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Olas, B. Hydrogen sulfide in hemostasis: Friend or foe? Chem. Biol. Interact. 2014, 217, 49–56. [Google Scholar] [CrossRef]
- Xu, S.; Liu, Z.; Liu, P. Targeting hydrogen sulfide as a promising therapeutic strategy for atherosclerosis. Int. J. Cardiol. 2014, 172, 313–317. [Google Scholar] [CrossRef]
- Olas, B.; Kontek, B. Hydrogen sulfide decreases the plasma lipid peroxidation induced by homocysteine and its thiolactone. Mol. Cell. Biochem. 2015, 404, 39–43. [Google Scholar] [CrossRef]
- Zaicho, N.V.; Melnik, A.V.; Yoltukhivskyy, M.M.; Olhovskiy, A.S.; Palamarchuk, I.V. Hydrogen sulfide: Metabolism, biological and medical role. Ukr. Biochem. J. 2014, 86, 5–25. [Google Scholar] [CrossRef]
- Elrod, J.W.; Calvert, J.W.; Morrison, J.; Doeller, J.E.; Kraus, D.W.; Tao, L.; Jiao, X.; Scalia, R.; Kiss, L.; Szabo, C.; et al. Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc. Natl. Acad. Sci. USA 2007, 104, 15560–15565. [Google Scholar] [CrossRef] [Green Version]
- Whiteman, M.; Moore, P.K. Hydrogen sulfide and the vasculature: A novel vasculoprotective entity and regulator of nitric oxide. J. Cell. Mol. Med. 2009, 13, 488–507. [Google Scholar] [CrossRef] [PubMed]
- Zagli, G.; Patacchini, R.; Trevisani, M.; Abbate, R.; Cinotti, S.; Gensini, G.F.; Masotti, G.; Geppetti, P. Hydrogen sulfide inhibits human platelet aggregation. Eur. J. Pharmacol. 2007, 559, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Morel, A.; Malinowska, J.; Olas, B. Antioxidative properties of hydrogen sulfide may involve in its antiadhesive action on blood platelets. Clin. Biochem. 2012, 18, 1678–1682. [Google Scholar] [CrossRef]
- Olas, B.; Kontek, B. The possible role of hydrogen sulfide as a modulator of hemostatic parameters of plasma. Chem. Biol. Interact. 2014, 220, 20–24. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, J.; Lu, Y.; Wang, R. The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J. 2001, 20, 6008–6016. [Google Scholar] [CrossRef] [Green Version]
- Deplanecke, B.; Gaskins, H.R. Hydrogen sulphide induces serum-independent cell cycle entry in nontransformed rat intestinal epithelial cells. FASEB J. 2003, 17, 1310–1312. [Google Scholar] [CrossRef] [Green Version]
- Wachowicz, B. Adenine nucleotides in thrombocytes of birds. Cell. Biochem. Funct. 1984, 2, 167–170. [Google Scholar] [CrossRef]
- Dalle-Donne, I.; Rossi, R.; Giustarini, D.; Milzani, A.; Colombo, R. Protein carbonyl groups as biomarkers of oxidative stress. Clin. Chim. Acta 2003, 329, 23–38. [Google Scholar] [CrossRef]
- Ando, Y.; Steiner, M. Sulphydryl and disulphide groups of platelet membranes. I. Determination of disulphide groups. Biochim. Biophys. Acta Biomembr. 1973, 311, 26–37. [Google Scholar] [CrossRef]
- Ando, Y.; Steiner, M. Sulphydryl and disulphide groups of platelet membranes. II. Determination of sulphydryl groups. Biochim. Biophys. Acta Biomembr. 1973, 311, 38–44. [Google Scholar] [CrossRef]
