A Dietary Mixture of Oxysterols Induces In Vitro Intestinal Inflammation through TLR2/4 Activation: The Protective Effect of Cocoa Bean Shells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Differentiated CaCo-2 Cell Culture and Treatment
2.3. Extraction and Fractionation of CBS Compounds
2.4. HPLC-DAD Analysis
2.5. Total Phenolics, Total Tannins and Total Flavonoids Contents
2.6. Antioxidant Capacity
2.7. RNA Extraction, cDNA Preparation and Real-Time Polymerase Chain Reaction (RT-PCR)
2.8. Cytokine Evaluation by ELISA
2.9. Statistical Analyses
3. Results
3.1. Oxysterols Induce TLR2 and TLR4 Gene Expression
3.2. Oxysterol Pro-Inflammatory Effects Require TLR2/TLR4 Activation Involvement
3.3. Differently Extracted CBS Fractions Show Different Antioxidant Activities Depending on Their Polyphenol Recovery
3.4. HF3 and HF4 (but not HF1 and HF2) Prevent Oxysterol-Mediated Inflammation in Terms of IL-8 Cell Release
3.5. HF3 and HF4 Prevent TLR2 and TLR4 Oxy-Mix Induction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
α-epox | 5α,6α-epoxycholesterol |
β-epox | 5β,6β-epoxycholesterol |
7α-HC | 7α-hydroxycholesterol |
7β-HC | 7β-hydroxycholesterol |
7K | 7-ketocholesterol |
CBS | Cocoa bean shells |
cDNA | Complementary DNA |
CE | Catechin equivalents |
DAMPs | Damage-associated molecular patterns |
DMEM | Dulbecco's modified Eagle's medium |
DPPH• | 2,2’-diphenyl-1-picrylhydrazyl |
ELISA | Enzyme-Linked Immunosorbent Assay |
ER | Estrogen receptor |
FBS | Fetal bovine serum |
GAE | Gallic acid equivalents |
HEK-293 | Human embryonic kidney cells |
HF1 | Honduras-Fraction 1 |
HF2 | Honduras-Fraction 2 |
HF3 | Honduras-Fraction 3 |
HF4 | Honduras-Fraction 4 |
HPLC-DAD-MS/MS | High-performance liquid chromatography coupled to diode array and mass spectrometry detectors |
IBDs | Inflammatory bowel diseases |
IFN-β | Interferon-β |
IL | Interleukins |
IP | Inhibition percentage |
LDH | Lactate Dehydrogenase |
MMP | Matrix metalloproteinase |
Oxy-mix | Oxysterol mixture |
PAMPs | Pathogen-associated molecular patterns |
PCA | Procyanidin A-type |
PCB | Procyanidin B-type |
PCB2 | Procyanidin B2 |
PCR | Polymerase chain reaction |
PTFE | Polytetrafluoroethylene |
RPE | Retinal pigment epithelium |
RSA | Radical scavenging activity |
RT-PCR | Real-time polymerase chain reaction |
SPE | Solid-phase extraction |
TFC | Total flavonoid content |
TLRs | Toll-like receptors |
TNF-α | Tumor necrosis factor-α |
TPC | Total phenolic content |
TTC | Total tannin content |
References
- Maloy, K.J.; Powrie, F. Intestinal Homeostasis and Its Breakdown in Inflammatory Bowel Disease. Nature 2011, 474, 298–306. [Google Scholar] [CrossRef]
- Long, M.D.; Crandall, W.V.; Leibowitz, I.H.; Duffy, L.; Del Rosario, F.; Kim, S.C.; Integlia, M.J.; Berman, J.; Grunow, J.; Colletti, R.B.; et al. Prevalence and epidemiology of overweight and obesity in children with inflammatory bowel disease. Inflamm. Bowel Dis. 2011, 17, 2162–2168. [Google Scholar] [CrossRef]
- Limketkai, B.N.; Wolf, A.; Parian, A.M. Nutritional Interventions in the Patient with Inflammatory Bowel Disease. Gastroenterol. Clin. North Am. 2018, 47, 155–177. [Google Scholar] [CrossRef]
- Limketkai, B.N.; Iheozor-Ejiofor, Z.; Gjuladin-Hellon, T.; Parian, A.; Matarese, L.E.; Bracewell, K.; MacDonald, J.K.; Gordon, M.; Mullin, G.E. Dietary interventions for induction and maintenance of remission in inflammatory bowel disease. Cochrane Database Syst. Rev. 2019, 2, CD012839. [Google Scholar] [CrossRef]
