Phenolic Compounds Obtained from Olea europaea By-Products and Their Use to Improve the Quality and Shelf Life of Meat and Meat Products—A Review
Abstract
:1. Introduction
2. Phenolic Profile of Olea europaea Leaves, Olive Pomace and Wastewater
2.1. Phenolic Profile of Olive Mill Wastewater
2.2. Phenolic Profile of Olea europaea Leaves
2.3. Phenolic Profile of Olive Pomace
3. Antioxidant and Antimicrobial Activity of Olea europaea Polyphenols
3.1. Antioxidant Activity In Vitro
3.2. Antioxidant Activity In Vivo in Meat-Producing Animals
3.3. Antimicrobial Activity In Vitro
4. Use of Phenolic Compounds Obtained from Olea europaea in Meat Production and Products
4.1. Animal Feeding and Meat Quality
4.2. Meat Products Quality and Shelf Life
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ray, N.B.; Lam, N.T.; Luc, R.; Bonvino, N.P.; Karagiannis, T.C. Cellular and molecular effects of bioactive phenolic compounds in olives and olive oil. In Olive and Olive Oil Bioactive Constituents; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 53–91. ISBN 9781630670429. [Google Scholar]
- International Olive Oil Council Economic Affairs & Promotion Unit—International Olive Council. Available online: https://www.internationaloliveoil.org/what-we-do/economic-affairs-promotion-unit/#figures (accessed on 21 October 2020).
- Zamuz, S.; Purrinos, L.; Tomasevic, I.; Dominguez, R.; Brnčić, M.; Barba, F.J.; Lorenzo, J.M. Consumer acceptance and quality parameters of the commercial olive oils manufactured with cultivars grown in Galicia (NW Spain). Foods 2020, 9, 427. [Google Scholar] [CrossRef] [Green Version]
- López-López, A.; Sánchez-Gómez, A.H.; Montaño, A.; Cortés-Delgado, A.; Garrido-Fernández, A. Sensory characterisation of black ripe table olives from Spanish Manzanilla and Hojiblanca cultivars. Food Res. Int. 2019, 116, 114–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Z.; Jia, X.; Zheng, Z.; Lu, X.; Zheng, Y.; Zheng, B.; Xiao, J. Chemical composition and nutritional function of olive (Olea europaea L.): A review. Phytochem. Rev. 2018, 17, 1091–1110. [Google Scholar] [CrossRef]
- Carlos, S.; De La Fuente-Arrillaga, C.; Bes-Rastrollo, M.; Razquin, C.; Rico-Campà, A.; Martínez-González, M.A.; Ruiz-Canela, M. Mediterranean diet and health outcomes in the SUN cohort. Nutrients 2018, 10, 439. [Google Scholar] [CrossRef] [Green Version]
- Gavahian, M.; Mousavi Khaneghah, A.; Lorenzo, J.M.; Munekata, P.E.S.; Garcia-Mantrana, I.; Collado, M.C.; Meléndez-Martínez, A.J.; Barba, F.J. Health benefits of olive oil and its components: Impacts on gut microbiota antioxidant activities, and prevention of noncommunicable diseases. Trends Food Sci. Technol. 2019, 88, 220–227. [Google Scholar] [CrossRef]
- European Commission Commission Regulation (EEC) No 2568/91 of 11 July 1991 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. Off. J. Eur. Communities 1991, 248, 1–83. [CrossRef]
- United States Department of Agriculture Olive Oil and olive-Pomace Oil Grades and Standards—Agricultural Marketing Service. Available online: https://www.ams.usda.gov/grades-standards/olive-oil-and-olive-pomace-oil-grades-and-standards (accessed on 21 October 2020).
- International Olive Council. Trade Standard Applying to Olive Oils and Olive Pomace Oils; International Olive Council: Madrid, Spain, 2019. [Google Scholar]
- European Comission. The EU Food Fraud Network and the Administrative Assistance and Cooperation System Health and Food Safety; European Comission: Luxembourg, 2020. [Google Scholar]
- Bajoub, A.; Bendini, A.; Fernández-Gutiérrez, A.; Carrasco-Pancorbo, A. Olive oil authentication: A comparative analysis of regulatory frameworks with especial emphasis on quality and authenticity indices, and recent analytical techniques developed for their assessment. A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 832–857. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Caravaca, A.M.; Maggio, R.M.; Cerretani, L. Chemometric applications to assess quality and critical parameters of virgin and extra-virgin olive oil. A review. Anal. Chim. Acta 2016, 913, 1–21. [Google Scholar] [CrossRef]
- Alirezalu, K.; Pateiro, M.; Yaghoubi, M.; Alirezalu, A.; Peighambardoust, S.H.; Lorenzo, J.M. Phytochemical constituents, advanced extraction technologies and techno-functional properties of selected Mediterranean plants for use in meat products. A comprehensive review. Trends Food Sci. Technol. 2020, 100, 292–306. [Google Scholar] [CrossRef]
- Şahin, S.; Elhussein, E.; Bilgin, M.; Lorenzo, J.M.; Barba, F.J.; Roohinejad, S. Effect of drying method on oleuropein, total phenolic content, flavonoid content, and antioxidant activity of olive (Olea europaea) leaf. J. Food Process. Preserv. 2018, 42, e13604. [Google Scholar] [CrossRef]
- Sahin, S.; Samli, R.; Birteks Z Tan, A.S.; Barba, F.J.; Chemat, F.; Cravotto, G.; Lorenzo, J.M. Solvent-free microwave-assisted extraction of polyphenols from olive tree leaves: Antioxidant and antimicrobial properties. Molecules 2017, 22, 1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souilem, S.; El-Abbassi, A.; Kiai, H.; Hafidi, A.; Sayadi, S.; Galanakis, C.M. Olive oil production sector: Environmental effects and sustainability challenges. In Olive Mill Waste: Recent Advances for Sustainable Management; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 1–28. ISBN 9780128053140. [Google Scholar]
- Doula, M.K.; Moreno-Ortego, J.L.; Tinivella, F.; Inglezakis, V.J.; Sarris, A.; Komnitsas, K. Olive mill waste: Recent advances for the sustainable development of olive oil industry. In Olive Mill Waste: Recent Advances for Sustainable Management; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 29–56. ISBN 9780128053140. [Google Scholar]
- Rodis, P.S.; Karathanos, V.T.; Mantzavinou, A. Partitioning of olive oil antioxidants between oil and water phases. J. Agric. Food Chem. 2002, 50, 596–601. [Google Scholar] [CrossRef]
- Zbakh, H.; El Abbassi, A. Potential use of olive mill wastewater in the preparation of functional beverages: A review. J. Funct. Foods 2012, 4, 53–65. [Google Scholar] [CrossRef]