- Malinowska, J.; Kołodziejczyk-Czepas, J.; Moniuszko-Szajwaj, B.; Kowalska, I.; Oleszek, W.; Stochmal, A.; Olas, B. Phenolic fractions from Trifolium pallidum and Trifolium scabrum aerial parts in human plasma protect against changes induced by hyperhomocysteinemia. Food Chem. Toxicol. 2012, 50, 4023–4027. [Google Scholar] [CrossRef] [PubMed]
- Malinowska, J.; Nowak, P.; Olas, B. Comparison of the effect of the reduced form of homocysteine, its thiolactone and protein homocysteinylation on hemostatic properties of plasma. Thromb. Res. 2011, 127, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Olas, B. Medical functions of hydrogen sulfide. Adv. Clin. Chem. 2016, 74, 195–209. [Google Scholar]
- Wang, R. Gasotransmitters: Growing ins and joys. Trends Biochem. Sci. 2014, 39, 227–232. [Google Scholar] [CrossRef]
- Azizi, F.; Seifi, B.; Kadkhodaee, M.; Ahghari, P. Administration of hydrogen sulfide protects ischemia reperfusion-induced acute kidney injury by reducing the oxidative stress. Ir. J. Med. Sci. 2015, 185, 649–654. [Google Scholar] [CrossRef]
- Olas, B. Hydrogen sulfide as a “double–faced” compound: One with pro- and antioxidant effect. Adv. Clin. Chem. 2017, 78, 187–196. [Google Scholar]
- Predmore, B.L.; Lefer, D.J.; Gojon, G. Hydrogen sulfide in biochemistry and medicine. Antioxid. Redox Signal. 2012, 17, 119–140. [Google Scholar] [CrossRef] [Green Version]
- Geng, B.; Chang, L.; Pan, C.; Qi, Y.; Zhao, J.; Pang, Y.; Du, J.; Tang, C. Endogenous hydrogen sulfide regulation of myocardial injury induced by isoproterenol. Biochem. Biophys. Res. Commun. 2004, 318, 756–763. [Google Scholar] [CrossRef]
- Chai, W.; Wang, Y.; Lin, J.Y.; Sun, X.D.; Yao, L.N.; Yang, Y.H.; Zhao, H.; Jiang, W.; Gao, C.J.; Ding, Q. Exogenous hydrogen sulphide protects against traumatic hemorrhagic shock via attenuation of oxidative stress. J. Surg. Res. 2012, 176, 210–219. [Google Scholar] [CrossRef]
- Sun, W.H.; Liu, F.; Chen, Y.; Zhu, Y.C. Hydrogen sulfide decreases the levels of ROS by inhibiting mitochondrial complex IV and increasing SOD activities in cardiomyocytes under ischemia/reperfusion. Biochem. Biophys. Res. Commun. 2012, 421, 164–169. [Google Scholar] [CrossRef]
- Kimura, Y.; Kimura, H. Hydrogen sulfide protects neurons from oxidative stress. FASEB J. 2004, 18, 1165–1167. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Geng, B.; Yu, F.; Zhao, J.; Jiang, H.; Du, J.; Tang, C. Hydrogen sulfide inhibits myocardial injury induced by homocysteine in rats. Amino Acids 2008, 34, 573–585. [Google Scholar] [CrossRef]
- Yan, S.K.; Chang, T.; Wang, H.; Wu, L.; Wang, R.; Meng, Q.H. Effects of hydrogen sulfide on homocysteine-induced oxidative stress in vascular smooth muscle cell. Biochem. Biophys. Res. Commun. 2006, 351, 485–491. [Google Scholar] [CrossRef]