- Marion-Letellier, R.; Savoye, G.; Ghosh, S. IBD: In Food We Trust. J. Crohn’s Colitis 2016, 46, 2468–2476. [Google Scholar] [CrossRef] [PubMed]
- Sottero, B.; Gamba, P.; Gargiulo, S.; Leonarduzzi, G.; Poli, G. Cholesterol oxidation products and disease: An emerging topic of interest in medicinal chemistry. Curr. Med. Chem. 2009, 16, 685–705. [Google Scholar] [CrossRef]
- Plat, J.; Nichols, J.A.; Mensink, R.P. Plant sterols and stanols: effects on mixed micellar composition and LXR (target gene) activation. J. Lipid Res. 2005, 46, 2468–2476. [Google Scholar] [CrossRef] [Green Version]
- Vejux, A.; Malvitte, L.; Lizard, G. Side effects of oxysterols: cytotoxicity, oxidation, inflammation, and phospholipidosis. Braz. J. Med. Biol. Res. 2008, 41, 545–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanner, J. Dietary advanced lipid oxidation endproducts are risk factors to human health. Mol. Nutr. Food Res. 2007, 51, 1094–1101. [Google Scholar] [CrossRef]
- Biasi, F.; Guina, T.; Maina, M.; Cabboi, B.; Deiana, M.; Tuberoso, C.I.; Calfapietra, S.; Chiarpotto, E.; Sottero, B.; Gamba, P.; et al. Phenolic Compounds Present in Sardinian Wine Extracts Protect against the Production of Inflammatory Cytokines Induced by Oxysterols in CaCo-2 Human Enterocyte-like Cells. Biochem. Pharmacol. 2013, 86, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Guina, T.; Deiana, M.; Calfapietra, S.; Cabboi, B.; Maina, M.; Tuberoso, C.I.; Leonarduzzi, G.; Gamba, P.; Gargiulo, S.; Testa, G.; et al. The Role of P38 MAPK in the Induction of Intestinal Inflammation by Dietary Oxysterols: Modulation by Wine Phenolics. Food Funct. 2015, 6, 1218–1228. [Google Scholar] [CrossRef] [PubMed]
- Deiana, M.; Calfapietra, S.; Incani, A.; Atzeri, A.; Rossin, D.; Loi, R.; Sottero, B.; Iaia, N.; Poli, G.; Biasi, F. Derangement of Intestinal Epithelial Cell Monolayer by Dietary Cholesterol Oxidation Products. Free Radic. Biol. Med. 2017, 113, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Rojo-Poveda, O.; Barbosa-Pereira, L.; Mateus-Reguengo, L.; Bertolino, M.; Stévigny, C. Effects of Particle Size and Extraction Methods on Cocoa Bean Shell Functional Beverage. Nutrients 2019, 11, 867. [Google Scholar] [CrossRef]
- Mandrile, L.; Barbosa-Pereira, L.; Sorensen, K.M.; Giovannozzi, A.M.; Zeppa, G.; Engelsen, S.B.; Rossi, A.M. Authentication of cocoa bean shells by near-and mid-infrared spectroscopy and inductively coupled plasma-optical emission spectroscopy. Food Chem. 2019, 292, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Barbosa-Pereira, L.; Guglielmetti, A.; Zeppa, G. Pulsed Electric Field Assisted Extraction of Bioactive Compounds from Cocoa Bean Shell and Coffee Silverskin. Food Bioprocess Technol. 2018, 11, 818–835. [Google Scholar] [CrossRef]
- Conlon, M.A.; Bird, A.R. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 2014, 7, 17–44. [Google Scholar] [CrossRef]
- Clarke, G.; Stilling, R.M.; Kennedy, P.J.; Stanton, C.; Cryan, J.F.; Dinan, T.G. Minireview: Gut Microbiota: The Neglected Endocrine Organ. Mol. Endocrinol. 2014, 28, 1221–1238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.Y. Differential Modulation of Toll-like Receptors by Fatty Acids: Preferential Inhibition by n-3 Polyunsaturated Fatty Acids. J. Lipid Res. 2003, 44, 479–486. [Google Scholar] [CrossRef]