- Cicerale, S.; Conlan, X.A.; Sinclair, A.J.; Keast, R.S.J. Chemistry and health of olive oil phenolics. Crit. Rev. Food Sci. Nutr. 2009, 49, 218–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obied, H.K.; Bedgood, D.R.; Prenzler, P.D.; Robards, K. Bioscreening of Australian olive mill waste extracts: Biophenol content, antioxidant, antimicrobial and molluscicidal activities. Food Chem. Toxicol. 2007, 45, 1238–1248. [Google Scholar] [CrossRef] [PubMed]
- El, S.N.; Karakaya, S. Olive tree (Olea europaea) leaves: Potential beneficial effects on human health. Nutr. Rev. 2009, 67, 632–638. [Google Scholar] [CrossRef]
- Granato, D.; Barba, F.J.; Bursać Kovačević, D.; Lorenzo, J.M.; Cruz, A.G.; Putnik, P. Functional foods: Product development, technological trends, efficacy testing, and safety. Annu. Rev. Food Sci. Technol. 2020, 11, 93–118. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, R.P.P.; Trindade, M.A.; Lorenzo, J.M.; de Melo, M.P. Assessment of the stability of sheep sausages with the addition of different concentrations of Origanum vulgare extract during storage. Meat Sci. 2018, 137, 244–257. [Google Scholar] [CrossRef]
- Fernandes, R.P.P.; Trindade, M.A.; Tonin, F.G.; Lima, C.G.; Pugine, S.M.P.; Munekata, P.E.S.; Lorenzo, J.M.; de Melo, M.P. Evaluation of antioxidant capacity of 13 plant extracts by three different methods: Cluster analyses applied for selection of the natural extracts with higher antioxidant capacity to replace synthetic antioxidant in lamb burgers. J. Food Sci. Technol. 2016, 53, 451–460. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, R.P.P.; Trindade, M.A.; Tonin, F.G.; Pugine, S.M.P.; Lima, C.G.; Lorenzo, J.M.; de Melo, M.P. Evaluation of oxidative stability of lamb burger with Origanum vulgare extract. Food Chem. 2017, 233, 101–109. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; González-Rodríguez, R.M.; Sánchez, M.; Amado, I.R.; Franco, D. Effects of natural (grape seed and chestnut extract) and synthetic antioxidants (buthylatedhydroxytoluene, BHT) on the physical, chemical, microbiological and sensory characteristics of dry cured sausage “chorizo”. Food Res. Int. 2013, 54, 611–620. [Google Scholar] [CrossRef] [Green Version]
- Nikmaram, N.; Budaraju, S.; Barba, F.J.; Lorenzo, J.M.; Cox, R.B.; Mallikarjunan, K.; Roohinejad, S. Application of plant extracts to improve the shelf-life, nutritional and health-related properties of ready-to-eat meat products. Meat Sci. 2018, 145, 245–255. [Google Scholar] [CrossRef]
- Fernandes, R.P.P.; Trindade, M.A.; Lorenzo, J.M.; Munekata, P.E.S.; de Melo, M.P. Effects of oregano extract on oxidative, microbiological and sensory stability of sheep burgers packed in modified atmosphere. Food Control 2016, 63, 65–75. [Google Scholar] [CrossRef]
- Nieto, G.; Martínez, L.; Castillo, J.; Ros, G. Effect of hydroxytyrosol, walnut and olive oil on nutritional profile of low-fat chicken frankfurters. Eur. J. Lipid Sci. Technol. 2017, 119, 1600518. [Google Scholar] [CrossRef]
- Estévez, M.; Lorenzo, J.M. Impact of antioxidants on oxidized proteins and lipids in processed meat. Encycl. Food Chem. 2019, 600–608. [Google Scholar] [CrossRef]
- Martínez, L.; Castillo, J.; Ros, G.; Nieto, G. Antioxidant and antimicrobial activity of rosemary, pomegranate and olive extracts in fish patties. Antioxidants 2019, 8, 86. [Google Scholar] [CrossRef] [Green Version]
- Martínez, L.; Ros, G.; Nieto, G. Effect of natural extracts obtained from food industry by-products on nutritional quality and shelf life of chicken nuggets enriched with organic Zn and Se provided in broiler diet. Poult. Sci. 2020, 99, 1491–1501. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Domínguez, R.; Campagnol, P.C.B.P.C.B.; Franco, D.; Trindade, M.A.M.A.; Lorenzo, J.M.J.M. Effect of natural antioxidants on physicochemical properties and lipid stability of pork liver pâté manufactured with healthy oils during refrigerated storage. J. Food Sci. Technol. 2017, 54, 4324–4334. [Google Scholar] [CrossRef] [PubMed]
- Pateiro, M.; Lorenzo, J.; Vázquez, J.; Franco, D. Oxidation Stability of Pig Liver Pâté with Increasing Levels of Natural Antioxidants (Grape and Tea). Antioxidants 2015, 4, 102–123. [Google Scholar] [CrossRef] [Green Version]
- Pateiro, M.; Vargas, F.C.; Chincha, A.A.I.A.; Sant’Ana, A.S.; Strozzi, I.; Rocchetti, G.; Barba, F.J.; Domínguez, R.; Lucini, L.; do Amaral Sobral, P.J.; et al. Guarana seed extracts as a useful strategy to extend the shelf life of pork patties: UHPLC-ESI/QTOF phenolic profile and impact on microbial inactivation, lipid and protein oxidation and antioxidant capacity. Food Res. Int. 2018, 114, 55–63. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Munekata, P.E.S.; Sant’Ana, A.S.; Carvalho, R.B.; Barba, F.J.; Toldrá, F.; Mora, L.; Trindade, M.A. Main characteristics of peanut skin and its role for the preservation of meat products. Trends Food Sci. Technol. 2018, 77, 1–10. [Google Scholar] [CrossRef]
- de Carvalho, F.A.L.; Munekata, P.E.S.; Lopes de Oliveira, A.; Pateiro, M.; Domínguez, R.; Trindade, M.A.; Lorenzo, J.M. Turmeric (Curcuma longa L.) extract on oxidative stability, physicochemical and sensory properties of fresh lamb sausage with fat replacement by tiger nut (Cyperus esculentus L.) oil. Food Res. Int. 2020, 136, 109487. [Google Scholar] [CrossRef]
- Pateiro, M.; Lorenzo, J.M.M.; Amado, I.R.R.; Franco, D. Effect of addition of green tea, chestnut and grape extract on the shelf-life of pig liver pâté. Food Chem. 2014, 147, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Pierantozzi, P.; Zampini, C.; Torres, M.; Isla, M.I.; Verdenelli, R.A.; Meriles, J.M.; Maestri, D. Physico-chemical and toxicological assessment of liquid wastes from olive processing-related industries. J. Sci. Food Agric. 2012, 92, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Saviozzi, A.; Riffaldi, R.; Levi-Minzi, R.; Scagnozzi, A.; Vanni, G. Decomposition of vegetation-water sludge in soil. Bioresour. Technol. 1993, 44, 223–228. [Google Scholar] [CrossRef]
- Paredes, C.; Cegarra, J.; Roig, A.; Sánchez-Monedero, M.A.; Bernal, M.P. Characterization of olive mill wastewater (alpechin) and its sludge for agricultural purposes. Bioresour. Technol. 1999, 67, 111–115. [Google Scholar] [CrossRef]
- Visioli, F.; Romani, A.; Mulinacci, N.; Zarini, S.; Conte, D.; Vincieri, F.F.; Galli, C. Antioxidant and other biological activities of olive mill waste waters. J. Agric. Food Chem. 1999, 47, 3397–3401. [Google Scholar] [CrossRef] [PubMed]
