Unraveling Natural Products’ Role in Osteoarthritis Management—An Overview
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Natural Products and Formulas
3.1.1. Anthriscus sylvestris
3.1.2. Avocado/Soybean
3.1.3. Chrysanthemum zawadskii
3.1.4. Guilu Erxian Glue
3.1.5. Japanese Pepper or Korean Pepper (Zanthoxylum piperitum)
3.1.6. Litsea japonica
3.1.7. Mistletoe Fig (Ficus deltoidea)
3.1.8. Pink Trumpet Tree – (Tabebuia avellanedae)
3.1.9. Pomegranate (Punica granatum)
3.1.10. Ryupunghwan
3.1.11. Sargassum serratifolium
3.1.12. Schisandrae Fructus (Schisandra chinensis (Turcz.) Baill)
3.2. Pure Natural Compounds
3.2.1. Curcumin
3.2.2. Geniposide
3.2.3. Oleuropein
3.2.4. Thymoquinone
3.2.5. Flavonoids
3.2.6. Resveratrol
3.2.7. Rosmarinic Acid
3.2.8. Other Phenolics
3.3. Clinical Trials
3.3.1. Acacia catechu and Mori folium Standardized Blend (UB1306)
3.3.2. Coriander, Litsea Japonica, and Guilu Erxian Jiao
3.3.3. Guilu Erxian Jiao
3.3.4. Litsea Japonica
3.3.5. Maslinic Acid
3.3.6. Pomegranate
3.3.7. Spearmint (Mentha spicata)
3.3.8. Turmeric (Curcuma domestica) (Curcuma longa)
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Czajka, A.; Kania, E.M.; Genovese, L.; Corbo, A.; Merone, G.; Luci, C.; Sibilla, S. Daily Oral Supplementation with Collagen Peptides Combined with Vitamins and other Bioactive Compounds Improves Skin Elasticity and Has a Beneficial Effect on Joint and General Wellbeing. Nutr. Res. 2018, 57, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Henrotin, Y.E.; Bruckner, P.; Pujol, J.P.L. The Role of Reactive Oxygen Species in Homeostasis and Degradation of Cartilage. Osteoarthr. Cartil. 2003, 11, 747–755. [Google Scholar] [CrossRef] [Green Version]
- Rattan, S.I.S. Theories of Biological Aging: Genes, Proteins, and Free Radicals. Free Radic. Res. 2006, 40, 1230–1238. [Google Scholar] [CrossRef] [PubMed]
- Firuzi, O.; Miri, R.; Tavakkoli, M.; Saso, L. Antioxidant Therapy: Current Status and Future Prospects. Curr. Med. Chem. 2011, 18, 3871–3888. [Google Scholar] [CrossRef] [PubMed]
- Liochev, S.I. Reactive Oxygen Species and the Free Radical Theory of Aging. Free Radic. Biol. Med. 2013, 60, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Juturu, V.; Kremer, J. Dietary Approaches and Alternative Therapies for Rheumatoid Arthritis. Curr. Nutr. Food Sci. 2010, 6, 240–255. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef] [Green Version]
- Ernst, E.; Chrubasik, S. Phyto-Anti-Inflammatories: A Systemic Review of Randomized, Placebo- Controlled, Double-Blind Trials. Rheum. Dis. Clin. N. Am. 2000, 26, 13–27. [Google Scholar] [CrossRef]
- Henrotin, Y.; Kurz, B. Antioxidant to Treat Osteoarthritis: Dream or Reality? Curr. Drug Targets 2007, 8, 347–357. [Google Scholar] [CrossRef]
- Lee, J.; Koo, N.; Min, D.B. Reactive Oxygen Species, Aging, and Antioxidative Nutraceuticals. Compr. Rev. Food Sci. Food Saf. 2004, 3, 21–33. [Google Scholar] [CrossRef]
- Ho, K.Y.; Jones, L.; Gan, T.J. The Effect of Cultural Background on the Usage of Complementary and Alternative Medicine for Chronic Pain Management. Pain Physician 2009, 38, 120–130. [Google Scholar] [CrossRef]
- Patwardhan, S.K.; Bodas, K.S.; Gundewar, S.S. Coping with Arthritis Using Safer Herbal Options. Int. J. Pharm. Pharm. Sci. 2010, 2, 1–11. [Google Scholar]
- Vincent, T.L.; Watt, F.E. Osteoarthritis. Medicine 2018, 46, 187–195. [Google Scholar] [CrossRef]
- Lin, J.; Flanagan, R.; Bhatia, J.; Parikh, M.; Ren-Fielding, C.; Vieira, R.L.R.; Abramson, S.B.; Samuels, J. Underdiagnosis and Undertreatment of Knee Osteoarthritis in the Obese Population: The Need for Physician Education and Advocacy. Arthr. Rheum. 2013, 65, S1–S1331. [Google Scholar] [CrossRef]
- Kwoh, C.K. Epidemiology of Osteoarthritis. In The Epidemiology of Aging; Springer Science and Business Media LLC: Dordrecht, The Netherlands, 2012; pp. 523–536. [Google Scholar] [CrossRef]
- Hernández-Díaz, C.; van Schoor, N.; Khalil, A.A.F. Osteoarthritis. In Comorbidity in Rheumatic Diseases; Springer Science and Business Media LLC: Cham, Switzerland, 2017; pp. 197–206. [Google Scholar] [CrossRef]
- Iannone, F.; Lapadula, G. The Pathophysiology of Osteoarthritis. Aging Clin. Exp. Re. 2003, 15, 364–372. [Google Scholar] [CrossRef]
- Berenbaum, F. Osteoarthritis as an Inflammatory Disease (Osteoarthritis Is Not Osteoarthrosis!). Osteoarthr. Cartil. 2013, 21, 16–21. [Google Scholar] [CrossRef] [Green Version]
- Rigoglou, S.; Papavassiliou, A.G. The NF-ΚB Signalling Pathway in Osteoarthritis. Int. J. Biochem. Cell Biol. 2013, 45, 2580–2584. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-ΚB Signaling in Inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.A.; Moon, S.-M.; Han, S.H.; Hwang, E.J.; Hong, J.H.; Park, B.-R.; Choi, M.S.; Ahn, H.; Kim, J.-S.; Kim, H.-J.; et al. In Vivo and In Vitro Anti-Inflammatory Effects of Aqueous Extract of Anthriscus Sylvestris Leaves. J. Med. Food 2018, 21, 585–595. [Google Scholar] [CrossRef] [Green Version]
- Sung, S.-H.; Kweon, H.-J. Antibacterial and Antioxidant Activities of the Essential Oil from the Roots of Anthriscus Sylvestris. Yakhak Hoeji 2012, 56, 320–325. [Google Scholar]
- Milovanovic, M.; Picuric-Jovanovic, K.; Vucelic-Radovic, B.; Vrbaski, Z. Antioxidant Effects of Flavonoids of Anthriscus Sylvestris in Lard. J. Am. Oil Chem. Soc. 1996, 73, 773–776. [Google Scholar] [CrossRef]
- Chen, X.; Ma, C.; Ding, Z.; Wang, Y.; Geng, Y.; Che, Y.; Tang, J.; Yu, D. Study on antioxidant activity and immune effects ofAnthriscus sylvestrisextracts. Int. Conf. Med. Eng. Bioinform. 2014, 1, 553–558. [Google Scholar] [CrossRef]