- Frosali, S.; Pagliari, D.; Gambassi, G.; Landolfi, R.; Pandolfi, F.; Cianci, R. How the Intricate Interaction among Toll-Like Receptors, Microbiota, and Intestinal Immunity Can Influence Gastrointestinal Pathology. J. Immunol. Res. 2015, 2015, 489821. [Google Scholar] [CrossRef]
- Yu, L.; Wang, L.; Chen, S. Endogenous Toll-like Receptor Ligands and Their Biological Significance. J. Cell. Mol. Med. 2010, 14, 2592–2603. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Karmakar, S.; Babu, S.P.S. TLR2 and TLR4 Mediated Host Immune Responses in Major Infectious Diseases: A Review. Braz. J. Infect. Dis. 2016, 20, 193–204. [Google Scholar] [CrossRef]
- Hug, H.; Mohajeri, M.H.; La Fata, G. Toll-Like Receptors: Regulators of the Immune Response in the Human Gut. Nutrients 2018, 10, 203. [Google Scholar] [CrossRef] [PubMed]
- Biasi, F.; Deiana, M.; Guina, T.; Gamba, P.; Leonarduzzi, G.; Poli, G. Wine Consumption and Intestinal Redox Homeostasis. Redox Biol. 2014, 2, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Grillo, G.; Boffa, L.; Binello, A.; Mantegna, S.; Cravotto, G.; Chemat, F.; Dizhbite, T.; Lauberte, L.; Telysheva, G. Cocoa Bean Shell Waste Valorisation; Extraction from Lab to Pilot-Scale Cavitational Reactors. Food Res. Int. 2019, 115, 200–208. [Google Scholar] [CrossRef]
- Lea, T. Caco-2 cell line. In The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models; Verhoeckx, K., Cotter, P., López-Expósito, I., Kleiveland, C., Lea, T., Mackie, A., Requena, T., Swiatecka, D., Wichers, H., Eds.; Springer: Cham, Switzerland, 2015; pp. 103–111. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Prin-ciple of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Bitzer, Z.T.; Glisan, S.L.; Dorenkott, M.R.; Goodrich, K.M.; Ye, L.; O'Keefe, S.F.; Lambert, J.D.; Neilson, A.P. Cocoa procyanidins with different degrees of polymerization possess distinct activities in models of colonic inflammation. J. Nutr. Biochem. 2015, 26, 827–831. [Google Scholar] [CrossRef] [Green Version]
- Kordjazy, N.; Haj-Mirzaian, A.; Haj-Mirzaian, A.; Rohani, M.M.; Gelfand, E.W.; Rezaei, N.; Abdolghaffari, A.H. Role of Toll-like Receptors in Inflammatory Bowel Disease. Pharmacol. Res. 2018, 129, 204–215. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, Z.; Ma, X.; Yang, X.; Chen, Y.; Sun, L.; Ma, C.; Miao, Q.R.; Hajjar, D.P.; Han, J.; et al. 25-Hydroxycholesterol Activates the Expression of Cholesterol 25-Hydroxylase in an LXR-Dependent Mechanism. J. Lipid Res. 2018, 59, 439–451. [Google Scholar] [CrossRef]
- Ma, L.; Nelson, E.R. Oxysterols and nuclear receptors. Mol. Cell. Endocrinol. 2019, 484, 42–51. [Google Scholar] [CrossRef]
- Wu, Q.; Ishikawa, T.; Sirianni, R.; Tang, H.; McDonald, J.G.; Yuhanna, I.S.; Thompson, B.; Girard, L.; Mineo, C.; Brekken, R.A.; et al. 27-Hydroxycholesterol Promotes Cell-Autonomous, ER-Positive Breast Cancer Growth. Cell Rep. 2013, 5, 637–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gargiulo, S.; Gamba, P.; Testa, G.; Rossin, D.; Biasi, F.; Poli, G.; Leonarduzzi, G. Relation between TLR4/NF-ΚB Signaling Pathway Activation by 27-Hydroxycholesterol and 4-Hydroxynonenal, and Atherosclerotic Plaque Instability. Aging Cell 2015, 14, 569–581. [Google Scholar] [CrossRef]
- Aye, I.L.M.H.; Waddell, B.J.; Mark, P.J.; Keelan, J.A. Oxysterols Exert Proinflammatory Effects in Placental Trophoblasts via TLR4-Dependent, Cholesterol-Sensitive Activation of NF-ΚB. Mol. Hum. Reprod. 2012, 18, 341–353. [Google Scholar] [CrossRef]
