Ozonation of Hot Red Pepper Fruits Increases Their Antioxidant Activity and Changes Some Antioxidant Contents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Ozone Treatment
2.2. Extraction and Fractionation of Polyphenols
2.3. Determination of the Total Phenolic Content (TPC)
2.4. DPPH Free Radical-Scavenging Assay
2.5. High-Performance Liquid Chromatography
2.6. Statistical Analysis
3. Results and Discussion
3.1. TPC and Antioxidant Activity
3.2. HPLC
3.3. PCA and Correlation Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gutiérrez, D.R.; Chaves, A.R.; Rodríguez, S.C. UV-C and ozone treatment influences on the antioxidant capacity and antioxidant system of minimally processed rocket (Eruca sativa Mill.). Postharvest Biol. Technol. 2018, 138, 107–113. [Google Scholar] [CrossRef]
- Alehosseini, A.; Ghorani, B.; Sarabi-Jamab, M.; Tucker, N. Principles of electrospraying: A new approach in protection of bioactive compounds in foods. Crit. Rev. Food Sci. Nutr. 2018, 58, 2346–2363. [Google Scholar] [CrossRef]
- Jung, J.; Zhao, Y. Chapter 18—Antimicrobial Packaging for Fresh and Minimally Processed Fruits and Vegetables. In Antimicrobial Food Packaging; Academic Press: Cambridge, MA, USA, 2016; pp. 243–256. [Google Scholar]
- Ahn-Jarvis, J.H.; Parihar, A.; Dose, A.I. Dietary Flavonoids for Immunoregulation and Cancer: Food Design for Targeting Disease. Antioxidants 2019, 8, 202. [Google Scholar] [CrossRef]
- Luo, X.; Wang, R.; Wang, L.; Li, Y.; Bian, Y.; Chen, Z. Effect of ozone treatment on aflatoxin B1 and safety evaluation of ozonized corn. Food Control 2014, 37, 171–176. [Google Scholar] [CrossRef]
- Botondi, R.; De Sanctis, F.; Moscatelli, N.; Vettraino, A.M.; Catelli, C.; Mencarelli, F. Ozone fumigation for safety and quality of wine grapes in postharvest dehydration. Food Chem. 2015, 188, 641–647. [Google Scholar] [CrossRef]
- Trombete, F.M.; Freitas-Silva, O.; Saldanha, T.; Venâncio, A.; Fraga, M.E. Ozone against mycotoxins and pesticide residues in food: Current applications and perspectives. Int. Food Res. J. 2016, 23, 25–45. [Google Scholar]
- Kırış, S.; Velioglu, Y.S. Reduction in pesticide residue levels in olives by ozonated and tap water treatments and their transfer into olive oil. Food Addit. Contam. Part A 2015, 33, 128–136. [Google Scholar] [CrossRef]
- De Souza, L.P.; Faroni, L.R.D.; Heleno, F.F. Ozone treatment for pesticide removal from carrots: Optimization by response surface methodology. Food Chem. 2018, 243, 435–441. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Wang, T.; Li, C.; Wu, Z. Effects of ozone treatment on pesticide residues in food: A review. Int. J. Food Sci. Technol. 2019, 54, 301–312. [Google Scholar] [CrossRef]