- Lee, S.A.; Moon, S.M.; Han, S.H.; Hwang, E.J.; Park, B.R.; Kim, J.S.; Kim, D.K.; Kim, C.S. Chondroprotective Effects of Aqueous Extract of Anthriscus Sylvestris Leaves on Osteoarthritis in Vitro and in Vivo through MAPKs and NF-ΚB Signaling Inhibition. Biomed. Pharmacother. 2018, 103, 1202–1211. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Moon, T.C.; Quan, Z.; Lee, E.; Kim, Y.K.; Yang, J.H.; Suh, S.J.; Jeong, T.C.; Lee, S.H.; Kim, C.H.; et al. The Naturally Occurring Flavolignan, Deoxypodophyllotoxin, Inhibits Lipopolysaccharide-Induced INOS Expression through the NF-ΚB Activation in RAW264.7 Macrophage Cells. Biol. Pharm. Bull. 2008, 31, 1312–1315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.H.; Son, M.J.; Ju, H.K.; Lin, C.X.; Moon, T.C.; Choi, H.G.; Son, J.K.; Chang, H.W. Dual Inhibition of Cyclooxygenases-2 and 5-Lipoxygenase by Deoxypodophyllotoxin in Mouse Bone Marrow-Derived Mast Cells. Biol. Pharm. Bull. 2004, 27, 786–788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suh, S.J.; Kim, J.R.; Jin, U.H.; Choi, H.S.; Chang, Y.C.; Lee, Y.C.; Kim, S.H.; Lee, I.S.; Moon, T.C.; Chang, H.W.; et al. Deoxypodophyllotoxin, Flavolignan, from Anthriscus Sylvestris Hoffm. Inhibits Migration and MMP-9 via MAPK Pathways in TNF-α-Induced HASMC. Vascul. Pharmacol. 2009, 51, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Grover, A.K.; Samson, S.E. Benefits of Antioxidant Supplements for Knee Osteoarthritis: Rationale and Reality. Nutr. J. 2016, 15, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruyère, O.; Burlet, N.; Delmas, P.D.; Rizzoli, R.; Cooper, C.; Reginster, J.Y. Evaluation of Symptomatic Slow-Acting Drugs in Osteoarthritis Using the GRADE System. BMC Musculoskelet. Disord. 2008, 9, 165. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, B.A.; Bhatti, S.; Goudarzi, R.; Emami, S. Management of Osteoarthritis with Avocado/Soybean Unsaponifiables. Cartilage 2015, 6, 30–44. [Google Scholar] [CrossRef]
- Goudarzi, R.; Reid, A.; McDougall, J.J. Evaluation of the Novel Avocado/Soybean Unsaponifiable Arthrocen to Alter Joint Pain and Inflammation in a Rat Model of Osteoarthritis. PLoS ONE 2018, 13, e0191906. [Google Scholar] [CrossRef] [Green Version]
- Boileau, C.; Martel-Pelletier, J.; Caron, J.; Msika, P.; Guillou, G.B.; Baudouin, C.; Pelletier, J.P. Protective Effects of Total Fraction of Avocado/Soybean Unsaponifiables on the Structural Changes in Experimental Dog Osteoarthritis: Inhibition of Nitric Oxide Synthase and Matrix Metalloproteinase-13. Arthr. Res. Ther. 2009, 11, R41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, J.H.; Shin, S.L.; Jeong, H.S.; Lee, C.H. Antioxidant Effect of Extracts Obtained from Three Chrysanthemum Species. J. Korean Soc. Food Sci. Nutr. 2010, 39, 631–636. [Google Scholar] [CrossRef]
- Lee, S.H.; Hwang, I.G.; Nho, J.W.; Chang, Y.D.; Lee, C.H.; Woo, K.S.; Jeong, H.S. Quality Characteristics and Antioxidant Activity of Chrysanthemum Indicum L., Chrysanthemum Boreale M. and Chrysanthemum Zawadskii K. Powdered Teas. J. Korean Soc. Food Sci. Nutr. 2009, 38, 824–831. [Google Scholar] [CrossRef]
- Woo, K.S.; Yu, J.S.; Hwang, I.G.; Lee, Y.R.; Lee, C.H.; Yoon, H.S.; Lee, J.; Jeong, H.S. Antioxidative Activity of Volatile Compounds in Flower of Chrysanthemum Indicum, C. Morifolium, and C. Zawadskii. J. Korean Soc. Food Sci. Nutr. 2008, 37, 805–809. [Google Scholar] [CrossRef]
- Liu, P.L.; Wan, Q.; Guo, Y.P.; Yang, J.; Rao, G.Y. Phylogeny of the Genus Chrysanthemum L.: Evidence from Single-Copy Nuclear Gene and Chloroplast DNA Sequences. PLoS ONE 2012, 7, e48970. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.Y.; Khor, T.O.; Saw, C.L.L.; Loh, S.C.; Chen, A.I.; Lim, S.S.; Park, J.H.Y.; Cai, L.; Kong, A.N.T. Anti-Inflammatory/Anti-Oxidative Stress Activities and Differential Regulation of Nrf2-Mediated Genes by Non-Polar Fractions of Tea Chrysanthemum Zawadskii and Licorice Glycyrrhiza Uralensis. AAPS J. 2011, 13, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Han, J.; Sung, J.; Sung, M.; Choi, Y.; Jeong, H.S.; Lee, J. Anti-Inflammatory Activity of Chrysanthemum Zawadskii Var. Latilobum Leaf Extract through Haem Oxygenase-1 Induction. J. Funct. Foods 2012, 4, 474–479. [Google Scholar] [CrossRef]
- Hong, J.M.; Shin, J.K.; Kim, J.Y.; Jang, M.J.; Park, S.K.; Lee, J.H.; Choi, J.H.; Lee, S.M. BST106 Protects against Cartilage Damage by Inhibition of Apoptosis and Enhancement of Autophagy in Osteoarthritic Rats. Biol. Pharm. Bull. 2018, 41, 1257–1268. [Google Scholar] [CrossRef] [Green Version]
- Park, M.J.; Song, J.H.; Shon, M.S.; Kim, H.O.; Kwon, O.J.; Roh, S.S.; Kim, C.Y.; Kim, G.N. Anti-Adipogenic Effects of Ethanol Extracts Prepared from Selected Medicinal Herbs in 3T3-L1 Cells. Prev. Nutr. Food Sci. 2016, 21, 227–235. [Google Scholar] [CrossRef]
- Mao, C.; Zhang, Y.; Yan, W.; Zheng, X. Effects of Serum Containing Oral Liquid of Guilu-Erxian on the Therapy of Osteoporosis at the Cellular Level. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2008. [Google Scholar]
- Ke, B.; Shi, L.; Xu, Z.; Wu, G.; Gong, Y.; Zhu, L.; Wang, Y.; Ouyang, H.; Wang, X. Flavored Guilu Erxian Decoction Inhibits the Injury of Human Bone Marrow Mesenchymal Stem Cells Induced by Cisplatin. Cell. Mol. Biol. 2018, 64, 58–64. [Google Scholar] [CrossRef]
- Chou, Y.J.; Chuu, J.J.; Peng, Y.J.; Cheng, Y.H.; Chang, C.H.; Chang, C.M.; Liu, H.W. The Potent Anti-Inflammatory Effect of Guilu Erxian Glue Extracts Remedy Joint Pain and Ameliorate the Progression of Osteoarthritis in Mice. J. Orthop. Surg. Res. 2018, 13, 259. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.C.; Chou, Y.Y.; Chen, Y.M.; Tang, Y.J.; Ho, H.C.; Chen, D.Y. Effect of the Herbal Drug Guilu Erxian Jiao on Muscle Strength, Articular Pain, and Disability in Elderly Men with Knee Osteoarthritis. Evid.-Based Complement. Altern. Med. 2014, 2014, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.H.; Jang, M.; Seo, J.; Kim, G.H. Antibacterial Effects of Natural Volatile Essential Oil from Zanthoxylum Piperitum A.P. DC. against Foodborne Pathogens. J. Food Biochem. 2012, 6, 667–674. [Google Scholar] [CrossRef]
- Choi, S.I.; Chang, K.M.; Lee, Y.S.; Kim, G.H. Antibacterial Activity of Essential Oils from Zanthoxylum Piperitum A.P. DC. and Zanthoxylum Schinifolium. Food Sci. Biotechnol. 2008, 17, 195–198. [Google Scholar]
- Seo, K.L.; Lee, H.J.; Koh, K.H. Antimicrobial Activity of the Volatile Components from Fruit Peel of Chopi (Zanthoxylum Piperitum DC). Korean J. Appl. Microbiol. Biotechnol. 2001, 27, 179–183. [Google Scholar]
- Lee, J.H.; Chang, K.M.; Kim, G.H. Anti-Inflammatory Activities of Chopi (Zanthoxylum Piperitum A.P. DC) Essential Oil: Suppression of the Inducible Nitric Oxide Synthase and Cellular Adhesion. Food Sci. Biotechnol. 2009, 18, 1371–1378. [Google Scholar]