- Huang, J.D.; Amaral, J.; Lee, J.W.; Rodriguez, I.R. 7-Ketocholesterol-induced inflammation signals mostly through the TLR4 receptor both in vitro and in vivo. PLoS ONE 2014, 9, e100985. [Google Scholar] [CrossRef] [PubMed]
- Erridge, C.; Webb, D.; Spickett, C. 25-Hydroxycholesterol, 7β-Hydroxycholesterol and 7-Ketocholesterol Upregulate Interleukin-8 Expression Independently of Toll-like Receptor 1, 2, 4 or 6 Signalling in Human Macrophages. Free Radic. Res. 2007, 41, 260–266. [Google Scholar] [CrossRef]
- Cho, H.R.; Son, Y.; Kim, S.M.; Kim, B.Y.; Eo, S.K.; Park, Y.C.; Kim, K. 7α-Hydroxycholesterol Induces Monocyte/Macrophage Cell Expression of Interleukin-8 via C5a Receptor. PLoS ONE 2017, 12, e0173749. [Google Scholar] [CrossRef]
- Fessler, M.B.; Parks, J.S. Intracellular Lipid Flux and Membrane Microdomains as Organizing Principles in Inflammatory Cell Signaling. J. Immunol. 2011, 187, 1529–1535. [Google Scholar] [CrossRef] [Green Version]
- Ruysschaert, J.M.; Lonez, C. Role of Lipid Microdomains in TLR-Mediated Signalling. Biochim. Biophys. Acta. 2015, 1848, 1860–1867. [Google Scholar] [CrossRef]
- Nicod, N.; Chiva-Blanch, G.; Giordano, E.; Dávalos, A.; Parker, R.S.; Visioli, F. Green tea, cocoa, and red wine polyphenols moderately modulate intestinal inflammation and do not increase high-density lipoprotein (HDL) production. J. Agric. Food Chem. 2014, 62, 2228–2232. [Google Scholar] [CrossRef]
- Mascia, C.; Maina, M.; Chiarpotto, E.; Leonarduzzi, G.; Poli, G.; Biasi, F. Proinflammatory Effect of Cholesterol and Its Oxidation Products on CaCo-2 Human Enterocyte-like Cells: Effective Protection by Epigallocatechin-3-Gallate. Free Radic. Biol. Med. 2010, 49, 2049–2057. [Google Scholar] [CrossRef]
- Schroeter, H.; Heiss, C.; Balzer, J.; Kleinbongard, P.; Keen, C.L.; Hollenberg, N.K.; Sies, H.; Kwik-Uribe, C.; Schmitz, H.H.; Kelm, M. (−)-Epicatechin Mediates Beneficial Effects of Flavanol-Rich Cocoa on Vascular Function in Humans. Proc. Natl. Acad. Sci. USA 2006, 103, 1024–1029. [Google Scholar] [CrossRef]
- Kuebler, U.; Arpagaus, A.; Meister, R.E.; von Känel, R.; Huber, S.; Ehlert, U.; Wirtz, P.H. Dark Chocolate Attenuates Intracellular Pro-Inflammatory Reactivity to Acute Psychosocial Stress in Men: A Randomized Controlled Trial. Brain. Behav. Immun. 2016, 57, 200–208. [Google Scholar] [CrossRef]
- Castellon, X.; Bogdanova, V. Chronic Inflammatory Diseases and Endothelial Dysfunction. Aging Dis. 2016, 7, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Spencer, J.P.E.; Vafeiadou, K.; Williams, R.J.; Vauzour, D. Neuroinflammation: Modulation by Flavonoids and Mechanisms of Action. Mol Aspects Med. 2012, 33, 83–97. [Google Scholar] [CrossRef]
- Pérez-Berezo, T.; Ramírez-Santana, C.; Franch, A.; Ramos-Romero, S.; Castellote, C.; Pérez-Cano, F.J.; Castell, M. Effects of a Cocoa Diet on an Intestinal Inflammation Model in Rats. Exp. Biol. Med. 2012, 237, 1181–1188. [Google Scholar] [CrossRef]
- Gu, Y.; Yu, S.; Park, J.Y.; Harvatine, K.; Lambert, J.D. Dietary cocoa reduces metabolic endotoxemia and adipose tissue inflammation in high-fat fed mice. J. Nutr. Biochem. 2014, 25, 439–445. [Google Scholar] [CrossRef]
- Panak Balentić, J.; Ačkar, Đ.; Jokić, S.; Jozinović, A.; Babić, J.; Miličević, B.; Šubarić, D.; Pavlović, N. Cocoa Shell: A By-Product with Great Potential for Wide Application. Molecules 2018, 27, 1404. [Google Scholar] [CrossRef]