- Tzortzakis, N.; Borland, A.; Singleton, I.; Barnes, J. Impact of atmospheric ozone-enrichment on quality-related attributes of tomato fruit. Postharvest Biol. Technol. 2007, 45, 317–325. [Google Scholar] [CrossRef]
- Alwi, N.A.; Ali, A. Dose-dependent Effect of Ozone Fumigation on Physiological Characteristics, Ascorbic Acid Content and Disease Development on Bell Pepper (Capsicum annuum L.) During Storage. Food Bioprocess Technol. 2015, 8, 558–566. [Google Scholar] [CrossRef]
- Abdel-Wahhab, M.A.; Sehab, A.F.; Hassanien, F.R.; El-Nemr, S.E.; Amra, H.A.; Abdel-Alim, H.A. Efficacy of ozone to reduce fungal spoilage and aflatoxin contamination in peanuts. Int. J. Nuts Relat. Sci. 2011, 2, 1–14. [Google Scholar]
- Ummat, V.; Singh, A.K.; Sidhu, G.K. Effect of aqueous ozone on quality and shelf life of shredded green bell pepper (Capsicum annuum). J. Food Process. Preserv. 2018, 42, 1–14. [Google Scholar] [CrossRef]
- Maherani, B.; Harich, M.; Salmieri, S.; Lacroix, M. Antibacterial properties of combined non-thermal treatments based on bioactive edible coating, ozonation, and gamma irradiation on ready-to-eat frozen green peppers: Evaluation of their freshness and sensory qualities. Eur. Food Res. Technol. 2018, 245, 1095–1111. [Google Scholar] [CrossRef]
- Kamber, U.; Gülbaz, G.; Aksu, P.; Doğan, A. Detoxification of Aflatoxin B1 in Red Pepper (Capsicum annuum L.) by Ozone Treatment and Its Effect on Microbiological and Sensory Quality. J. Food Process. Preserv. 2017, 41, e13102. [Google Scholar] [CrossRef]
- Glowacz, M.; Colgan, R.; Rees, D. Influence of continuous exposure to gaseous ozone on the quality of red bell peppers, cucumbers and zucchini. Postharvest Biol. Technol. 2015, 99, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Glowacz, M.; Rees, D. Exposure to ozone reduces postharvest quality loss in red and green chilli peppers. Food Chem. 2016, 210, 305–310. [Google Scholar] [CrossRef]
- Sachadyn-Król, M.; Materska, M.; Chilczuk, B.; Karaś, M.; Jakubczyk, A.; Perucka, I.; Jackowska, I. Ozone-induced changes in the content of bioactive compounds and enzyme activity during storage of pepper fruits. Food Chem. 2016, 211, 59–67. [Google Scholar] [CrossRef]
- Mudric, S.Z.; Gašic, U.M.; Dramicanin, A.M.; Ciric, I.Z.; Milojkovic-Opsenica, D.M.; Popovic-Ðordevic, J.B.; Momirovic, N.M.; Tešic, Z.L. The polyphenolics and carbohydrates as indicators of botanical and geographical origin of Serbian autochthonous clones of red spice paprika. Food Chem. 2017, 217, 705–715. [Google Scholar] [CrossRef]
- Materska, M. Bioactive phenolics of fresh and freeze-dried sweet and semi-spicy pepper fruits (Capsicum annuum L.). J. Funct. Foods 2014, 7, 269–277. [Google Scholar] [CrossRef]
- Wahyuni, Y.; Ballester, A.R.; Sudarmonowati, E.; Bino, R.J.; Bovy, A.G. Metabolite biodiversity in pepper (Capsicum) fruits of thirty-two diverse accessions: Variation in health-related compounds and implications for breeding. Phytochemistry 2011, 72, 1358–1370. [Google Scholar] [CrossRef] [PubMed]
