In Vitro Wound Healing Potential of Flavonoid C-Glycosides from Oil Palm (Elaeis guineensis Jacq.) Leaves on 3T3 Fibroblast Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sampling
2.3. Sample Preparation
2.4. Preparation of Crude Oil Palm Leaf (OPL) Extracts
2.5. Preparation of Acid Hydrolyzed Oil Palm Leaf (OPLAH) Extract
2.6. Preparation of Total Flavonoid and Flavonoids C-Glycoside Enriched Fractions
2.7. UHPLC-UV/PDA and LC-MS/MS Analysis
2.8. Cell Culture Maintenance
2.9. The Sample Preparation for Treatment
2.10. 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyl Tetrazolium Bromide [MTT]) Assay
2.11. Cell Proliferation Assay
2.12. Scratch Assay
2.13. Statistical Analysis
3. Results
3.1. Identification and Confirmation of Flavonoids C-Glycosides in OPL Extracts and Flavonoid Enriched Fractions
3.2. Effect of OPL Extracts, Flavonoid Enriched Fractions and Flavonoid C-glycosides on Cell Viability
3.3. Effect of OPL Extracts, Flavonoid Enriched Fractions and Flavonoid C-glycosides on Cell Proliferation
3.4. Effect of OPL Extracts, Flavonoid Enriched Fractions and Flavonoid C-glycosides on Cell Migration and Proliferation Activities
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Velnar, T.; Bailey, V.S. The wound healing process: An overview of the cellular and molecular mechanisms. J. Int. Med. Res. 2009, 37, 1528–1542. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, L.; Nabzdyk, C.; Andersen, N.D.; LoGerfo, F.W.; Veves, A. Inflammation and neuropeptides: The connection in diabetic wound healing. Expert Rev. Mol. Med. 2009, 11, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werner, S.; Krieg, T.; Smola, H. Keratinocyte-fibroblast interactions in wound healing. J. Investig. Dermatol. 2007, 127, 998–1008. [Google Scholar] [CrossRef] [Green Version]
- Diegelmann, R.F. Wound healing: An overview of acute, fibrotic and delayed healing. Front. Biosci. 2004, 9, 283. [Google Scholar] [CrossRef]
- Patil, D.N.; Kulkarni, A.R.; Shahapurkar, A.A.; Hatappakki, B.C. Natural Cumin Seeds for Wound Healing Activity in Albino Rats. Int. J. Biol. Chem. 2009, 3, 148–152. [Google Scholar] [CrossRef] [Green Version]
- Nayak, B.S.; Marshall, M.R.; Isitor, G. Wound healing potential of ethanolic extract of kalanchoe pinnata lam. leaf-a preliminary study. Indian J. Exp. Biol. 2010, 48, 572–576. [Google Scholar]
- Gothai, S.; Arulselvan, P.; Tan, W.; Fakurazi, S. Wound healing properties of ethyl acetate fraction of Moringa oleifera in normal human dermal fibroblasts. J. Intercult. Ethnopharmacol. 2016, 5, 1. [Google Scholar] [CrossRef]
- Dorai, A. Wound care with traditional, complementary and alternative medicine. Indian J. Plast. Surg. 2012, 45, 418. [Google Scholar] [CrossRef]
- Arulselvan, P.; Ghofar, H.A.A.; Karthivashan, G.; Halim, M.F.A.; Ghafar, M.S.A.; Fakurazi, S. Antidiabetic therapeutics from natural source: A systematic review. Biomed. Prev. Nutr. 2014, 4, 607–617. [Google Scholar] [CrossRef]