- Donald, G.R.; Fernandes, P.D.; Boylan, F. Antinociceptive Activity of Zanthoxylum Piperitum DC. Essential Oil. Evid.-Based Complement. Altern. Med. 2016, 2016, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Hwang, K.A.; Kwon, J.E.; Noh, Y.H.; Park, B.K.; Jeong, Y.J.; Lee, S.M.; Kim, S.Y.; Kim, I.H.; Kang, S.C. Effects of Zanthoxylum Piperitum Ethanol Extract on Osteoarthritis Inflammation and Pain. Biomed. Pharmacother. 2018, 105, 481–490. [Google Scholar] [CrossRef]
- Yoon, W.J.; Kang, S.C.; Ham, Y.M.; Kim, K.N.; Yang, W.H.; Kim, H.J.; Park, S.Y.; Jung, Y.H. Antioxidative and Anti-Inflammatory Activities of Litsea Japonica Leaves. J. Korean Soc. Appl. Biol. Chem. 2010, 53, 27–32. [Google Scholar] [CrossRef]
- Koo, H.J.; Yoon, W.J.; Sohn, E.H.; Ham, Y.M.; Jang, S.A.; Kwon, J.E.; Jeong, Y.J.; Kwak, J.H.; Sohn, E.; Park, S.Y.; et al. The Analgesic and Anti-Inflammatory Effects of Litsea Japonica Fruit Are Mediated via Suppression of NF-ΚB and JNK/P38 MAPK Activation. Int. Immunopharmacol. 2014, 22, 84–97. [Google Scholar] [CrossRef]
- Song, S.M.; Ham, Y.M.; Ko, Y.J.; Ko, E.Y.; Oh, D.J.; Kim, C.S.; Kim, D.; Kim, K.N.; Yoon, W.J. Anti-Inflammatory Activities of the Products of Supercritical Fluid Extraction from Litsea Japonica Fruit in RAW 264.7 Cells. J. Funct. Foods 2016, 22, 44–51. [Google Scholar] [CrossRef]
- Jeong, Y.J.; Kim, I.; Cho, J.H.; Park, D.W.; Kwon, J.E.; Jung, M.W.; Meng, X.; Jo, S.M.; Song, H.S.; Cho, Y.M.; et al. Anti-Osteoarthritic Effects of the Litsea Japonica Fruit in a Rat Model of Osteoarthritis Induced by Monosodium Iodoacetate. PLoS ONE 2015, 10, e0134856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.H.; Choi, H.J.; Yang, W.K.; Lee, J.E.; Cho, J.H.; Park, I.J.; Park, S.; Park, B.K.; Jin, M. Suppressive Effect of the N-Hexane Extract of Litsea Japonica Fruit Flesh on Monosodium-Iodoacetate-Induced Osteoarthritis in Rats. Evid.-Based Complement. Altern. Med. 2017, 2017, 1791403-10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ham, Y.M.; Ko, Y.J.; Song, S.M.; Kim, J.; Kim, K.N.; Yun, J.H.; Cho, J.H.; Ahn, G.; Yoon, W.J. Anti-Inflammatory Effect of Litsenolide B2 Isolated from Litsea Japonica Fruit via Suppressing NF-ΚB and MAPK Pathways in LPS-Induced RAW 264.7 Cells. J. Funct. Foods 2015, 13, 80–88. [Google Scholar] [CrossRef]
- Ahn, Y.; Kwon, O.; Kim, E.A.; Yoon, W.J.; Kim, J.H.; Kim, J.Y. Randomized Double-Blind Placebo-Controlled Study of the Efficacy of Litsea Japonica Fruit Extract in Subjects with Mild to Moderate Knee Osteoarthritis. J. Funct. Foods 2017, 34, 304–310. [Google Scholar] [CrossRef]
- Bunawan, H.; Amin, N.M.; Bunawan, S.N.; Baharum, S.N.; Mohd Noor, N. Ficus deltoidea Jack: A Review on Its Phytochemical and Pharmacological Importance. Evid.-Based Complement. Altern. Med. 2014, 2014, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Shafaei, A.; Syima Muslim, N.; Nassar, Z.D.; Aisha, A.F.A.; Abdul Majid, A.M.S.; Ismail, Z. Antiangiogenic Effect of Ficus deltoidea Jack Standardised Leaf Extracts. Trop. J. Pharm. Res. 2014, 13, 761. [Google Scholar] [CrossRef] [Green Version]
- Samah, O.A.; Zaidi, N.T.A.; Sule, A.B. Antimicrobial Activity of Ficus deltoidea Jack (Mas Cotek). Pak. J. Pharm. Sci. 2012. [Google Scholar]
- Seong Wei, L.; Wee, W.; Yong Fu Siong, J.; Syamsumir, D.F. Characterization of Antioxidant, Antimicrobial, Anticancer Property and Chemical Composition of Ficus deltoidea Jack. Leaf Extract: J. Biol. Act. Prod. Nat. 2011, 1, 1–6. [Google Scholar] [CrossRef]
- Che Ahmad Tantowi, N.; Mohamed, S.; Hussin, P. Effect of Ficus deltoidea, a Medicinal Plant, on Cartilage Protection in Cartilage Explant and Postmenopausal Rat Models of Osteoarthritis. Osteoarthr. Cartil. 2016, 24, S353–S354. [Google Scholar] [CrossRef]
- Tantowi, N.A.C.A.; Hussin, P.; Lau, S.F.; Mohamed, S. Mistletoe fig (Ficus deltoidea Jack) leaf extract prevented postmenopausal osteoarthritis by attenuating inflammation and cartilage degradation in rat model. Menopause 2017, 24, 1071–1080. [Google Scholar] [CrossRef]
- Che Ahmad Tantowi, N.A.; Lau, S.F.; Mohamed, S. Ficus deltoidea Prevented Bone Loss in Preclinical Osteoporosis/Osteoarthritis Model by Suppressing Inflammation. Calcif. Tissue Int. 2018, 103, 388–399. [Google Scholar] [CrossRef] [PubMed]
- Machado, T.B.; Pinto, A.V.; Pinto, M.C.F.R.; Leal, I.C.R.; Silva, M.G.; Amaral, A.C.F.; Kuster, R.M.; Netto-dosSantos, K.R. In Vitro Activity of Brazilian Medicinal Plants, Naturally Occurring Naphthoquinones and Their Analogues, against Methicillin-Resistant Staphylococcus Aureus. Int. J. Antimicrob. Agents 2003, 21, 279–284. [Google Scholar] [CrossRef]
- Portillo, A.; Vila, R.; Freixa, B.; Adzet, T.; Cañigueral, S. Antifungal Activity of Paraguayan Plants Used in Traditional Medicine. J. Ethnopharmacol. 2001, 76, 93–98. [Google Scholar] [CrossRef]
- Höfling, J.; Anibal, P.; Obando-Pereda, G.; Peixoto, I.; Furletti, V.; Foglio, M.; Gonçalves, R. Antimicrobial Potential of Some Plant Extracts against Candida Species. Brazilian J. Biol. 2010, 70, 1065–1068. [Google Scholar] [CrossRef] [PubMed]
- Pereira, I.T.; Burci, L.M.; Da Silva, L.M.; Baggio, C.H.; Heller, M.; Micke, G.A.; Pizzolatti, M.G.; Marques, M.C.A.; De Paula Werner, M.F. Antiulcer Effect of Bark Extract of Tabebuia Avellanedae: Activation of Cell Proliferation in Gastric Mucosa during the Healing Process. Phyther. Res. 2013, 27, 1067–1073. [Google Scholar] [CrossRef]
- Byeon, S.E.; Chung, J.Y.; Lee, Y.G.; Kim, B.H.; Kim, K.H.; Cho, J.Y. In Vitro and in Vivo Anti-Inflammatory Effects of Taheebo, a Water Extract from the Inner Bark of Tabebuia Avellanedae. J. Ethnopharmacol. 2008, 119, 145–152. [Google Scholar] [CrossRef]
- Lee, M.H.; Choi, H.M.; Hahm, D.H.; Her, E.; Yang, H.I.; Yoo, M.C.; Kim, K.S. Analgesic and Anti-Inflammatory Effects in Animal Models of an Ethanolic Extract of Taheebo, the Inner Bark of Tabebuia Avellanedae. Mol. Med. Rep. 2012, 6, 791–796. [Google Scholar] [CrossRef] [Green Version]
- Suo, M.; Isao, H.; Kato, H.; Takano, F.; Ohta, T. Anti-Inflammatory Constituents from Tabebuia Avellanedae. Fitoterapia 2012, 83, 1484–1488. [Google Scholar] [CrossRef]
- Zhang, L.; Hasegawa, I.; Ohta, T. Anti-Inflammatory Cyclopentene Derivatives from the Inner Bark of Tabebuia Avellanedae. Fitoterapia 2016, 109, 217–223. [Google Scholar] [CrossRef]