- Zoriţa, D.; Florica, R.; Rugină, D.; Lucian, C.; Socaciu, C. HPLC/PDA-ESI/MS identification of phenolic acids, flavonol glycosides and antioxidant potential in blueberry, blackberry, raspberries and cranberries. J. Food Nutr. Res. 2014, 2, 781–785. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Burda, S.; Oleszek, W. Antioxidant and antiradical activities of flavonoids. J. Agric. Food Chem. 2001, 49, 2774–2779. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Kadla, J.F.; Ehara, K.; Gilkes, N.; Saddler, J.N. Organosolv ethanol lignin from hybrid poplar as a radical scavenger: Relationship between lignin structure, extraction conditions, and antioxidant activity. J. Agric. Food Chem. 2006, 54, 5806–5813. [Google Scholar] [CrossRef] [PubMed]
- Ralph, J.; Lundquist, K.; Brunow, G.; Lu, F.; Kim, H.; Schatz, P.F.; Marita, J.M.; Hatfield, R.D.; Ralph, S.A.; Christensen, J.H.; et al. Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochem. Rev. 2004, 3, 29–60. [Google Scholar] [CrossRef]
- Alothman, M.; Kaur, B.; Fazilah, A.; Bhat, R.; Karim, A.A. Ozone- induced changes of antioxidant capacity of fresh-cut tropical fruits. Innov. Food Sci. Emerg. Technol. 2010, 11, 666–671. [Google Scholar] [CrossRef]
- Ong, M.K.; Ali, A.; Alderson, P.G.; Forney, C.F. Effect of different concentrations of ozone on physiological changes associated to gas exchange, fruit ripening, fruit surface quality and defence-related enzymes levels in papaya fruit during ambient storage. Sci. Hortic. 2014, 179, 163–169. [Google Scholar] [CrossRef]
- Rodoni, L.; Casadei, N.; Concellón, A.; Chaves Alicia, A.R.; Vicente, A.R. Effect of short-term ozone treatments on tomato (Solanum lycopersicum L.) fruit quality and cell wall degradation. J. Agric. Food Chem. 2010, 58, 594–599. [Google Scholar]
- Brodowska, A.J.; Śmigielski, K.; Nowak, A.; Czyżowska, A.; Otlewska, A. The Impact of Ozone Treatment in Dynamic Bed Parameters on Changes in Biologically Active Substances of Juniper Berries. PLoS ONE 2015, 10, e0144855. [Google Scholar] [CrossRef]
- Onopiuk, A.; Półtorak, A.; Moczkowska, M.; Szpicer, A.; Wierzbicka, A. The impact of ozone on health-promoting, microbiological, and colour properties of Rubus ideaus raspberries. CyTA J. Food 2017, 15, 563–573. [Google Scholar] [CrossRef]
- Ruiz-Garcia, Y.; Romero-Cascales, I.; Gil-Munoz, R.; Fernandez-Fernandez, J.I.; LopezRoca, J.; Gomez-Plaza, E. Improving grape phenolic content and wine chromatic characteristics through the use of two different elicitors: Methyl jasmonate versus benzothiadiazole. J. Agric. Food Chem. 2012, 60, 1283–1290. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ma, L.; Xi, H.; Duan, W.; Wang, J.; Li, S. Individual and combined effects of CaCl2 and UV-C on the biosynthesis of resveratrols in grape leaves and berry skins. J. Agric. Food Chem. 2013, 61, 7135–7141. [Google Scholar] [CrossRef] [PubMed]