- Sasidharan, S.; Logeswaran, S.; Latha, L.Y. Wound healing activity of Elaeis guineensis leaf extract ointment. Int. J. Mol. Sci. 2012, 13, 336–347. [Google Scholar] [CrossRef]
- Sasidharan, S.; Nilawatyi, R.; Xavier, R.; Latha, L.Y.; Amala, R. Wound healing potential of Elaeis guineensis Jacq leaves in an infected albino rat model. Molecules 2010, 15, 3186–3199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tahir, N.I.; Shaari, K.; Abas, F.; Parveez, G.K.A.; Ishak, Z.; Ramli, U.S. Characterization of apigenin and luteolin derivatives from oil palm (Elaeis guineensis Jacq.) Leaf using LC-ESI-MS/MS. J. Agric. Food Chem. 2012, 60, 11201–11210. [Google Scholar] [CrossRef] [PubMed]
- Tahir, N.I.; Shaari, K.; Abas, F.; Parveez GK, A.; Hashim, A.T.; Ramli, U.S. Identification of Oil Palm ( Elaeis Guineensis ) Spear Leaf Metabolites Using Mass Spectrometry and Neutral Loss Analysis. J. Oil Palm Res. 2013, 25, 72–83. [Google Scholar]
- Liang, C.C.; Park, A.Y.; Guan, J.L. In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2007, 2, 329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shestopalov, A.V.; Shkurat, T.P.; Mikashinovich, Z.I.; Kryzhanovskaya, I.O.; Bogacheva, M.A.; Lomteva, S.V.; Prokof’ev, V.N.; Gus’kov, E.P. Biological functions of allantoin. Biol. Bull. 2006, 33, 437–440. [Google Scholar] [CrossRef]
- Nam, T.G.; Lim, T.G.; Lee, B.H.; Lim, S.; Kang, H.; Eom, S.H.; Yoo, M.; Jang, H.W.; Kim, D.O. Comparison of Anti-Inflammatory Effects of Flavonoid-Rich Common and Tartary Buckwheat Sprout Extracts in Lipopolysaccharide-Stimulated RAW 264.7 and Peritoneal Macrophages. Oxid. Med. Cell. Longev. 2017, 2017, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lalitha, K.G.; Sethuraman, M.G. Anti-inflammatory activity of roots of Ecbolium viride (Forsk) Merrill. J. Ethnopharmacol. 2010, 128, 248–250. [Google Scholar] [CrossRef]
- Corley, R.H.V.; Tinker, P.B.H. The Oil Palm, 4th ed.; Black Science: Bath, UK, 2003; ISBN 0470750367. [Google Scholar]
- Nur, P.; Syarina, A.; Karthivashan, G.; Abas, F.; Arulselvan, P.; Fakurazi, S.; Sciences, H.; Putra, U. Original article: Wound healing potential of Spirulina platensis. EXCLI J. 2015, 14, 385–393. [Google Scholar]
- Vargas, L.H.G.; Neto, J.C.R.; de Aquino Ribeiro, J.A.; Ricci-Silva, M.E.; Souza, M.T.; Rodrigues, C.M.; de Oliveira, A.E.; Abdelnur, P.V. Metabolomics analysis of oil palm (Elaeis guineensis) leaf: Evaluation of sample preparation steps using UHPLC–MS/MS. Metabolomics 2016, 12, 153. [Google Scholar] [CrossRef]
- Figueiró, L.R.; Comerlato, L.C.; Da Silva, M.V.; Zuanazzi, J.Â.S.; Von Poser, G.L.; Ziulkoski, A.L. Toxicity of Glandularia selloi (Spreng.) Tronc. leave extract by MTT and neutral red assays: Influence of the test medium procedure. Interdiscip. Toxicol. 2017, 9, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, A.A.; Aimi, N.; Pauzi, S.; Arulselvan, P.; Abas, F.; Fakurazi, S. In Vitro Wound Healing Potential and Identification of Bioactive Compounds from Moringa oleifera Lam. BioMed Res. Int. 2013, 2013, 1–11. [Google Scholar]