- El-Abbassi, A.; Kiai, H.; Hafidi, A. Phenolic profile and antioxidant activities of olive mill wastewater. Food Chem. 2012, 132, 406–412. [Google Scholar] [CrossRef]
- Cardinali, A.; Pati, S.; Minervini, F.; D’Antuono, I.; Linsalata, V.; Lattanzio, V. Verbascoside, isoverbascoside, and their derivatives recovered from olive mill wastewater as possible food antioxidants. J. Agric. Food Chem. 2012, 60, 1822–1829. [Google Scholar] [CrossRef]
- Özcan, M.M.; Matthäus, B. A review: Benefit and bioactive properties of olive (Olea europaea L.) leaves. Eur. Food Res. Technol. 2017, 243, 89–99. [Google Scholar] [CrossRef]
- Şahin, S.; Bilgin, M. Olive tree (Olea europaea L.) leaf as a waste by-product of table olive and olive oil industry: A review. J. Sci. Food Agric. 2018, 98, 1271–1279. [Google Scholar] [CrossRef] [PubMed]
- Kiritsakis, K.; Kontominas, M.G.; Kontogiorgis, C.; Hadjipavlou-Litina, D.; Moustakas, A.; Kiritsakis, A. Composition and antioxidant activity of olive leaf extracts from Greek olive cultivars. JAOCS, J. Am. Oil Chem. Soc. 2010, 87, 369–376. [Google Scholar] [CrossRef]
- Pereira, A.P.; Ferreira, I.C.F.R.; Marcelino, F.; Valentão, P.; Andrade, P.B.; Seabra, R.; Estevinho, L.; Bento, A.; Pereira, J.A. Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrançosa) leaves. Molecules 2007, 12, 1153–1162. [Google Scholar] [CrossRef] [PubMed]
- Sabry, O.M.M. Beneficial health effects of olive leaves extracts. J. Nat. Sci. Res. 2014, 4, 1–9. [Google Scholar]
- Ryan, D.; Antolovich, M.; Herlt, T.; Prenzler, P.D.; Lavee, S.; Robards, K. Identification of phenolic compounds in tissues of the novel olive cultivar Hardy’s Mammoth. J. Agric. Food Chem. 2002, 50, 6716–6724. [Google Scholar] [CrossRef] [PubMed]
- Luján, R.J.; Capote, F.P.; de Castro, M.D.L. Temporal metabolomic analysis of o -glucoside phenolic compounds and their aglycone forms in olive tree and derived materials. Phytochem. Anal. 2009, 20, 221–230. [Google Scholar] [CrossRef]
- Nunes, M.A.; Pimentel, F.B.; Costa, A.S.G.; Alves, R.C.; Oliveira, M.B.P.P. Olive by-products for functional and food applications: Challenging opportunities to face environmental constraints. Innov. Food Sci. Emerg. Technol. 2016, 35, 139–148. [Google Scholar] [CrossRef]
- Nunes, M.A.; Costa, A.S.G.; Bessada, S.; Santos, J.; Puga, H.; Alves, R.C.; Freitas, V.; Oliveira, M.B.P.P. Olive pomace as a valuable source of bioactive compounds: A study regarding its lipid- and water-soluble components. Sci. Total Environ. 2018, 644, 229–236. [Google Scholar] [CrossRef]
- Malapert, A.; Reboul, E.; Loonis, M.; Dangles, O.; Tomao, V. Direct and Rapid Profiling of Biophenols in Olive Pomace by UHPLC-DAD-MS. Food Anal. Methods 2018, 11, 1001–1010. [Google Scholar] [CrossRef]
- Galanakis, C.M. Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends Food Sci. Technol. 2012, 26, 68–87. [Google Scholar] [CrossRef]
- Chanioti, S.; Tzia, C. Optimization of ultrasound-assisted extraction of oil from olive pomace using response surface technology: Oil recovery, unsaponifiable matter, total phenol content and antioxidant activity. LWT - Food Sci. Technol. 2017, 79, 178–189. [Google Scholar] [CrossRef]
- Hayes, J.E.; Allen, P.; Brunton, N.; O’Grady, M.N.; Kerry, J.P. Phenolic composition and in vitro antioxidant capacity of four commercial phytochemical products: Olive leaf extract (Olea europaea L.), lutein, sesamol and ellagic acid. Food Chem. 2011, 126, 948–955. [Google Scholar] [CrossRef]
- Mulinacci, N.; Romani, A.; Galardi, C.; Pinelli, P.; Giaccherini, C.; Vincieri, F.F. Polyphenolic content in olive oil waste waters and related olive samples. J. Agric. Food Chem. 2001, 49, 3509–3514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granato, D.; Shahidi, F.; Wrolstad, R.; Kilmartin, P.; Melton, L.D.; Hidalgo, F.J.; Miyashita, K.; van Camp, J.; Alasalvar, C.; Ismail, A.B.; et al. Antioxidant activity, total phenolics and flavonoids contents: Should we ban in vitro screening methods? Food Chem. 2018, 264, 471–475. [Google Scholar] [CrossRef]
- Karadag, A.; Ozcelik, B.; Saner, S. Review of methods to determine antioxidant capacities. Food Anal. Methods 2009, 2, 41–60. [Google Scholar] [CrossRef]
- De Bruno, A.; Romeo, R.; Fedele, F.L.; Sicari, A.; Piscopo, A.; Poiana, M. Antioxidant activity shown by olive pomace extracts. J. Environ. Sci. Heal. -Part B Pestic. Food Contam. Agric. Wastes 2018, 53, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Rathi, M.H.; Turki, R.H. Total phenolic contents and antioxidant activities of olive (Olea europaea L.) pomace and their ingredients. J. Al-Nahrain Univ. Sci. 2018, 21, 106–111. [Google Scholar] [CrossRef]
- Sinrod, A.J.G.; Avena-Bustillos, R.J.; Olson, D.A.; Crawford, L.M.; Wang, S.C.; McHugh, T.H. Phenolics and antioxidant capacity of pitted olive pomace affected by three drying technologies. J. Food Sci. 2019, 84, 412–420. [Google Scholar] [CrossRef]
- Goldsmith, C.D.; Vuong, Q. V.; Stathopoulos, C.E.; Roach, P.D.; Scarlett, C.J. Ultrasound increases the aqueous extraction of phenolic compounds with high antioxidant activity from olive pomace. LWT - Food Sci. Technol. 2018, 89, 284–290. [Google Scholar] [CrossRef] [Green Version]
- Akretche, H.; Pierre, G.; Moussaoui, R.; Michaud, P.; Delattre, C. Valorization of olive mill wastewater for the development of biobased polymer films with antioxidant properties using eco-friendly processes. Green Chem. 2019, 21, 3065–3073. [Google Scholar] [CrossRef]
- Bermúdez-Oria, A.; Rodríguez-Gutiérrez, G.; Alaiz, M.; Vioque, J.; Girón-Calle, J.; Fernández-Bolaños, J. Polyphenols associated to pectic polysaccharides account for most of the antiproliferative and antioxidant activities in olive extracts. J. Funct. Foods 2019, 62, 103530. [Google Scholar] [CrossRef]
- Wahdan, K.; Taha, T. In vitro antioxidant, antimicrobial and anticancer activities of olive (Olea europaea L.) pomace. J. Agric. Chem. Biotechnol. 2018, 9, 77–83. [Google Scholar] [CrossRef]
- Matés, J.M.; Pérez-Gómez, C.; De Castro, I.N. Antioxidant enzymes and human diseases. Clin. Biochem. 1999, 32, 595–603. [Google Scholar] [CrossRef]
- Mirończuk-Chodakowska, I.; Witkowska, A.M.; Zujko, M.E. Endogenous non-enzymatic antioxidants in the human body. Adv. Med. Sci. 2018, 63, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015, 97, 55–74. [Google Scholar] [CrossRef] [PubMed]