- Hamar, J.; Solymar, M.; Tanai, E.; Cseplo, P.; Springo, Z.; Berta, G.; Debreceni, B.; Koller, A. Biassay-comparison of the antioxidant efficacy of hydrogen sulphide and superoxide dismutase in isolated arteries and veins. Acta Physiol. Hung. 2012, 99, 411–419. [Google Scholar] [CrossRef]
- Wedmann, R.; Bertlein, S.; Marcinkovic, I.; Bolz, S.; Miljkovic, J.; Munoz, L.; Hermann, M.; Filipovic, M.R. Working with “H2S”: Facta and apparent artifacts. Nitric Oxide 2014, 41, 85–96. [Google Scholar] [CrossRef] [PubMed]
Concentration of NaHS (mM) | TBARS (nmol/mL) | |||
---|---|---|---|---|
Incubation Time (min) | ||||
0 | 5 | 15 | 30 | |
0 | 0.522 ± 0.099 | 0.501 ± 0.070 | 0.488 ± 0.085 | 0.541 ± 0.059 |
0.01 | 0.511 ± 0.077 (n.s. vs. control) | 0.489 ± 0.067 (n.s. vs. control) | 0.588 ± 0.059 (n.s. vs. control) | 0.579 ± 0.059 (p < 0.05 vs. control) |
0.1 | 0.499 ± 0.097 (n.s. vs. control) | 0.653 ± 0.044 (p < 0.001 vs. control) | 0.655 ± 0.069 (p < 0.05 vs. control) | 0.6570 ± 0.062 (p < 0.02 vs. control) |
1 | 0.532 ± 0.078 (n.s. vs. control) | 0.800 ± 0.099 (p < 0.001 vs. control) | 0.817 ± 0.089 (p < 0.001 vs. control) | 0.680 ± 0.087 (p < 0.02 vs. control) |
5 | 0.552 ± 0.110 (n.s. vs. control) | 0.613 ± 0.111 (p < 0.05 vs. control) | 0.635 ± 0.080 (p < 0.05 vs. control) | 0.622 ± 0.116 (p < 0.05 vs. control) |
10 | 0.517 ± 0.100 (n.s. vs. control) | 0.588 ± 0.079 (p < 0.05 vs. control) | 0.577 ± 0.071 (p < 0.05 vs. control) | 0.629 ± 0.096 (p < 0.05 vs. control) |
Concentration of NaHS (mM) | Hemostatic Parameters | |
---|---|---|
Fibrin Polymerization Vmax (% Control) | Fibrin Lysis Time of 50% Lysis (% Control) | |
0 (control) | 100 | 100 |
1 mM | 98.8 ± 12.5 (n.s.) | 104.9 ± 10.3 (n.s.) |
5 mM | 99.2 ± 15.5 (n.s.) | 109.9 ± 13.7 (n.s.) |
10 mM | 99.7 ± 14.8 (n.s.) | 115.8 ± 19.2 (n.s.) |
Plasmin Amidolytic Activity Vmax (∆mOD/s) | ||
0 (control) | 2.057 ± 0.234 | |
1 mM | 2.042 ± 0.183 (n.s.) | |
10 mM | 1.986 ± 0.176 (n.s.) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olas, B.; Brodek, P.; Kontek, B. The Effect of Hydrogen Sulfide on Different Parameters of Human Plasma in the Presence or Absence of Exogenous Reactive Oxygen Species. Antioxidants 2019, 8, 610. https://doi.org/10.3390/antiox8120610
Olas B, Brodek P, Kontek B. The Effect of Hydrogen Sulfide on Different Parameters of Human Plasma in the Presence or Absence of Exogenous Reactive Oxygen Species. Antioxidants. 2019; 8(12):610. https://doi.org/10.3390/antiox8120610
Chicago/Turabian StyleOlas, Beata, Paulina Brodek, and Bogdan Kontek. 2019. "The Effect of Hydrogen Sulfide on Different Parameters of Human Plasma in the Presence or Absence of Exogenous Reactive Oxygen Species" Antioxidants 8, no. 12: 610. https://doi.org/10.3390/antiox8120610
APA StyleOlas, B., Brodek, P., & Kontek, B. (2019). The Effect of Hydrogen Sulfide on Different Parameters of Human Plasma in the Presence or Absence of Exogenous Reactive Oxygen Species. Antioxidants, 8(12), 610. https://doi.org/10.3390/antiox8120610