- Ambiga, S.; Narayanan, R.; Durga, G.; Sukumar, D.; Madhavan, S. Evaluation of Wound Healing Activity of Flavonoids from Ipomoea Carnea Jacq. Anc. Sci. Life 2007, 25, 45–51. [Google Scholar]
- Pedroza, M.; Madjarof, C.; Ana, L.; Teixeira, A.; Alexandre, R.; Rodrigues, F.; Maria, I.; Sousa, D.O.; Ann, M.; Carvalho, D. Evaluation of wound healing properties of Arrabidaea chica Verlot extract. J. Ethnopharmacol. 2008, 118, 361–366. [Google Scholar]
- Clark, R.A.F. Fibrin and Wound Healing. Ann. N. Y. Acad. Sci. 2001, 936, 355–367. [Google Scholar] [CrossRef]
- Tominaga, H.; Ishiyama, M.; Ohseto, F.; Sasamoto, K. A water-soluble tetrazolium salt useful for colorimetric cell viability assay. Anal. Commun. 1999, 36, 47–50. [Google Scholar] [CrossRef]
- Ishiyama, M.; Miyazono, Y.; Sasamoto, K.; Ohkura, Y.; Ueno, K. A highly water-soluble disulfonated tetrazolium salt as a chromogenic indicator for NADH as well as cell viability. Talanta 1997, 44, 1299–1305. [Google Scholar] [CrossRef]
- Pastar, I.; Stojadinovic, O.; Yin, N.C.; Ramirez, H.; Nusbaum, A.G.; Sawaya, A.; Patel, S.B.; Khalid, L.; Isseroff, R.R.; Tomic-canic, M. Epithelialization in Wound Healing: A Comprehensive Review. Adv. Wound Care 2014, 3, 445–464. [Google Scholar] [CrossRef] [Green Version]
- Hajiaghaalipour, F.; Kanthimathi, M.S.; Sanusi, J.; Rajarajeswaran, J. White tea ( Camellia sinensis ) inhibits proliferation of the colon cancer cell line, HT-29, activates caspases and protects DNA of normal cells against oxidative damage. FOOD Chem. 2015, 169, 401–410. [Google Scholar] [CrossRef] [Green Version]
- Bryan, N.; Ahswin, H.; Smart, N.; Bayon, Y.; Wohlert, S.; Hunt, J.A. Reactive Oxygen Species (ROS)-A Family of Fate Deciding Molecules Pivotal in Constructive Inflammation and Wound Healing. Eur. Cell Mater. 2012, 24, e65. [Google Scholar] [CrossRef]
- Ojha, N.; Roy, S.; He, G.; Biswas, S.; Velayutham, M. Assessment of wound-site redox environment and the significance of Rac2 in cutaneous healing. Free Radic. Biol. Med. 2008, 44, 682–691. [Google Scholar] [CrossRef] [Green Version]
Peak | tR (min) | λmax, (nm) | [M−H]− (m/z) | Formula | Key MS/MS Fragments (m/z) | Compound | He | Ea | EM | Abs. Me | Aq. Me | Enriched OPL | OPLAH | Enriched OPLAH |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 3.17 | 272, 348 | 609.1411 | C27H30O16 | 519.1104 489.0998, 429.0786, 399.0696, 369.0585 | Luteolin-6-8-di-C-hexose | + | ++ | ++ | ++ | +++ | ++++ | + | ++ |
2 | 4.88 | 272, 336 | 593.1464 | C27H30O15 | 503.1155, 473.1051, 383.0739, 353.0638 | Apigenin-6,8-di-C-hexose | + | ++ | ++ | ++ | +++ | ++++ | + | ++ |
3 | 6.72 | 272, 346 | 609.1411 | C27H30O16 | 489.1001, 429.0789, 399.0679, 369.0604 | Luteolin-6-8-di-C-hexose | - | + | ++ | ++ | +++ | ++++ | - | - |