- Guerra-Araiza, C.; Álvarez-Mejía, A.L.; Sánchez-Torres, S.; Farfan-García, E.; Mondragón-Lozano, R.; Pinto-Almazán, R.; Salgado-Ceballos, H. Effect of natural exogenous antioxidants on aging and on neurodegenerative diseases. Free Radic. Res. 2013, 47, 451–462. [Google Scholar] [CrossRef] [PubMed]
- Gerasopoulos, K.; Stagos, D.; Petrotos, K.; Kokkas, S.; Kantas, D.; Goulas, P.; Kouretas, D. Feed supplemented with polyphenolic byproduct from olive mill wastewater processing improves the redox status in blood and tissues of piglets. Food Chem. Toxicol. 2015, 86, 319–327. [Google Scholar] [CrossRef]
- Rey, A.I.; De-Cara, A.; Calvo, L.; Puig, P.; Hechavarría, T. Changes in plasma fatty acids, free amino acids, antioxidant defense, and physiological stress by oleuropein supplementation in pigs prior to slaughter. Antioxidants 2020, 9, 56. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, E.B.; El-Masry, K.A.; Khalil, F.A.; Teama, F.E.; Emara, S.S. Alleviation of oxidative stress by using olive pomace in crossbred (Brown Swiss X Baladi) calves under hot environmental conditions. Arab J. Nucl. Sci. Appl. 2015, 48, 88–99. [Google Scholar]
- Hukerdi, Y.J.; Nasri, M.H.F.; Rashidi, L.; Ganjkhanlou, M.; Emami, A. Effects of dietary olive leaves on performance, carcass traits, meat stability and antioxidant status of fattening Mahabadi male kids. Meat Sci. 2019, 153, 2–8. [Google Scholar] [CrossRef]
- Ahmed, M.M.; El-Saadany, A.S.; Shreif, E.Y.; El-Barbary, A.M. Effect of dietary olive leaves extract (Oleuropein) supplementation on productive, physiological and immunological parameters in Bandarah chickens 2 - During production period. Poult. Sci 2017, 37, 277–292. [Google Scholar]
- Gerasopoulos, K.; Stagos, D.; Kokkas, S.; Petrotos, K.; Kantas, D.; Goulas, P.; Kouretas, D. Feed supplemented with byproducts from olive oil mill wastewater processing increases antioxidant capacity in broiler chickens. Food Chem. Toxicol. 2015, 82, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Saleh, A.A.; Paray, B.A.; Dawood, M.A.O. Olive cake meal and bacillus licheniformis impacted the growth performance, muscle fatty acid content, and health status of broiler chickens. Animals 2020, 10, 695. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Moneim, A.E.M.E.; Sabic, E.M.; Abu-Taleb, A.M. Influence of dietary supplementation of irradiated or non-irradiated olive pulp on biochemical profile, antioxidant status and immune response of Japanese quails. Biol. Rhythm Res. 2019, in press. [Google Scholar] [CrossRef]
- Sarıca, S.; Aydın, H.; Ciftci, G. Effects of dietary supplementation of some antioxidants on liver antioxidant status and plasma biochemistry parameters of heat-stressed quail. Turkish J. Agric. - Food Sci. Technol. 2017, 5, 773. [Google Scholar] [CrossRef]
- Margaritelis, N. V.; Veskoukis, A.S.; Paschalis, V.; Vrabas, I.S.; Dipla, K.; Zafeiridis, A.; Kyparos, A.; Nikolaidis, M.G. Blood reflects tissue oxidative stress: A systematic review. Biomarkers 2015, 20, 97–108. [Google Scholar] [CrossRef]
- Aziz, M.; Karboune, S. Natural antimicrobial/antioxidant agents in meat and poultry products as well as fruits and vegetables: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 486–511. [Google Scholar] [CrossRef]
- Efenberger-Szmechtyk, M.; Nowak, A.; Czyzowska, A. Plant extracts rich in polyphenols: Antibacterial agents and natural preservatives for meat and meat products. Crit. Rev. Food Sci. Nutr. 2020, in press. [Google Scholar] [CrossRef]
- Friedman, M.; Rasooly, R.; Do, P.M.; Henika, P.R. The olive compound 4-hydroxytyrosol inactivates Staphylococcus aureus bacteria and staphylococcal enterotoxin A (SEA). J. Food Sci. 2011, 76, M558–M563. [Google Scholar] [CrossRef]
- Peng, M.; Zhao, X.; Biswas, D. Polyphenols and tri-terpenoids from Olea europaea L. in alleviation of enteric pathogen infections through limiting bacterial virulence and attenuating inflammation. J. Funct. Foods 2017, 36, 132–143. [Google Scholar] [CrossRef]
- Medina-Martínez, M.S.; Truchado, P.; Castro-Ibáñez, I.; Allende, A. Antimicrobial activity of hydroxytyrosol: A current controversy. Biosci. Biotechnol. Biochem. 2016, 80, 801–810. [Google Scholar] [CrossRef] [Green Version]
- Techathuvanan, C.; Reyes, F.; David, J.R.D.; Davidson, P.M. Efficacy of commercial natural antimicrobials alone and in combinations against pathogenic and spoilage microorganisms. J. Food Prot. 2014, 77, 269–275. [Google Scholar] [CrossRef]
- Dominciano, L.C.C.; Lee, S.H.I.; Santello, J.M.; De Martinis, E.C.P.; Corassin, C.H.; Oliveira, C.A.F. Effect of oleuropein and peracetic acid on suspended cells and mono-species biofilms formed by Staphylococcus aureus and Escherichia coli. Integr. Food Nutr. Metab. 2016, 3, 314–317. [Google Scholar] [CrossRef]
- Dominciano, L.C.C.; Oliveira, C.A.F.; Lee, S.H.; Corassin, C.H. Individual and combined antimicrobial activity of oleuropein and chemical sanitizers. J. Food Chem. Nanotechnol. 2016, 2. [Google Scholar] [CrossRef]
- Yuan, J.J.; Tu, J.L.; Qin, F.G.F.; Xu, Y.J.; Li, B. Phenolic composition of oleuropein extract after enzymatic process by HPLC-MS and their antioxidant and antibacterial activities. J. Food Biochem. 2018, 42, e12517. [Google Scholar] [CrossRef]
- Fei, P.; Xu, Y.; Zhao, S.; Gong, S.; Guo, L. Olive oil polyphenol extract inhibits vegetative cells of Bacillus cereus isolated from raw milk. J. Dairy Sci. 2019, 102, 3894–3902. [Google Scholar] [CrossRef]
- Amini, A.; Liu, M.; Ahmad, Z. Understanding the link between antimicrobial properties of dietary olive phenolics and bacterial ATP synthase. Int. J. Biol. Macromol. 2017, 101, 153–164. [Google Scholar] [CrossRef]
- Hamdi, H.; Majdoub-Mathlouthi, L.; Durand, D.; Thomas, A.; Kraiem, K. Effects of olive-cake supplementation on fatty acid composition, antioxidant status and lipid and meat-colour stability of Barbarine lambs reared on improved rangeland plus concentrates or indoors with oat hay plus concentrates. Anim. Prod. Sci. 2018, 58, 1714–1725. [Google Scholar] [CrossRef]