- Park, J.G.; Yi, Y.-S.; Hong, Y.H.; Yoo, S.; Han, S.Y.; Kim, E.; Jeong, S.-G.; Aravinthan, A.; Baik, K.S.; Choi, S.Y.; et al. TabetriTM (Tabebuia Avellanedae Ethanol Extract) Ameliorates Osteoarthritis Symptoms Induced by Monoiodoacetate through Its Anti-Inflammatory and Chondroprotective Activities. Mediators Inflamm. 2017, 2017, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Hussain, H.; Krohn, K.; Ahmad, V.U.; Miana, G.A.; Green, I.R. Lapachol: An Overview. Arkivoc 2007, 2007, 145. [Google Scholar] [CrossRef]
- Poyrazoǧlu, E.; Gökmen, V.; Artik, N. Organic Acids and Phenolic Compounds in Pomegranates (Punica granatum L.) Grown in Turkey. J. Food Compos. Anal. 2002, 15, 567–575. [Google Scholar] [CrossRef]
- Banihani, S.; Swedan, S.; Alguraan, Z. Pomegranate and Type 2 Diabetes. Nutr. Res. 2013, 33, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Rouhi-Boroujeni, H.; Rouhi-Boroujeni, H.; Heidarian, E.; Mohammadizadeh, F.; Rafieian-Kopaei, M. Herbs with Anti-Lipid Effects and Their Interactions with Statins as a Chemical Antihyperlipidemia Group Drugs: A Systematic Review. ARYA Atheroscler. 2015, 11, 244–251. [Google Scholar]
- Lee, C.J.; Chen, L.G.; Liang, W.L.; Hsieh, M.S.; Wang, C.C. Inhibitory Effects of Punicalagin from Punica Granatum against Type II Collagenase-Induced Osteoarthritis. J. Funct. Foods 2018, 41, 216–222. [Google Scholar] [CrossRef]
- Hadipour-Jahromy, M.; Mozaffari-Kermani, R. Chondroprotective Effects of Pomegranate Juice on Monoiodoacetate-Induced Osteoarthritis of the Knee Joint of Mice. Phyther. Res. 2010, 24. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, Z.; Akhtar, N.; Haqqi, T.M. Pomegranate Extract Inhibits the Interleukin-1β-Induced Activation of MKK-3, P38α-MAPK and Transcription Factor RUNX-2 in Human Osteoarthritis Chondrocytes. Arthritis Res. Ther. 2010, 12, R195. [Google Scholar] [CrossRef] [Green Version]
- Hong, G.U.; Lee, J.Y.; Kang, H.; Kim, T.Y.; Park, J.Y.; Hong, E.Y.; Shin, Y.H.; Jung, S.H.; Chang, H.B.; Kim, Y.H.; et al. Inhibition of Osteoarthritis-Related Molecules by Isomucronulatol 7-O-β-D-Glucoside and Ecliptasaponin A in IL-1β-Stimulated Chondrosarcoma Cell Model. Molecules 2018, 23, 2807. [Google Scholar] [CrossRef] [Green Version]
- Ali, Y.; Kim, D.H.; Seong, S.H.; Kim, H.R.; Jung, H.A.; Choi, J.S. α-Glucosidase and Protein Tyrosine Phosphatase 1b Inhibitory Activity of Plastoquinones from Marine Brown Alga Sargassum Serratifolium. Mar. Drugs 2017, 15, 368. [Google Scholar] [CrossRef] [Green Version]
- Seong, S.H.; Ali, M.Y.; Kim, H.R.; Jung, H.A.; Choi, J.S. BACE1 Inhibitory Activity and Molecular Docking Analysis of Meroterpenoids from Sargassum Serratifolium. Bioorganic Med. Chem. 2017, 25, 3964–3970. [Google Scholar] [CrossRef]
- Joung, E.J.; Gwon, W.G.; Shin, T.; Jung, B.M.; Choi, J.S.; Kim, H.R. Anti-Inflammatory Action of the Ethanolic Extract from Sargassum Serratifolium on Lipopolysaccharide-Stimulated Mouse Peritoneal Macrophages and Identification of Active Components. J. Appl. Phycol. 2017, 29, 563–573. [Google Scholar] [CrossRef]
- Park, C.; Jeong, J.W.; Lee, D.S.; Yim, M.J.; Lee, J.M.; Han, M.H.; Kim, S.; Kim, H.S.; Kim, G.Y.; Park, E.K.; et al. Sargassum Serratifolium Extract Attenuates Interleukin-1β-Induced Oxidative Stress and Inflammatory Response in Chondrocytes by Suppressing the Activation of NF-ΚB, P38 MAPK, and PI3K/Akt. Int. J. Mol. Sci. 2018, 19, 2308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.-Y.; Yu, Z.-L.; Pan, S.-Y.; Zhang, Y.; Sun, N.; Zhu, P.-L.; Jia, Z.-H.; Zhou, S.-F.; Ko, K.-M. Supplementation with the Extract of Schisandrae Fructus Pulp, Seed, or Their Combination Influences the Metabolism of Lipids and Glucose in Mice Fed with Normal and Hypercholesterolemic Diet. Evid.-Based Complement. Alternat. Med. 2014, 2014, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.W.; Lee, H.H.; Choi, E.O.; Lee, K.W.; Kim, K.Y.; Kim, S.G.; Hong, S.H.; Kim, G.Y.; Park, C.; Kim, H.K.; et al. Schisandrae Fructus Inhibits IL-1β-Induced Matrix Metalloproteinases and Inflammatory Mediators Production in SW1353 Human Chondrocytes by Suppressing NF-ΚB and MAPK Activation. Drug Dev. Res. 2015, 76, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Henrotin, Y.; Priem, F.; Mobasheri, A. Curcumin: A New Paradigm and Therapeutic Opportunity for the Treatment of Osteoarthritis: Curcumin for Osteoarthritis Management. Springerplus 2013, 2, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Javeri, I.; Chand, N. Curcumin. In Nutraceuticals; Elsevier BV: Amsterdam, The Netherlands, 2016; pp. 435–445. [Google Scholar]
- Vanden Berghe, W. Epigenetic Impact of Dietary Polyphenols in Cancer Chemoprevention: Lifelong Remodeling of Our Epigenomes. Pharmacol. Res. 2012, 65, 565–576. [Google Scholar] [CrossRef] [PubMed]
- Yao, D.D.; Yang, L.; Wang, Y.; Liu, C.; Wei, Y.J.; Jia, X.B.; Yin, W.; Shu, L. Geniposide Promotes Beta-Cell Regeneration and Survival through Regulating β-Catenin/TCF7L2 Pathway. Cell Death Dis. 2015, 6, e1746. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhang, Y.; Li, L.; Hölscher, C. Neuroprotective Effects of Geniposide in the MPTP Mouse Model of Parkinson’s Disease. Eur. J. Pharmacol. 2015, 768, 21–27. [Google Scholar] [CrossRef]
- Di Lorenzo, A.; Bloise, N.; Meneghini, S.; Sureda, A.; Tenore, G.C.; Visai, L.; Arciola, C.R.; Daglia, M. Effect of Winemaking on the Composition of Red Wine as a Source of Polyphenols for Anti-Infective Biomaterials. Materials 2016, 9, 316. [Google Scholar] [CrossRef] [Green Version]
- Elmali, N.; Esenkaya, I.; Harma, A.; Ertem, K.; Turkoz, Y.; Mizrak, B. Effect of Resveratrol in Experimental Osteoarthritis in Rabbits. Inflamm. Res. 2005, 54, 158–162. [Google Scholar] [CrossRef]
- Petersen, M.; Simmonds, M.S.J. Rosmarinic Acid. Phytochemistry 2003, 62, 121–125. [Google Scholar] [CrossRef]
- Seo, E.J.; Efferth, T.; Panossian, A. Curcumin Downregulates Expression of Opioid-Related Nociceptin Receptor Gene (OPRL1) in Isolated Neuroglia Cells. Phytomedicine 2018, 50, 285–299. [Google Scholar] [CrossRef] [PubMed]