4 | 7.10 | 272, 334 | 563.1359 | C26H28O14 | 473.1053, 443.0949, 383.0742, 353.0639 | Apigenin-6-C-pentose-8-C-hexose | - | + | ++ | ++ | +++ | ++++ | - | - |
5 | 7.86 | 270, 348 | 447.0896 | C21H20O11 | 357.0588, 339.0480, 327.0483, 297.0379, 285.0381 | Isoorientin (Luteolin-6-C-hexose) | + | + | ++ | ++ | +++ | ++++ | ++ | ++++ |
6 | 8.52 | 272, 336 | 563.1359 | C26H28O14 | 473.1051, 443.0949, 383.0741, 353.0638 | Apigenin-6-C-hexose-8-C-pentose | + | ++ | + | ++ | +++ | ++++ | + | + |
7 | 9.00 | 270, 350 | 447.0896 | C21H20O11 | 357.0587, 339.0476, 327.0485, 297.0378, 285.0380 | Orientin (Luteolin-8-C-hexose) | - | + | ++ | ++ | +++ | ++++ | + | ++++ |
8 | 9.87 | 270, 348 | 593.1464 | C27H30O15 | 473.1049, 429.0792, 369.0590, 357.0589, 327.0485 | Luteolin-6-C-hexose-8-C-deoxyhexose | - | + | + | ++ | +++ | ++++ | - | - |
9 | 11.22 | 274, 334 | 563.1359 | C26H28O14 | 503.1168, 473.1056, 443.0950, 383.0743, 353.0639 | Apigenin-6-C-pentose-8-C-hexose | - | + | + | + | ++ | ++++ | - | - |
10 | 11.60 | 272, 336 | 593.1464 | C27H30O15 | 473.1067, 413.0846, 369.0590, 357.0589, 293.0434 | Luteolin-6-C-hexose-8-C-deoxyhexose | - | + | + | ++ | +++ | ++++ | - | - |
11 | 12.44 | 270, 338 | 431.0947 | C21H20O10 | 341.0639, 323.0529, 311.0536, 283.0589 | Vitexin (Apigenin-6-C-hexose) | - | + | + | ++ | +++ | ++++ | ++ | ++++ |
12 | 13.85 | 270, 338 | 431.0947 | C21H20O10 | 341.0638, 323.0536, 311.0536, 283.0588 | Isovitexin (Apigenin-8-C-hexose) | - | + | ++ | ++ | +++ | ++++ | ++ | ++++ |
13 | 17.19 | 270, 338 | 577.1306 | C27H30O14 | 457.1098, 413.0845, 353.0630, 341.0640, 311.0536, 293.0432 | Apigenin-6-C-hexose-8-C-deoxyhexose | - | + | + | ++ | +++ | ++++ | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Che Zain, M.S.; Lee, S.Y.; Sarian, M.N.; Fakurazi, S.; Shaari, K. In Vitro Wound Healing Potential of Flavonoid C-Glycosides from Oil Palm (Elaeis guineensis Jacq.) Leaves on 3T3 Fibroblast Cells. Antioxidants 2020, 9, 326. https://doi.org/10.3390/antiox9040326
Che Zain MS, Lee SY, Sarian MN, Fakurazi S, Shaari K. In Vitro Wound Healing Potential of Flavonoid C-Glycosides from Oil Palm (Elaeis guineensis Jacq.) Leaves on 3T3 Fibroblast Cells. Antioxidants. 2020; 9(4):326. https://doi.org/10.3390/antiox9040326
Chicago/Turabian StyleChe Zain, Mohamad Shazeli, Soo Yee Lee, Murni Nazira Sarian, Sharida Fakurazi, and Khozirah Shaari. 2020. "In Vitro Wound Healing Potential of Flavonoid C-Glycosides from Oil Palm (Elaeis guineensis Jacq.) Leaves on 3T3 Fibroblast Cells" Antioxidants 9, no. 4: 326. https://doi.org/10.3390/antiox9040326
APA StyleChe Zain, M. S., Lee, S. Y., Sarian, M. N., Fakurazi, S., & Shaari, K. (2020). In Vitro Wound Healing Potential of Flavonoid C-Glycosides from Oil Palm (Elaeis guineensis Jacq.) Leaves on 3T3 Fibroblast Cells. Antioxidants, 9(4), 326. https://doi.org/10.3390/antiox9040326