- Biasi, F.; Mascia, C.; Astegiano, M.; Chiarpotto, E.; Nano, M.; Vizio, B.; Leonarduzzi, G.; Poli, G. Pro-Oxidant and Proapoptotic Effects of Cholesterol Oxidation Products on Human Colonic Epithelial Cells: A Potential Mechanism of Inflammatory Bowel Disease Progression. Free Radic. Biol. Med. 2009, 47, 1731–1741. [Google Scholar] [CrossRef]
- Fraga, C.G.; Oteiza, P.I. Dietary Flavonoids: Role of (−)-Epicatechin and Related Procyanidins in Cell Signaling. Free Radic. Biol. Med. 2011, 51, 813–823. [Google Scholar] [CrossRef]
- Verstraeten, S.V.; Fraga, C.G.; Oteiza, P.I. Interactions of Flavan-3-Ols and Procyanidins with Membranes: Mechanisms and the Physiological Relevance. Food Funct. 2015, 6, 32–41. [Google Scholar] [CrossRef]
- Park, H.S.; Jung, H.Y.; Park, E.Y.; Kim, J.; Lee, W.J.; Bae, Y.S. Cutting edge: direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-kappa B. J. Immunol. 2004, 173, 3589–3593. [Google Scholar] [CrossRef]
Compounds | HF1 (µg/mL) | HF2 (µg/mL) | HF3 (µg/mL) | HF4 (µg/mL) |
---|---|---|---|---|
Methylxanthines | ||||
Theobromine | 8045.3 ± 43.3 | 198.2 ± 1.6 | N.Q. | N.Q. |
Caffeine | 1390.0 ± 17.7 | 10.0 ± 0.3 | N.Q. | N.Q. |
Polyphenols | ||||
Protocatechuic acid | N.Q. | 92.0 ± 2.6 | 85.8 ± 2.1 | N.Q. |
PCB2 | N.Q. | 186.4 ± 2.6 | N.Q. | N.Q. |
Catechin | N.Q. | N.Q. | 181.1 ± 2.8 | N.Q. |
Epicatechin | N.Q. | N.Q. | 1339.7 ± 45.8 | N.Q. |
PCA pentoside | N.Q. | N.Q. | 100.8 ± 1.9 | 83.0 ± 1.5 |
PCB | N.Q. | N.Q. | N.Q. | 743.6 ± 3.20 |
Quercetin-3-glucoside | N.Q. | N.Q. | 53.4 ± 2.0 | N.Q. |
Quercetin-3-arabinside | N.Q. | N.Q. | 95.8 ± 1.3 | 47.0 ± 1.2 |
Fraction | TPC (mg GAE/L) | TFC (mg CE/L) | TTC (mg CE/L) |
---|---|---|---|
HF1 | 546.7 ± 27.3 a | 90.6 ± 0.5 a | 85.0 ± 5.6 a |
HF2 | 416.2 ± 9.7 b | 280.3 ± 8.5 d | 120.0 ± 0.8 d |
HF3 | 425.7 ± 7.6 b | 296.9 ± 8.1 e | 243.5 ± 1.9 e |
HF4 | 372.5 ± 29.4 c | 222.0 ± 9.3 c | 359.7 ± 6.0 c |
Significance | *** | *** | *** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossin, D.; Barbosa-Pereira, L.; Iaia, N.; Testa, G.; Sottero, B.; Poli, G.; Zeppa, G.; Biasi, F. A Dietary Mixture of Oxysterols Induces In Vitro Intestinal Inflammation through TLR2/4 Activation: The Protective Effect of Cocoa Bean Shells. Antioxidants 2019, 8, 151. https://doi.org/10.3390/antiox8060151
Rossin D, Barbosa-Pereira L, Iaia N, Testa G, Sottero B, Poli G, Zeppa G, Biasi F. A Dietary Mixture of Oxysterols Induces In Vitro Intestinal Inflammation through TLR2/4 Activation: The Protective Effect of Cocoa Bean Shells. Antioxidants. 2019; 8(6):151. https://doi.org/10.3390/antiox8060151
Chicago/Turabian StyleRossin, Daniela, Letricia Barbosa-Pereira, Noemi Iaia, Gabriella Testa, Barbara Sottero, Giuseppe Poli, Giuseppe Zeppa, and Fiorella Biasi. 2019. "A Dietary Mixture of Oxysterols Induces In Vitro Intestinal Inflammation through TLR2/4 Activation: The Protective Effect of Cocoa Bean Shells" Antioxidants 8, no. 6: 151. https://doi.org/10.3390/antiox8060151
APA StyleRossin, D., Barbosa-Pereira, L., Iaia, N., Testa, G., Sottero, B., Poli, G., Zeppa, G., & Biasi, F. (2019). A Dietary Mixture of Oxysterols Induces In Vitro Intestinal Inflammation through TLR2/4 Activation: The Protective Effect of Cocoa Bean Shells. Antioxidants, 8(6), 151. https://doi.org/10.3390/antiox8060151