- Aborehab, N.M.; El Bishbishy, M.H.; Refaiy, A.; Waly, N.E. A Putative Chondroprotective Role for IL-1β and MPO in Herbal Treatment of Experimental Osteoarthritis. BMC Complement. Altern. Med. 2017, 17, 495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Shou, K.; Gong, C.; Yang, H.; Yang, Y.; Bao, T. Anti-Inflammatory Effect of Geniposide on Osteoarthritis by Suppressing the Activation of P38 MAPK Signaling Pathway. Biomed Res. Int. 2018, 2018, 1–11. [Google Scholar] [CrossRef]
- Pan, T.; Shi, X.; Chen, H.; Chen, R.; Wu, D.; Lin, Z.; Zhang, J.; Pan, J. Geniposide Suppresses Interleukin-1β-Induced Inflammation and Apoptosis in Rat Chondrocytes via the PI3K/Akt/NF-ΚB Signaling Pathway. Inflammation 2018, 41, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Li, X.; Lin, J.; Zheng, W.; Hu, Z.; Xuan, J.; Ni, W.; Pan, X. Oleuropein Inhibits the IL-1β-Induced Expression of Inflammatory Mediators by Suppressing the Activation of NF-ΚB and MAPKs in Human Osteoarthritis Chondrocytes. Food Funct. 2017, 8, 3737–3744. [Google Scholar] [CrossRef]
- Ahmad, A.; Husain, A.; Mujeeb, M.; Khan, S.A.; Najmi, A.K.; Siddique, N.A.; Damanhouri, Z.A.; Anwar, F. A Review on Therapeutic Potential of Nigella Sativa: A Miracle Herb. Asian Pac. J. Trop. Biomed. 2013, 3, 337–352. [Google Scholar] [CrossRef] [Green Version]
- Khader, M.; Eckl, P.M. Thymoquinone: An Emerging Natural Drug with a Wide Range of Medical Applications. Iran. J. Basic Med. Sci. 2014, 17, 950–957. [Google Scholar] [PubMed]
- Wang, D.; Qiao, J.; Zhao, X.; Chen, T.; Guan, D. Thymoquinone Inhibits IL-1β-Induced Inflammation in Human Osteoarthritis Chondrocytes by Suppressing NF-ΚB and MAPKs Signaling Pathway. Inflammation 2015, 38, 2235–2241. [Google Scholar] [CrossRef] [PubMed]
- Wongwichai, T.; Teeyakasem, P.; Pruksakorn, D.; Kongtawelert, P.; Pothacharoen, P. Anthocyanins and Metabolites from Purple Rice Inhibit IL-1β-Induced Matrix Metalloproteinases Expression in Human Articular Chondrocytes through the NF-ΚB and ERK/MAPK Pathway. Biomed. Pharmacother. 2019, 112, 108610. [Google Scholar] [CrossRef]
- Dai, T.; Shi, K.; Chen, G.; Shen, Y.; Pan, T. Malvidin Attenuates Pain and Inflammation in Rats with Osteoarthritis by Suppressing NF-ΚB Signaling Pathway. Inflamm. Res. 2017, 66, 1075–1084. [Google Scholar] [CrossRef]
- Zheng, W.; Tao, Z.; Cai, L.; Chen, C.; Zhang, C.; Wang, Q.; Ying, X.; Hu, W.; Chen, H. Chrysin Attenuates IL-1β-Induced Expression of Inflammatory Mediators by Suppressing NF-ΚB in Human Osteoarthritis Chondrocytes. Inflammation 2017, 40, 1143–1154. [Google Scholar] [CrossRef]
- Ma, Z.; Piao, T.; Wang, Y.; Liu, J. Astragalin Inhibits IL-1β-Induced Inflammatory Mediators Production in Human Osteoarthritis Chondrocyte by Inhibiting NF-ΚB and MAPK Activation. Int. Immunopharmacol. 2015, 25, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, R.; Qin, X.; Liu, D.; Lin, F.; Feng, Q. Isorhamnetin Inhibits IL-1β-Induced Expression of Inflammatory Mediators in Human Chondrocytes. Mol. Med. Rep. 2017, 16, 4253–4258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shakibaei, M.; Csaki, C.; Nebrich, S.; Mobasheri, A. Resveratrol Suppresses Interleukin-1β-Induced Inflammatory Signaling and Apoptosis in Human Articular Chondrocytes: Potential for Use as a Novel Nutraceutical for the Treatment of Osteoarthritis. Biochem. Pharmacol. 2008, 76, 1426–1439. [Google Scholar] [CrossRef] [PubMed]
- Csaki, C.; Keshishzadeh, N.; Fischer, K.; Shakibaei, M. Regulation of Inflammation Signalling by Resveratrol in Human Chondrocytes in Vitro. Biochem. Pharmacol. 2008, 75, 677–687. [Google Scholar] [CrossRef]
- Csaki, C.; Mobasheri, A.; Shakibaei, M. Synergistic Chondroprotective Effects of Curcumin and Resveratrol in Human Articular Chondrocytes: Inhibition of IL-1β-Induced NF-ΚB-Mediated Inflammation and Apoptosis. Arthritis Res. Ther. 2009, 11, R165. [Google Scholar] [CrossRef] [Green Version]
- Gu, H.; Jiao, Y.; Yu, X.; Li, X.; Wang, W.; Ding, L.; Liu, L. Resveratrol Inhibits the IL-1β-Induced Expression OfMMP-13 and IL-6 in Human Articular Chondrocytes ViaTLR4/MyD88-Dependent and-Independent Signaling Cascades. Int. J. Mol. Med. 2017, 39, 734–740. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.; Li, X.; Yu, X.; Liu, X.; Xu, X.; He, J.; Gu, H.; Liu, L. Oral Administration of Resveratrol Alleviates Osteoarthritis Pathology in C57BL/6J Mice Model Induced by a High-Fat Diet. Mediators Inflamm. 2017, 2017, 1–11. [Google Scholar] [CrossRef]
- Limagne, E.; Lançon, A.; Delmas, D.; Cherkaoui-Malki, M.; Latruffe, N. Resveratrol Interferes with IL1-β-Induced pro-Inflammatory Paracrine Interaction between Primary Chondrocytes and Macrophages. Nutrients 2016, 8, 280. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.C.; Hung, L.F.; Wu, W.L.; Chang, D.M.; Huang, C.Y.; Lai, J.H.; Ho, L.J. Chondroprotective Effects and Mechanisms of Resveratrol in Advanced Glycation End Products-Stimulated Chondrocytes. Arthritis Res. Ther. 2010, 12, R167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eo, S.H.; Kim, S.J. Rosmarinic Acid Induces Rabbit Articular Chondrocyte Differentiation by Decreases Matrix Metalloproteinase-13 and Inflammation by Upregulating Cyclooxygenase-2 Expression. J. Biomed. Sci. 2017, 24, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Z.-N.; Huang, L.-J.; Chen, W.-P. The Inhibitory Effects of Rosmarinic Acid on Catabolism Induced by IL-1β in Rat Chondrocyte. Acta Biochim. Pol. 2018, 65. [Google Scholar] [CrossRef]
- Liao, S.; Zhou, K.; Li, D.; Xie, X.; Jun, F.; Wang, J. Schisantherin A Suppresses Interleukin-1β-Induced Inflammation in Human Chondrocytes via Inhibition of NF-ΚB and MAPKs Activation. Eur. J. Pharmacol. 2016, 780, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ma, T.; Zheng, Y.; Lv, S.; Li, Y.; Liu, S. Diosgenin Inhibits IL-1β-Induced Expression of Inflammatory Mediators in Human Osteoarthritis Chondrocytes. Int. J. Clin. Exp. Pathol. 2015, 8, 4830–4836. [Google Scholar]
- Lu, S.; Xiao, X.; Cheng, M. Matrine Inhibits IL-1β-Induced Expression of Matrix Metalloproteinases by Suppressing the Activation of MAPK and NF-ΚB in Human Chondrocytes in Vitro. Int. J. Clin. Exp. Pathol. 2015, 8, 4764. [Google Scholar]