- Cimmino, R.; Barone, C.M.A.; Claps, S.; Varricchio, E.; Rufrano, D.; Caroprese, M.; Albenzio, M.; De Palo, P.; Campanile, G.; Neglia, G. Effects of dietary supplementation with polyphenols on meat quality in Saanen goat kids. BMC Vet. Res. 2018, 14, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Tsala, A.; Mpekelis, V.; Karvelis, G.; Tsikakis, P.; Goliomytis, M.; Simitzis, P. Effects of dried olive pulp dietary supplementation on quality characteristics and antioxidant capacity of pig meat. Foods 2020, 9, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattioli, S.; Machado Duarte, J.M.; Castellini, C.; D’Amato, R.; Regni, L.; Proietti, P.; Businelli, D.; Cotozzolo, E.; Rodrigues, M.; Dal Bosco, A. Use of olive leaves (whether or not fortified with sodium selenate) in rabbit feeding: Effect on performance, carcass and meat characteristics, and estimated indexes of fatty acid metabolism. Meat Sci. 2018, 143, 230–236. [Google Scholar] [CrossRef]
- Mattioli, S.; Dal Bosco, A.; Duarte, J.M.M.; D’Amato, R.; Castellini, C.; Beone, G.M.; Fontanella, M.C.; Beghelli, D.; Regni, L.; Businelli, D.; et al. Use of selenium-enriched olive leaves in the feed of growing rabbits: Effect on oxidative status, mineral profile and selenium speciation of Longissimus dorsi meat. J. Trace Elem. Med. Biol. 2019, 51, 98–105. [Google Scholar] [CrossRef]
- Branciari, R.; Galarini, R.; Giusepponi, D.; Trabalza-Marinucci, M.; Forte, C.; Roila, R.; Miraglia, D.; Servili, M.; Acuti, G.; Valiani, A. Oxidative status and presence of bioactive compounds in meat from chickens fed polyphenols extracted from olive oil industry waste. Sustainability 2017, 9, 1566. [Google Scholar] [CrossRef] [Green Version]
- da Silva, S.L.; Marangoni, C.; Brum, D.S.; Vendruscolo, R.G.; Silva, M.S.; de Moura, H.C.; Rampelotto, C.; Wagner, R.; de Menezes, C.R.; Barin, J.S.; et al. Effect of dietary olive leaves on the lipid and protein oxidation and bacterial safety of chicken hamburgers during frozen storage. Int. Food Res. J. 2018, 25, 383–391. [Google Scholar]
- Papadomichelakis, G.; Pappas, A.C.; Tsiplakou, E.; Symeon, G.K.; Sotirakoglou, K.; Mpekelis, V.; Fegeros, K.; Zervas, G. Effects of dietary dried olive pulp inclusion on growth performance and meat quality of broiler chickens. Livest. Sci. 2019, 221, 115–122. [Google Scholar] [CrossRef]
- Roila, R.; Valiani, A.; Miraglia, D.; Ranucci, D.; Forte, C.; Trabalza-Marinucci, M.; Servili, M.; Codini, M.; Branciari, R. Olive mill wastewater phenolic concentrate as natural antioxidant against lipid-protein oxidative deterioration in chicken meat during storage. Ital. J. Food Saf. 2018, 7, 148–152. [Google Scholar] [CrossRef]
- Campo, M.M.; Nute, G.R.; Hughes, S.I.; Enser, M.; Wood, J.D.; Richardson, R.I. Flavour perception of oxidation in beef. Meat Sci. 2006, 72, 303–311. [Google Scholar] [CrossRef]
- Verma, S.P.; Sahoo, J. Improvement in the quality of ground chevon during refrigerated storage by tocopherol acetate preblending. Meat Sci. 2000, 56, 403–413. [Google Scholar] [CrossRef]
- Greene, B.E.; Cumuze, T.H. Relationship between TBA numbers and inexperienced panelists’ assessments of oxidized flavor in cooked beef. J. Food Sci. 1982, 47, 52–54. [Google Scholar] [CrossRef]
- Serra, A.; Conte, G.; Giovannetti, M.; Casarosa, L.; Agnolucci, M.; Ciucci, F.; Palla, M.; Bulleri, E.; Cappucci, A.; Servili, M.; et al. Olive pomace in diet limits lipid peroxidation of sausages from cinta senese swine. Eur. J. Lipid Sci. Technol. 2018, 120, 1700236. [Google Scholar] [CrossRef]
- Kotsampasi, B.; Bampidis, V.A.; Tsiaousi, A.; Christodoulou, C.; Petrotos, K.; Amvrosiadis, I.; Fragioudakis, N.; Christodoulou, V. Effects of dietary partly destoned exhausted olive cake supplementation on performance, carcass characteristics and meat quality of growing lambs. Small Rumin. Res. 2017, 156, 33–41. [Google Scholar] [CrossRef]
- Hamdi, H.; Majdoub-Mathlouthi, L.; Picard, B.; Listrat, A.; Durand, D.; Znaïdi, I.A.; Kraiem, K. Carcass traits, contractile muscle properties and meat quality of grazing and feedlot Barbarine lamb receiving or not olive cake. Small Rumin. Res. 2016, 145, 85–93. [Google Scholar] [CrossRef]
- Ozdogan, M.; Ustundag, A.O.; Yarali, E. Effect of mixed feeds containing different levels of olive cake on fattening performance, carcass, meat quality and fatty acids of lambs. Trop. Anim. Health Prod. 2017, 49, 1631–1636. [Google Scholar] [CrossRef] [PubMed]
- Sucu, E.; Akbay, K.C.; Şengül, Ö.; Yavuz, M.T.; Ibrahim, A.K. Effects of stoned olive pomace on carcass characteristics and meat quality of lambs. Turkish J. Vet. Anim. Sci. 2018, 42, 533–542. [Google Scholar] [CrossRef]
- Liotta, L.; Chiofalo, V.; Presti, V. Lo; Chiofalo, B. In vivo performances, carcass traits, and meat quality of pigs fed olive cake processing waste. Animals 2019, 9, 1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiofalo, V.; Liotta, L.; Presti, V. Lo; Gresta, F.; Di Rosa, A.R.; Chiofalo, B. Effect of dietary olive cake supplementation on performance, carcass characteristics, and meat quality of beef cattle. Animals 2020, 10, 1176. [Google Scholar] [CrossRef] [PubMed]
- Munekata, P.E.S.; Rocchetti, G.; Pateiro, M.; Lucini, L.; Domínguez, R.; Lorenzo, J.M. Addition of plant extracts to meat and meat products to extend shelf-life and health-promoting attributes: An overview. Curr. Opin. Food Sci. 2020, 31, 81–87. [Google Scholar] [CrossRef]
- Martínez, L.; Ros, G.; Nieto, G. Hydroxytyrosol: Health benefits and use as functional ingredient in meat. Medicines 2018, 5, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenzo, J.M.; Domínguez, R.; Carballo, J. Control of lipid oxidation in muscle food by active packaging technology. In Natural Antioxidants: Applications in Foods of Animal Origin; Banerjee, R., Verma, A.K., Siddiqui, M.W., Eds.; Apple Academic Press Inc.: Boca Raton, FL, USA, 2017; pp. 343–382. ISBN 9781771884600. [Google Scholar]
- Umaraw, P.; Munekata, P.E.S.; Verma, A.K.; Barba, F.J.; Singh, V.P.; Kumar, P.; Lorenzo, J.M. Edible films/coating with tailored properties for active packaging of meat, fish and derived products. Trends Food Sci. Technol. 2020, 98, 10–24. [Google Scholar] [CrossRef]
- Domínguez, R.; Barba, F.J.; Gómez, B.; Putnik, P.; Bursać Kovačević, D.; Pateiro, M.; Santos, E.M.; Lorenzo, J.M. Active packaging films with natural antioxidants to be used in meat industry: A review. Food Res. Int. 2018, 113, 93–101. [Google Scholar] [CrossRef]