- Portu, J.; Lopez-Alfaro, I.; Gomez-Alonso, S.; Lopez, R.; Garde-Cerdan, T. Changes on grape phenolic composition induced by grapevine foliar applications of phenylalanine and urea. Food Chem. 2015, 180, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Yang, M.; Zhang, G.; He, H.; Yang, T. Antioxidant activities and phenolic compositions of wheat germ as affected by the roasting process. J. Am. Oil Chem. Soc. 2015, 92, 1303–1312. [Google Scholar] [CrossRef]
- Paissoni, M.A.; Segade, S.R.; Giacosa, S.; Torchio, F.; Cravero, F.; Englezos, V.; Rantsiou, K.; Carboni, C.; Gerbi, V.; Teissedre, P.L.; et al. Impact of post-harvest ozone treatments on the skin phenolic extractability of red winegrapes cv Barbera and Nebbiolo (Vitis vinifera L.). Food Res. Int. 2017, 98, 68–78. [Google Scholar] [CrossRef] [PubMed]
- De Souza, J.A.; Angolini, C.F.; Eberlin, M.N.; de Aguiar, C.L. Criegee mechanism as a safe pathway of color reduction in sugarcane juice by ozonation. Food Chem. 2017, 225, 181–187. [Google Scholar] [CrossRef] [PubMed]
Peak no. 1 | Retention Time (min) | T10 | T20 | T30 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ozonation | Ozonation | Ozonation | |||||||||
0 | 1 h | 3 h | 0 | 1 h | 3 h | 0 | 1 h | 3 h | |||
Pericarp | 1 | 6.2 | 0.527 c* ± 0.010 | 0.425 d ± 0.009 | 0.709 ab ± 0.053 | 0.640 b ± 0.16 | 0.650 ab ± 0.011 | 0.704 ab ± 0.011 | 0.785 a ± 0.024 | 0.538 c ± 0.015 | 0.716 a ± 0.067 |
2 | 8.1 | 0.276 c ± 0.012 | 0.602 b ± 0.054 | 0.775 a ± 0.069 | 0.280 c ± 0.013 | 0.229 c ± 0.024 | 0.581 b ± 0.006 | 0.245 c ± 0.019 | 0.132 d ± 0.003 | 0.206 c ± 0.016 | |
3 | 9.4 | 0.384 d ± 0.015 | 0.273 e ± 0.030 | 0.520 c ± 0.008 | 0.786 a ± 0.021 | 0.520 c ± 0.013 | 0.874 a ± 0.010 | 0.709 ab ± 0.060 | 0.597 c ± 0.039 | 0.569 c ± 0.033 | |
4 | 11.1 | 0.411 de ± 0.001 | 0.464 de ± 0.014 | 1.071 b ± 0.046 | 1.107 b ± 0.070 | 0.840 bc ± 0.045 | 1.548 a ± 0.012 | 0.944 b ± 0.066 | 0.475 d ± 0.017 | 0.648 d ± 0.018 | |
5 | 11.9 | 1.269 c ± 0.089 | 1.370 bc ± 0.005 | 3.374 a ± 0.084 | 3.360 a ± 0.082 | 1.943 b ± 0.108 | 3.130 a ± 0.241 | 2.455 b ± 0.187 | 1.625 bc ± 0.073 | 2.196 b ± 0.089 | |
6 | 19.5 | 0.177 c ± 0.010 | 0.312 b ± 0.009 | 0.478 a ± 0.015 | 0.273 b ± 0.009 | 0.262 b ± 0.018 | 0.330 b ± 0.022 | 0.157 c ± 0.006 | 0.059 d ± 0.003 | 0.163 c ± 0.014 | |
7 | 21,0 | 0.305 c ± 0.021 | 0.257 c ± 0.022 | 0.562 c ± 0.024 | 0.611 c ± 0.044 | 2.375 b ± 0.104 | 4.313 a ± 0.050 | 0.257 c ± 0.021 | 0.343 c ± 0.003 | 0.409 c ± 0.038 | |
8 | 21.7 | 0.170 d ± 0.011 | 0.225 d ± 0.023 | 0.571 ab ± 0.039 | 0.496 b ± 0.022 | 0.404 c ± 0.024 | 0.592 a ± 0.010 | 0.563 ab ± 0.014 | 0.407 c ± 0.027 | 0.654 a ± 0.036 | |