- Nutan, S.K.; Modi, M.; Dezzutti, C.S.; Kulshreshtha, S.; RAWat, A.K.S.; Srivastava, S.K.; Malhotra, S.; Verma, A.; Ranga, U.; Gupta, S.K. Extracts from Acacia Catechu Suppress HIV-1 Replication by Inhibiting the Activities of the Viral Protease and Tat. Virol. J. 2013, 10, 309. [Google Scholar] [CrossRef] [Green Version]
- Stohs, S.J.; Bagchi, D. Antioxidant, Anti-Inflammatory, and Chemoprotective Properties of Acacia Catechu Heartwood Extracts. Phytother. Res. 2015, 29, 818–824. [Google Scholar] [CrossRef]
- Kalman, D.S.; Hewlings, S.J. The Effects of Morus Alba and Acacia Catechu on Quality of Life and Overall Function in Adults with Osteoarthritis of the Knee. J. Nutr. Metab. 2017, 2017, 4893104-9. [Google Scholar] [CrossRef] [Green Version]
- Laribi, B.; Kouki, K.; M’Hamdi, M.; Bettaieb, T. Coriander (Coriandrum Sativum L.) and Its Bioactive Constituents. Fitoterapia 2015, 103, 9–26. [Google Scholar] [CrossRef]
- Rajeshwari, C.U.; Siri, S.; Andallu, B. Antioxidant and Antiarthritic Potential of Coriander (Coriandrum Sativum L.) Leaves. ESPEN. J. 2012, 7, e223–e228. [Google Scholar] [CrossRef]
- Lozano-Mena, G.; Sánchez-González, M.; Juan, M.E.; Planas, J.M. Maslinic Acid, a Natural Phytoalexin-Type Triterpene from Olives—A Promising Nutraceutical? Molecules 2014, 19, 11538–11559. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.; Kanamori, A.; Fujii, K.; Isoda, H.; Okura, T. Evaluation of Maslinic Acid with Whole-Body Vibration Training in Elderly Women with Knee Osteoarthritis. PLoS ONE 2018, 13, e0194572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukumitsu, S.; Kinoshita, T.; Villareal, M.O.; Isoda, H.; Aida, K.; Hino, A. Maslinic Acid Improves Quality of Life by Alleviating Joint Knee Pain in the Elderly: Results from a Community-Based Pilot Study. J. Clin. Biochem. Nutr. 2017, 61, 67–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafraf, M.; Hemmati, S.; Asghari Jafarabadi, M.; Moghaddam, A.; Khadem Haghighian, M. Pomegranate (Punica granatum L.) Peel Hydroalcoholic Extract Supplementation Reduces Pain and Improves Clinical Symptoms of Knee Osteoarthritis: A Randomized Double-Blind Placebo Controlled Study. Iran. Red Crescent Med. J. 2016, 19. [Google Scholar] [CrossRef]
- Ghoochani, N.; Karandish, M.; Mowla, K.; Haghighizadeh, M.H.; Jalali, M.T. The Effect of Pomegranate Juice on Clinical Signs, Matrix Metalloproteinases and Antioxidant Status in Patients with Knee Osteoarthritis. J. Sci. Food Agric. 2016, 96, 4377–4381. [Google Scholar] [CrossRef]
- Brahmi, F.; Nury, T.; Debbabi, M.; Hadj-Ahmed, S.; Zarrouk, A.; Prost, M.; Madani, K.; Boulekbache-Makhlouf, L.; Lizard, G. Evaluation of Antioxidant, Anti-Inflammatory and Cytoprotective Properties of Ethanolic Mint Extracts from Algeria on 7-Ketocholesterol-Treated Murine RAW 264.7 Macrophages. Antioxidants 2018, 7, 184. [Google Scholar] [CrossRef] [Green Version]
- Connelly, A.E.; Tucker, A.J.; Tulk, H.; Catapang, M.; Chapman, L.; Sheikh, N.; Yurchenko, S.; Fletcher, R.; Kott, L.S.; Duncan, A.M.; et al. High-Rosmarinic Acid Spearmint Tea in the Management of Knee Osteoarthritis Symptoms. J. Med. Food 2014, 17, 1361–1367. [Google Scholar] [CrossRef] [Green Version]
- Akram, M.; Ahmed, A.; Usmanghani, K.; Hannan, A.; Mohiuddin, E.; Asif, M. Curcuma Longa and Curcumin: A Review Article. Rom. J. Biol. 2010, 55, 65–70. [Google Scholar]
- Kuptniratsaikul, V.; Dajpratham, P.; Taechaarpornkul, W.; Buntragulpoontawee, M.; Lukkanapichonchut, P.; Chootip, C.; Saengsuwan, J.; Tantayakom, K.; Laongpech, S. Efficacy and Safety of Curcuma Domestica Extracts Compared with Ibuprofen in Patients with Knee Osteoarthritis: A Multicenter Study. Clin. Interv. Aging 2014, 9, 451–458. [Google Scholar] [CrossRef] [Green Version]
- Panahi, Y.; Alishiri, G.H.; Parvin, S.; Sahebkar, A. Mitigation of Systemic Oxidative Stress by Curcuminoids in Osteoarthritis: Results of a Randomized Controlled Trial. J. Diet. Suppl. 2016, 13. [Google Scholar] [CrossRef] [PubMed]
- Kizhakkedath, R. Clinical Evaluation of a Formulation Containing Curcuma Longa and Boswellia Serrata Extracts in the Management of Knee Osteoarthritis. Mol. Med. Rep. 2013, 8, 1542–1548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, R.H.X.; Evans, H.M.; Howe, P.R.C. Resveratrol Supplementation Reduces Pain Experience by Postmenopausal Women. Menopause 2017, 24, 916–922. [Google Scholar] [CrossRef] [PubMed]
- Smithson, J.; Kellick, K.; Mergenhagen, K. Nutritional Modulators of Pain in the Aging Population. In Nutritional Modulators of Pain in the Aging Population; Elsevier BV: Amsterdam, The Netherlands, 2017; pp. 191–198. [Google Scholar]
Criterion | Inclusion | Exclusion |
---|---|---|
Study Design | In vitro studies, Ex vivo studies, Animal models, Clinical trials (Randomized control trials, Observational, Prospective, Single-arm, Non-randomized) (Note 2), Meta-analysis of RCTs | Reviews (Note 1) Case studies, Commentaries, Editorials letters, News, Notes, Guidelines Conference abstracts |
Intervention | Whole food (i.e., herbs, fruits, vegetables) Extracts (i.e., plants, herbs) Essential oils Pure compounds (i.e., resveratrol, quercetin) | Non-natural products Pharmaceutical agents (Note 4) Processed food Exercise (alone) Operational or other medical intervention as primary treatment (Note 3) Acupuncture treatment Chiropractic manipulation or other alternative therapies (relaxation techniques and hydrotherapy) |
Comparator | Placebo Non-natural products Pharmaceutical agents (Note 4) Exercise, Acupuncture, Chiropractic manipulation (alone or in combination with the intervention) | Operational or other medical intervention as primary treatment (Note 3) Assistive devices: scooters, canes, walkers, splints, shoe orthotics, etc. Any other comparator that is not mentioned in the inclusion list or cannot be otherwise justified for inclusion |
Outcomes | Improvement of inflammation, managing symptoms (Note 5) | Other outcomes not reported or cannot be derived |
Language | English | Non-English full text available |
Time frame | 2008–2019 | Earlier than January 2008 |
Compound | Effect/-s | Cell-line | Animal Model | Ref. |
---|---|---|---|---|
Curcumin Curcumin + Boswellia serrata |
| Human T98G neuroglia cells | [97] | |
Curcumin + Ginger |
| MIA-induced OA in rats | [98] | |
Thymoquinone |