- Djenane, D.; Gómez, D.; Yangüela, J.; Roncalés, P.; Ariño, A. Olive leaves extract from algerian oleaster (Olea europaea var. Sylvestris) on microbiological safety and shelf-life stability of raw halal minced beef during display. Foods 2019, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Aouidi, F.; Okba, A.; Hamdi, M. Valorization of functional properties of extract and powder of olive leaves in raw and cooked minced beef meat. J. Sci. Food Agric. 2017, 97, 3195–3203. [Google Scholar] [CrossRef]
- Muíño, I.; Díaz, M.T.; Apeleo, E.; Pérez-Santaescolástica, C.; Rivas-Cañedo, A.; Pérez, C.; Cañeque, V.; Lauzurica, S.; de la Fuente, J. Valorisation of an extract from olive oil waste as a natural antioxidant for reducing meat waste resulting from oxidative processes. J. Clean. Prod. 2017, 140, 924–932. [Google Scholar] [CrossRef]
- Elama, C.; Tarawa, M.; Al-Rimawi, F. Oleuropein from olive leaf extract as natural antioxidant of frozen hamburger. J. Food Sci. Eng. 2017, 7, 406–412. [Google Scholar] [CrossRef] [Green Version]
- Hawashin, M.D.; Al-Juhaimi, F.; Ahmed, I.A.M.; Ghafoor, K.; Babiker, E.E. Physicochemical, microbiological and sensory evaluation of beef patties incorporated with destoned olive cake powder. Meat Sci. 2016, 122, 32–39. [Google Scholar] [CrossRef]
- Nieto, G.; Martínez, L.; Castillo, J.; Ros, G. Hydroxytyrosol extracts, olive oil and walnuts as functional components in chicken sausages. J. Sci. Food Agric. 2017, 97, 3761–3771. [Google Scholar] [CrossRef]
- Kurt, Ş.; Ceylan, H.G. Effects of olive leaf extract on the oxidation stability and microbiological quality of dry fermented sausage (Sucuk). Carpathian J. Food Sci. Technol. 2017, 9, 178–188. [Google Scholar]
- Bermúdez-Oria, A.; Rodríguez-Gutiérrez, G.; Rubio-Senent, F.; Fernández-Prior, Á.; Fernández-Bolaños, J. Effect of edible pectin-fish gelatin films containing the olive antioxidants hydroxytyrosol and 3,4-dihydroxyphenylglycol on beef meat during refrigerated storage. Meat Sci. 2019, 148, 213–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moudache, M.; Nerín, C.; Colon, M.; Zaidi, F. Antioxidant effect of an innovative active plastic film containing olive leaves extract on fresh pork meat and its evaluation by Raman spectroscopy. Food Chem. 2017, 229, 98–103. [Google Scholar] [CrossRef]
- Dua, S.; Bhat, Z.F.; Kumar, S. Effect of oleuropein on the oxidative stability and storage quality of Tabaq-Maz, fried mutton ribs. Food Biosci. 2015, 12, 84–92. [Google Scholar] [CrossRef]
Source | Extraction and Filtration | Chromatographic Conditions | Identification and Quantification | Main Compounds | Ref. |
---|---|---|---|---|---|
Wastewater Spain and Italy (mg/100 mL of wastewater) | 12 mL with 15 mL of acid water; Extrelut 20 mL cartridge | LiChrosorb RP18 column; 26 °C; eluent A and B: water and acetonitrile; flow rate: 1 mL/min | DAD 1 and monitoring at 240, 254, 280, 330, and 350 nm; Mass analyser with gas temperature: 350 °C; flow rate: 10.0 L/min; nebulizer pressure 30 psi; quadrupole temperature 30 °C; and capillary voltage: 350 V | Hydroxytyrosol (3.6–13.1), tyrosol (2.9–4.1), caffeic acid (0.4), dAcO1ag 4 (132.4), luteolin 7-O-glucoside (0.2–36.6), cinnamic acid derivate (0.4–11.8), and luteolin (0.5–62.3) | [60] |
Wastewater (g TYE 2/L) | PES 3 membrane microfiltration (0.05 μm pore), 250 rpm; acidification, defatted and ethyl acetate extraction | Lichrosphere C18 column; mobile phase: acetonitrile/water acidified with acetic acid; flow rate: 0.8 mL/min; injection volume: 20 μl | Standard compounds and retention time | Hydroxytyrosol (2.1–3.8), tyrosol (0.2–2.5), p-coumaric acid (0.5–0.8), gallic acid (0.3–0.6), hydroxytyrosol-4-β-glucoside (0.17–0.23), caffeic acid (0.1), and oleuropein aglycone (0.1) | [45] |
Leaves | 1.25 g with 25 mL of methanol; 0.22 μm pore syringe filters | Zorbax SB C18 column; 37 °C; eluent A and B: acetic acid in 2 mM sodium acetate and acetonitrile; flow rate: 1 mL/min; injection volume: 10 μl | DAD with standard compounds and monitoring at 280, 320, 360, and 520 nm | Oleuropein (40.33%), verbascoside (5.68%), luteolin 7-O-glucoside (5.05%), apigenin 7-O-glucoside (3.13%), hydroxytyrosol (1.82%), and tyrosol (1.76%) | [59] |
Leaves (mg/kg) | MAE 4: 1 g with 8 mL of 80% hydroethanolic solution, 8 min, 200 W | Zorbax Eclipse XDB C18; 10 °C; eluent A and B: 0.1% formic acid and 0.1% formic acid in acetonitrile–water; flow rate: 0.8 mL/min; injection volume: 50 μl | Mass analyser with standard compounds; flow rate: 11 L/min; 300 °C; nebuliser pressure: 35 psi; and capillary voltage: 4000 V | Oleuropein (17,000–25,000), verbascoside (1000–2000), apigenin-7-glucoside (137–260), and luteolin-7-glucoside (127–191) | [53] |
Leaves (mg/kg) | 5 g with 150 mL of boiling water, 30 min | Spherisorb ODS2; eluent A and B: water/formic acid (19:1) and methanol; flow rate: 0.9 mL/min; injection volume: 20 µl | DAD with standard compounds and monitoring at 280, 320, and 350 nm | Oleuropein (26,471), luteolin 7-O-glucoside (4209), apigenin 7-O-glucoside (2333), luteolin 4′-O-glucoside (1356), verbascoside (966), rutin (496), and caffeic acid (220) | [50] |
Pomace | 1 g with 50% hydroethanolic solution; 0.22 μm pore syringe filters | Zorbax SB C18 column; 20 °C; eluent A and B: 1% acetic acid and methanol; flow rate: 1 mL/min | FLD 5 with wavelength excitation at 280 nm and emission at 330 nm; DAD and monitoring at 280, 320 and 335 nm; Mass analyser with capillary voltage: 15 V; 325 °C; ass scan range: m/z 100 to 1000 | Hydroxytyrosol (53.78%), comselogoside (25.36%), tyrosol (3.03%), oleside riboside (1.96%), oleuropein derivate (1.65%), and verbascoside derivate (1.61%) | [55] |
Pomace (mg/kg) | Static–dynamic method: 80% hydroethanolic solution; 200 °C; flow rate: 1 mL/min | Zorbax Eclipse XDB C 18; 10 °C; eluent A and B: 0.1% formic acid and 0.1% formic acid in acetonitrile–water; flow rate: 0.8 mL/min; injection volume: 50 μL | Mass analyser with standard compounds; flow rate: 11 L/min; 300 °C; nebuliser pressure: 35 psi; and capillary voltage: 4000 V | Hydroxytyrosol (332–1631), oleuropein (10–660), verbascoside (10–20), apigenin (8–22), luteolin 7-glucoside (4–14), luteolin (3–22), and apigenin 7-glucoside (0.5–6.3) | [53] |