Summary | 3.519 | 3.928 | 8.06 | 7.553 | 7.223 | 12.072 | 6.115 | 4.176 | 5.561 | ||
Placenta | 9 | 31.2 | 0.529 c ± 0.03 | 0.633 bc ± 0.100 | 3.506 a ± 0.267 | 1.511 b ± 0.079 | 1.253 b ± 0.052 | 1.099 b ± 0.006 | 0.444 c ± 0.038 | 0.236 c ± 0.013 | 1.240 b ± 0.034 |
10 | 31.9 | 1.571 c ± 0.102 | 2.101 bc ± 0.052 | 7.536 a ± 0.044 | 3.803 b ± 0.059 | 2.751 b ± 0.083 | 3.057 b ± 0.079 | 1.107 c ± 0.095 | 0.627 c ± 0.049 | 3.211 b ± 0.100 | |
11 | 35.4 | 1.003 c ± 0.079 | 1.660 c ± 0.075 | 6.500 a ± 0.104 | 3.400 b ± 0.093 | 2.116 bc ± 0.113 | 2.621 b ± 0.202 | 0.750 cd ± 0.014 | 0.547 cd ± 0.041 | 2.779 b ± 0.101 | |
12 | 36.0 | 0.074 cd ± 0.010 | 0.122 c ± 0.019 | 0.435 a ± 0.014 | 0.314 b ± 0.028 | 0.176 c ± 0.013 | 0.265 b ± 0.015 | 0.068 cd ± 0.007 | 0.033 d ± 0.005 | 0.186 c ± 0.017 | |
13 | 38.8 | 0.131 c ± 0.006 | 0.169 c ± 0.007 | 0.718 a ± 0.008 | 0.375 b ± 0.020 | 0.287 bc ± 0.015 | 0.394 b ± 0.020 | 0.122 c ± 0.009 | 0.066 c ± 0.009 | 0.279 bc ± 0.026 | |
Summary | 3.308 | 4.685 | 18.695 | 9.403 | 6.583 | 7.436 | 2.491 | 1.509 | 7.695 |
Parameter | T10 | T20 | T30 |
---|---|---|---|
Pericarp | |||
1 | 0.6308 | 0.9255 | −0.2723 |
2 | 0.9848 | 0.7904 | −0.3420 |
3 | 0.5498 | 0.2396 | −0.9449 |
4 | 0.8997 | 0.6167 | −0.6241 |
5 | 0.8864 | −0.1512 | −0.3046 |
6 | 0.9983 | 0.7785 | 0.0585 |
7 | 0.7826 | 0.9996 | 0.9973 |
8 | 0.9221 | 0.5141 | 0.3656 |
HPLC sum | 0.9037 | 0.8339 | −0.2772 |
%AA | 0.8009 | 0.1132 | 0.7551 |
TPC | 0.8094 | −0.0173 | 0.9556 |
Placenta | |||
9 | 0.9002 | −0.9895 | 0.7508 |
10 | 0.9034 | −0.6890 | 0.7653 |
11 | 0.9155 | −0.6026 | 0.8219 |
12 | 0.9209 | −0.3485 | 0.7375 |
13 | 0.8932 | 0.1704 | 0.7131 |
HPLC sum | 0.9072 | −0.6799 | 0.7827 |
%AA | 0.9463 | −0.5770 | 0.7580 |
TPC | 0.9373 | −0.5906 | −0.5051 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sachadyn-Król, M.; Materska, M.; Chilczuk, B. Ozonation of Hot Red Pepper Fruits Increases Their Antioxidant Activity and Changes Some Antioxidant Contents. Antioxidants 2019, 8, 356. https://doi.org/10.3390/antiox8090356
Sachadyn-Król M, Materska M, Chilczuk B. Ozonation of Hot Red Pepper Fruits Increases Their Antioxidant Activity and Changes Some Antioxidant Contents. Antioxidants. 2019; 8(9):356. https://doi.org/10.3390/antiox8090356
Chicago/Turabian StyleSachadyn-Król, Monika, Małgorzata Materska, and Barbara Chilczuk. 2019. "Ozonation of Hot Red Pepper Fruits Increases Their Antioxidant Activity and Changes Some Antioxidant Contents" Antioxidants 8, no. 9: 356. https://doi.org/10.3390/antiox8090356
APA StyleSachadyn-Król, M., Materska, M., & Chilczuk, B. (2019). Ozonation of Hot Red Pepper Fruits Increases Their Antioxidant Activity and Changes Some Antioxidant Contents. Antioxidants, 8(9), 356. https://doi.org/10.3390/antiox8090356