| Human OA chondrocytes | [104] | |
Geniposide |
| Rabbit OA chondrocytes | [99] | |
| Rat OA chondrocytes | [100] | ||
| ||||
Oleuropein |
| Human OA chondrocytes | [101] | |
Anthocyanins cyanidin-3-O-glucoside peonidin-3-O-glucoside protocatechuic Acid |
| Human OA chondrocytes | Porcine | [105] |
| ||||
Malvidin |
| MIA-induced OA in rats | [106] | |
| ||||
Chrysin |
| Human OA chondrocytes | [107] | |
Astragalin |
| Human OA chondrocytes | [108] | |
Isorhamnetin |
| Human chondrocytes | [109] | |
Resveratrol |
| Human articular chondrocytes | [110,111,112] | |
| Human OA chondrocytes | [113] | ||
| OA rats (on a high-fat diet) | [114] | ||
| Chondrocytes and macrophages co-culture | [115] | ||
| Porcine chondrocytes and cartilage explants | [116] | ||
| ||||
Rosmarinic acid |
| Rabbit OA chondrocytes | [117] | |
| Rat OA chondrocytes | [118] | ||
Schisantherin A |
| Human OA chondrocytes | [119] | |
Matrine |
| Human OA chondrocytes | [121] | |
Diosgenin |
| Human OA chondrocytes | [120] |
Natural product/Form | Trial Type/Duration/ Trial ID | Population | Intervention Groups/Participants (n) | Observations | Adverse Events (AEs) | Ref. |
---|---|---|---|---|---|---|
Acacia catechu (heartwood) and Morus alba (root bark) - Standardized blend (UP1306) | Prospective, randomized, double-blind, comparator, and placebo-controlled parallel-group 12 weeks ISRCTN15418623 | - 135 participants - 35–75 years old - BMI < 35 kg/m2 - Knee pain for at least 15 of the 30 days prior study - Symptoms of knee pain for at least 6 months before the study - Kellgren–Lawrence grade of I, II, or III (screening X-ray) | - UP1306 (100 mg) (n = 45) - Glucosamine (375 mg per capsule) and Chondroitin (300 mg) combination (n = 45) - Placebo (n = 45)* Applicable for each treatment group: Dose was four capsules per day | - WOMAC-pain decreased by 51% (SD = 30) for UP1306, by 45% (SD = 41) for glucosamine/chondroitin, and by 46% (SD = 40) for placebo (p = 0.753 between groups) - WOMAC-pain decreased from baseline to day 56 for UP1306 vs. glucosamine/chondroitin (p = 0.048 between groups) - WOMAC-stiffness decreased by 45% (SD = 37) for UP1306, by 38% (SD = 45) for glucosamine/chondroitin, and by 56% (SD = 37) for placebo (p = 0.115 between groups) - VAS-discomfort ratings were not statistically significant between the three products (p = 0.935). - VAS-discomfort ratings decreased from baseline to all time-points for all treatment groups (within-group differences) - Rescue medication overall use was 18.8% (SD = 17.9) for UP1306, 19.0% (SD = 21.0) for glucosamine/chondroitin, and 21.2% (SD = 17.1) for placebo - Increased extension scores from baseline to day 28 for glucosamine/chondroitin vs. UP1306 (p = 0.018) and placebo vs. UP1306 (p = 0.042) - Distance walked (6MWT) increased within-groups from baseline to all time-points. No significant differences between groups (p = 0.183) - TNFα levels: No significant differences from baseline to 12 weeks between groups (p = 0.786) - Urinary CTX-II levels: Significant difference for UP1306 and placebo after 12-weeks (p = 0.029) | - No serious adverse events - 43 adverse events were observed among 30 of the 133 subjects (safety population) - 15 AEs UP1306 group - 10 AEs glucosamine/chondroitin - 18 AEs placebo - Gastrointestinal disorders and infections and infestations were most frequently reported. | [124] |
Litsea japonica Extract | Randomized, double-blind, placebo-controlled 12 weeks KCT0001029 | - 87 participants - 50–70 years old - Painful knee OA | - Placebo group - Low-dose group - 100 mg/d - High-dose group - 200 mg/d | - VAS scores- pain reduction (p = 0.0001) - WOMAC - total (p = 0.0102) - WOMAC - pain (p = 0.0293) - WOMAC - stiffness (p = 0.002) - WOMAC - function (p = 0.0152) - Blood MMP-9 levels (p = 0.026) | Not Reported | [58] |
Pomegranate - Punica granatum L. (sweet Malas verity) (Peels) - Ethanol/Water extract was encapsulated with rice flour (500 mg of PPE with 50 mg flour) | Randomized, double-blind, placebo-controlled 8 weeks IRCT201405183664N11 | - 66 female adult participants - Moderate knee OA - 38–60 years old - BMI: 30–35 kg/m2 | - Placebo (550 mg rice flour): 2 capsules/d (n = 33) - Pomegranate (500 mg): 1 capsule/d (n = 33) | - KOOS scores increased compared with baseline in intervention group (Mean ± SD before treatment = 46.15 ± 16.82 to 57.57 ± 15.61 after treatment, p < 0.05) - VAS score decreased compared with baseline in the intervention group (p < 0.05) | Not Observed | [130] |
Pomegranate Juice | Randomized, parallel-arm 6 weeks | - 39 adult participants - 30–80 years old - Knee OA | - Control (n = 19) - Pomegranate juice: 200 mL/d (n = 20) | - Decreased WOMAC total score (from 39.63 ± 18.89 to 32.36 ±16.62, p = 0.01) after treatment - Decreased WOMAC - stiffness score (from 2.58 ± 2.29 to 1.47 ± 1.80, p = 0.00) after treatment - Decreased WOMAC - function score (from 27.74 ± 10.56 to 22.53 ± 10.91, p = 0.01) after treatment - Decreased WOMAC - pain score (from 7.95 ± 4.99 to 7.32 ± 4.95, p = 0.49) after treatment - MMP-1 increases in serum were not significant in the treatment group compared to baseline - Means of MMP-13 serum levels decreased (from 157.81 ± 66.22 to 127.99 ± 34.04, p = 0.13) after treatment - Glutathione peroxidase serum levels increased in the treatment group vs. control group (p = 0.02) | Not Observed | [131] |
Spearmint - High-rosmarinic acid (rosA) spearmint tea | Randomized, double-blind, parallel-arm 16 weeks NCT01380015 | - 62 adult participants - Nonsmokers - Knee OA - WOMAC pain score >125 (to be included in the study) | - Spearmint tea high-rosmarinic acid (130–150 mg per cup) (2 cups/d) (n = 28) - Control tea low - rosmarinic acid (13 mg per cup) (2 cups/d) (n = 28) | - WOMAC - pain decreased from baseline in the treatment group (p = 0.002) - WOMAC - stiffness decreased from baseline in the treatment group (p = 0.004) - WOMAC - physical disability decreased from baseline in the treatment group (p = 0.02) - WOMAC scores on all scales were not significantly different between groups - SF-36 QoL score (bodily pain) increased from 46.6 ± 7.6 (baseline) to 58.1 ± 22.1 (week 16) in the treatment group (p < 0.05) - Six-minute walk test change from baseline was +22.3 m for the treatment group and +0.1 m for the control group with no significant differences within or between groups | - Overall, no serious adverse events reported - AEs in treatment group: constipation (n = 3), headache (n = 2), loose bowel movements (n = 1) - AEs in control group: staining of dentures (n = 1), dry mouth (n = 1), itchy skin (n = 1) | [133] |