Pomace (mg/L) | Pressing and filtration: celite and 0.2 μm pore syringe filters | Acquity C18 BEH column; 35 °C; eluent A and B: water/formic acid (99.5/0.5) and acetonitrile; flow rate: 0.3–0.4 mL/min; injection volume: 1 μL | DAD with standard compounds and monitoring at 280, 330, 360, and 520 nm Mass analyser with standard | Hydroxytyrosol (371), hydroxytyrosol glucoside 1 (165), tyrosol (148), hydroxytyrosol glucoside 2 (88), caffeic acid (68), and p-coumaric acid (18) | [56] |
Source and Cultivar (Origin of Samples) | Extraction Conditions | Antioxidant Activity of Extract | Ref. |
---|---|---|---|
Leaves, Gemlik cultivar (Marmara. Turkey) | MW 1 power (300, 400, and 500 W), solid mass (1.5, 2.0, and 2.5), and drying time (4, 5, and 6 min), solvent (50% methanol), solid/solvent ratio (1 g:64 mL), time (83 s), and filtration | DPPH 2: 25.216 mg TE 3/g; optimum conditions: 459.257 W with 2.085 g sample for 6 min | [15] |
Alpeorujo (Sevilla, Spain) | Steam treatment (80 °C or 120 °C for 60 min or 160 °C for 30 min), precipitation (70% ethanol), bleaching (acetic acid and sodium chlorite), and freeze-drying | ORAC 4: 387 µmol TE/g; optimum conditions: 80 °C for 60 min without bleaching | [68] |
Pomace, Arbequina cultivar (California, USA) | Drying: freeze-drying, hot-air drying (80 °C for 130 min), and high- and low-speed drum drying (62 and 105 and s/revolution), solid/solvent ratio (1 g:26.6 mL), solvent (methanol), and time (20 h) | DPPH: all drying methods reduced antioxidant activity; low-speed drum drying was the most efficient to preserve antioxidant activity | [65] |
Pomace, Carolea and Ottobratica cultivar (Florence, Italy) | Defatting (n-hexane), solvent (80 and 100% ethanol), solid/solvent ratio (1 g:2–5 mL), and time (30, 60, and 120 min) | DPPH: >80% inhibition, optimum conditions: 30 min, 80% ethanol, and 1 g:4 mL (Carolea cultivar); 55–70% inhibition, optimum conditions: 120 min, 80% ethanol, and 1 g:2 mL (Ottobratica cultivar) ABTS 5: 20–30 (Carolea cultivar) µmol TE/g, optimum conditions: 120 min, 80% ethanol, and 1 g:4 mL; 30–50 (Ottobratica cultivar) µmol TE/g, optimum conditions: 120 min, 80% ethanol, and 1 g:2 mL | [63] |
Pomace, peels, and seeds (Diyala, Iraq) | Solvent (cold and hot water, 1 and 5% HCl, and 50% hydroethanolic solution), time (2 days), temperature (RT 6), and centrifugation (3000 rpm) | DPPH: IC50 7 72.6 (pomace, 5% HCl), 71.3 (peels, 5% HCl), and 68.-79.3 (seeds; all solvents except cold water) µg/mL | [64] |
Pomace (Sharkia, Egypt) | Drying (50 °C), defatting (n-hexane), solvent (acetone and 70% methanol), solid/solvent ratio (1:10), time (48 h), centrifugation (2000 rpm for 15 min), and freeze-drying | DPPH: 83% inhibition (methanolic extract) | [69] |
Pomace, Manzanilla cultivar (Hunter Valley, Australia) | Defatting (hexane), US 8 power (100, 150, and 250 W), time (45, 60, and 75 min), solid/solvent ratio (1, 2, and 3 g:100 mL) | CUPRAC 9: 73.5 mg TE/g; DPPH: 31.2 mg TE/g; optimum conditions: 250 W, 75 min, and 2 g:100 mL for both antioxidant assays | [66] |
Wastewater (Tizi Ouzou, Algeria) | Centrifugation (15000 g for 1 h at 4 °C) | DPPH: increasing antioxidant activity in the range 0.2–2 g/L (>60–80%) | [67] |
Animal | Source | Supplementation Proportion and Time | Antioxidant Effect | Ref. |
---|---|---|---|---|
Landrace × Large White Duroc Pietrain pigs | Mill wastewater retentate and permeate | 2% of feeding; 50 days | Increased TAC 1; reduced carbonyl and MDA 2 levels (plasma); increased GSH 3, CAT 4, and TAC (muscles and other tissues); reduced carbonyl and MDA levels after 15 and 30 days (muscles and other tissues) | [74] |
Large White × Landrace pigs | Oleuropein | 96 mg/kg feeding; 35 days | Increased TAC and GSH; no effect in MDA levels (plasma) | [75] |
Brown Swiss × Baladi calves | Pomace | 15% of feeding; 2 months | Increased TAC and catalase activity; reduced MDA levels; no effect in GPx 5 (plasma); increased UA 6 (liver) | [76] |
Mahabadi goat | Leaves | 7.5 and 15% of feeding; 84 days | Increased TAC (plasma and muscle); increased GPx (muscle); reduced MDA (plasma) | [77] |
Bandarah chickens | Leaves extract | 50.0, 100.0, and 150 mg oleuropein/kg feeding; 24 weeks | Increased TAC and SOD 7 activity; reduced MDA levels (plasma) | [78] |
Hubbard broiler chickens | Mill wastewater retentate and permeate | 2% of feeding; 17, 27, and 37 days | Increased TAC; reduced carbonyl and MDA levels (plasma) | [79] |
Broiler chickens | Cake meal | 2 and 4% of feeding; 35 days | No effect in UA level; slight reduction in MDA levels (plasma) | [80] |
Japanese quail | Pulp | 50 and 100 g/kg feeding; 6 weeks | Increased GSH and GSR 8; no effect in UA on MDA level (plasma) | [81] |
Japanese quail | Oleuropein | 200 mg/kg feeding; 2 weeks | Increased total antioxidant status; reduced total oxidative stress (liver) | [82] |
Source | Tested Microorganisms | Antimicrobial Effect | Ref. |
---|---|---|---|
Pomace extract (acetonic and hydromethanolic extracts) | Escherichia coli, and Staphylococcus aureus | Inhibition zone: 10 mm for acetone extract for E. coli and S. aureus; 14 and 15 mm for hydromethanolic extract for E. coli and S. aureus | [69] |
Hydroxytyrosol (commercial isolate) and Hidrox-12 (commercial extract) | S. aureus (ATCC6538; non-MRSA strain) | Dose-dependent effect for both commercial products | [86] |
Hydroxytyrosol and oleuropein (fruit or leaves extract) | E. coli (EHEC) (ATCC 700927) and Salmonella enterica serovar Typhimurium (ATCC 19585) | MIC 1 hydroxytyrosol: 0.75 and 0.5 g/L for E. coli and S. enterica, respectively; MIC oleuropein: 17 and 8 g/L for E. coli and S. enterica, respectively | [87] |
Hydroxytyrosol (commercial isolate) | Aeromonas hydrophila CECT 389, E. coli CECT 4972, Erwinia carotovora CECT 225, Klebsiella pneumoniae CECT 143, Kocuria rhizophila CECT 4070, Listeria monocytogenes CECT 940, Pediococcus acidilactici CECT 98, Pseudomonas aeruginosa CECT 110, S. typhimurium NCTC 1201, Shigella sonnei CECT 457, S. aureus CECT 794, and Yersinia enterocolitica CECT 4315. | MIC: >1000 μg/mL for P. aeruginosa, Y. enterocolitica, and S. typhimurium, A. hydrophila, and L. monocytogenes; 1000 μg/mL for E. carotovora, K. pneumoniae, S. sonnei, P. acidilactici, and K. rhizophila; 400 μg/mL for E. coli and S. aureus | [88] |
Hidrox 10X (commercial extract) | E. coli O157:H7 ATCC BAA-1882, S. enterica serovar Enteritidis ATCC BAA-1045, Enterobacter aerogenes ATCC 13048, Bacillus cereus F4433/73, S. aureus ATCC 25923, and L. monocytogenes ATCC 19111 | MIC: 1400–2200 mg/L for B. cereus, 2000–2500 mg/L for S. aureus, 2200–2600 mg/L for L. monocytogenes, 2800–3600 mg/L for S. enterica, 3600–4200 mg/L for E. coli, and 4800–5200 mg/L for E. aerogenes | [89] |
Oleuropein (commercial isolate) | E. coli (ATCC 25922) and S. aureus (ATCC 25923); count 108 Concentration: 4.0 mg/mL | Inhibition zone: 7.3 mm for E. coli and 10.0 mm for S. aureus | [90] |
Oleuropein (commercial isolate) | L. monocytogenes (ATCC 7644), S. aureus (ATCC 25923) and E. coli (ATCC 25922) | MIC: 0.200 mg/mL for all microorganisms | [91] |
Oleuropein (commercial extract) | E. coli (CMCC 44102) and S. aureus (CMCC 26003) | Inhibition zone: 10.2–17.9 mm against E. coli and 10.5–24.8 mm against S. aureus | [92] |
Animal (Muscle) | Source | Animal Treatments | Point(s) of Assay | Effect on Meat Quality | Ref. |
---|---|---|---|---|---|
Barbarine lambs (longissimus lumborum) | Cake | 280 g/day; feed until achieve 33 kg live weight | In fresh meat | No effect on lipid oxidation, CAT 1, GSH 2, and SOD 3 | [95] |
Mahabadi goats (longissimus lumborum) | Leaves | 7.5 and 15% feeding; 84 days of feeding | During 10 days at 4 °C | Slowed the increase of MDA 4 levels up to 10 days | [77] |
Saanen goat (longissimus thoracis et lumborum) | Mill wastewater | 3.2 mg/day; 78 days | During 7 days at 4 °C | Reduced lipid oxidation during storage | [96] |
New Zealand White rabbits (longissimus thoracis et lumborum) | Leaves | 10% feeding; 35 days | In fresh meat | No effect on lipid oxidation | [98] |
New Zealand White rabbits (longissimus dorsi) | Leaves | 10% feeding; 35 days | In fresh meat | No effect on lipid oxidation and thiol; slight increase in carbonyl content | [99] |
PIC Landrace × PIC Large white pigs (longissimus thoracis) | Dried pulp | 50 g/kg feeding; 30 days | During 8 days at 4 °C | Significant antioxidant effect in the first day of storage | [97] |
Ross 308 chickens (pectoralis major) | Cake | 8.25 and 16.5 g/100 g feeding; 20 days | In fresh meat | Increased the antioxidant capacity and reduced lipid oxidation using 16.5 g/100 g | [100] |
Cobb chickens (pectoralis major) | Leaves | 5 and 10 g/kg feeding; 41 days | In fresh meat | Reduced primary lipid oxidation products | [101] |
Cobb 500 chickens (pectoralis major) | Dried pulp | 25 + 50, 50, and 50 + 80 g/kg feeding in grower and finisher diets; 31 days | In fresh meat | Slight prooxidant effect | [102] |
Ross 308 (pectoralis major) | Mill wastewater | 4.8 and 9.9%; 20 days | During 7 days at 4 °C | Slowed both lipid and protein oxidation | [103] |
Meat or Meat Product | Source/Isolated Compound and Treatments | Point(s) of Assay | Effect in Quality and Shelf Life | Ref. |
---|---|---|---|---|
Raw minced beef | Leaves; 1 and 5% (v/w) | Stored for 7 days at 7 °C | 5% extract prevented psychrotrophic growth and slight inhibition of Escherichia coli O157:H7 and Salmonella enterica ser. Enteritidis; slowed lipid oxidation; better scores in sensory analysis | [119] |
Raw and cooked minced beef | Leaves; 100 and 150 μg phenols/g meat | Stored for 12 days at 4 °C | Reduced the formation of metmyoglobin and lipid oxidation; no effect on sensory attributes | [120] |
Raw lamb patties | Wet cake; 100, 200, and 400 mg GAE/kg meat (modified atmosphere) | Stored for 9 days at 4 °C | Inhibited lipid and protein oxidation (carbonyl; no effect for thiol); reduced lamb odor, fish odor, lamb flavor, fish flavor; increased odd odor and flavor | [121] |
Raw beef patties | Oleuropein; 0.25, 0.5, and 0.75% | Stored for 6 months at −12 °C | Slight inhibition in lipid oxidation | [122] |
Cooked beef patties | Cake; 2, 4 or 6% (w/w) | Stored for 7 days at 4 °C | Slight increase in antioxidant activity of patties; no effect on lipid oxidation and redness; inhibited microbial growth; better preservation of sensory properties during storage | [123] |
Chicken frankfurters | Wastewater or leaves; 50 ppm | Stored for 21 days at 4 °C | Reduced lipid and protein oxidation, rancid odor and flavor | [124] |
Chicken frankfurters | Wastewater; 50 ppm | Stored for 21 days at 4 °C | Better preservation of sausage flavor and color; negative correlations between fatty acids and oxidation markers | [31] |
Dry-fermented sausage | Leaves; 125, 250 and 500 ppm | Ripening: 60 days at 4 °C | 500 ppm reduced lipid oxidation; no effect on color; slight antimicrobial activity | [125] |
Fresh beef | Hydroxytyrosol and DHPG 1; 0.1 and 0.5% (w/w) in pectin-fish gelatin film | Stored for 6 days at 4 °C | Reduced the progression of lipid oxidation products, DHPG was more efficient than hydroxytyrosol | [126] |
Fresh pork meat | Leaves; 2, 5, 10, and 15% in polyethylene film | Stored for 16 days at 4 °C | Reduced lipid oxidation and the loss of redness | [127] |
Fried mutton ribs | Oleuropein; 0.3, 0.6, and 0.9% (w/v) in coating solution with glycerite | Stored for 21 days at 4 °C | No significant effect on MDA level, microbial growth, and sensory properties | [128] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munekata, P.E.S.; Nieto, G.; Pateiro, M.; Lorenzo, J.M. Phenolic Compounds Obtained from Olea europaea By-Products and Their Use to Improve the Quality and Shelf Life of Meat and Meat Products—A Review. Antioxidants 2020, 9, 1061. https://doi.org/10.3390/antiox9111061
Munekata PES, Nieto G, Pateiro M, Lorenzo JM. Phenolic Compounds Obtained from Olea europaea By-Products and Their Use to Improve the Quality and Shelf Life of Meat and Meat Products—A Review. Antioxidants. 2020; 9(11):1061. https://doi.org/10.3390/antiox9111061
Chicago/Turabian StyleMunekata, Paulo E. S., Gema Nieto, Mirian Pateiro, and José Manuel Lorenzo. 2020. "Phenolic Compounds Obtained from Olea europaea By-Products and Their Use to Improve the Quality and Shelf Life of Meat and Meat Products—A Review" Antioxidants 9, no. 11: 1061. https://doi.org/10.3390/antiox9111061
APA StyleMunekata, P. E. S., Nieto, G., Pateiro, M., & Lorenzo, J. M. (2020). Phenolic Compounds Obtained from Olea europaea By-Products and Their Use to Improve the Quality and Shelf Life of Meat and Meat Products—A Review. Antioxidants, 9(11), 1061. https://doi.org/10.3390/antiox9111061