Curcuma domestica - Extract (encapsulated) | Randomized, double-blind, controlled (multicenter) 4 weeks NCT00792818 | - 367 adult participants - Older than 50 years of age - Knee OA - NRS of knee pain of ≥5 out of 10 | - Control: Ibuprofen (1200 mg/d) (n = 182) - C. domestica extracts (1500 mg/d) (250 mg of curcuminoids) (n = 185) | - All WOMAC scores improved from baseline (p < 0.001) in both groups - WOMAC - total, noninferiority test, treatment vs. control (p = 0.010) - WOMAC - pain, noninferiority test, treatment vs. control (p = 0.018) - WOMAC - function, noninferiority test, treatment vs. control (p = 0.010) - WOMAC - stiffness, noninferiority test, treatment vs. control trended toward significance (p = 0.060) - 6MWT: No difference between groups (Mean difference (95% CI) = 7.18 (−7.01, 21.38)), p = 0.320) | - AEs in treatment group = 1 - AEs in control group = 6 | [135] |
Curcuma longa and Boswellia serrata - Extracts formulation (encapsulated) | Randomized, single-blind, controlled 12 weeks | - 28 adult participants - 18–65 years old - Knee OA (moderate) | - Control: Celecoxib (100 mg/d) *2 (n = 14) - Curcuma longa and Boswellia serrata (500 mg/d) *2 (n = 14) | - OA joint pain: Patients in category moderate/severe in treatment group improved from 85.71% to 21.43% after treatment - OA joint pain: Patients in category moderate/severe in the control group decreased from 78.57% to 50% after treatment - Walking distance >1000 m was reported for 92.86% of patients in the treatment group and 85.71% in the control group | Not observed | [137] |
Maslinic acid (Scheme 4) - Extract formulation (approx. 10.7% maslinic acid) | Randomized, double-blinded, placebo-controlled 20 weeks | - 26 female adult participants - 65–85 years old - Pain in one or both knees - BMI mean = 23.7 kg/m2 | - Placebo (3 capsules/d) (n = 15) - Maslinic acid (3 capsules/d) (n = 11) | - Muscle function: isokinetic extension peak torque - time * group interaction (p = 0.03), effect sizes were higher in the treatment group for all domains of muscle function - Knee function: time was a significant factor in the domain of "pain on ascending or descending stairs” (p < 0.01) Kellgren and Lawrence (K-L) grade had a main effect in “pain on walking” (p = 0.04) and “range of motion” (p < 0.01) - Performance of WBVT program: Participants in the treatment group attended 422 of 440 training hours Participants in the control group attended 581 of 600 training hours | Not reported | [128] |
Maslinic acid (Scheme 4) - Olive fruit extract formulation (jelly, approx. 10.4% maslinic acid) | Open-label (single arm) 16 weeks | - 35 adult participants - Chronic pain of the knee | -Maslinic acid 30 mg/d | - VAS - pain: decreased from baseline to 4 weeks after treatment (29.1 ± 26.8 to 24.5 ± 29.4, p = 0.06) - VAS - pain: decreased from baseline to 16 weeks after treatment (29.1 ± 26.8 to 22.5 ± 22.3, p = 0.08) - Japanese knee osteoarthritis measure (JKOM): decreased from baseline to 8 weeks after treatment (23.1 ± 18.5 to 19.9 ± 19.9, p = 0.04) - Short form-8 health survey (SF-8): Quality of life (QoL) was improved after treatment. All domains of the SF-8 survey had significant improvement compared to baseline at one or more time points (4, 8, or 16 weeks after treatment) | Not observed | [129] |
Resveratrol (Scheme 4) - Synthetic trans-resveratrol (encapsulated) | Randomized, double-blind, placebo-controlled 14 weeks ACTRN12615000291583 | - 80 female adult participants - 45–85 years old - Postmenopausal - Nonsmokers - Age-related osteoarthritis - BMI = 26.7 ± 0.6 kg/m2 | - Resveratrol (75 mg*2/d) (n = 37) - Placebo * 2/d (n = 35) | - CVR to hypercapnia improved in both groups (Treatment group results at 14 weeks: 58.1 ± 2.4%, p = 0.011. Placebo group results at 14 weeks: 52.4 ± 2.3%, p = 0.011) - VAS - pain: overall reduced by 10% in the treatment group vs. placebo | Not Observed | [138] |
Coriander (Coriandrum sativum L.) leaf powder | Open-label 8 weeks | - 20 adults (OA diagnosis) - 20 adults (Healthy controls) - 40–60 years old | - Coriander leaf powder (5 g/d) (n = 40) | - ALP: Decreased by 5% (p < 0.01) after treatment (from 107 ± 0.37 to 102 ± 2.19, Mean ± SEM, intervention group) - ALP: Increased by 20% in the control group-Calcium: Increased by 6% (p < 0.05) after treatment (from 5.79 ± 0.11 to 6.15 ± 0.03, Mean ± SEM, intervention group)-Calcium: Decreased by 15% in the control group - ESR: Decreased by 64% (p < 0.01) after treatment (from 36.6 ± 2.3 to 13.3 ± 3.8, Mean ± SEM, intervention group) - ESR: Decreased by 18% in the control group | Not Reported | [126] |
Guilu erxian jiao | Randomized, Case-control 12 weeks | - 21 male adults (treated group) - 21 male adults (untreated group) - Older than 65 years old - Knee OA | - Guilu erxian jiao (6 g/d) (n = 21) | - VAS – pain improvement (p < 0.01) after treatment - Reduced Lequesne index scores: pain/discomfort (p < 0.01), maximum distance walked (p < 0.01), activities of daily living (p < 0.05) | Not Observed | [45] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deligiannidou, G.-E.; Papadopoulos, R.-E.; Kontogiorgis, C.; Detsi, A.; Bezirtzoglou, E.; Constantinides, T. Unraveling Natural Products’ Role in Osteoarthritis Management—An Overview. Antioxidants 2020, 9, 348. https://doi.org/10.3390/antiox9040348
Deligiannidou G-E, Papadopoulos R-E, Kontogiorgis C, Detsi A, Bezirtzoglou E, Constantinides T. Unraveling Natural Products’ Role in Osteoarthritis Management—An Overview. Antioxidants. 2020; 9(4):348. https://doi.org/10.3390/antiox9040348
Chicago/Turabian StyleDeligiannidou, Georgia-Eirini, Rafail-Efraim Papadopoulos, Christos Kontogiorgis, Anastasia Detsi, Eugenia Bezirtzoglou, and Theodoros Constantinides. 2020. "Unraveling Natural Products’ Role in Osteoarthritis Management—An Overview" Antioxidants 9, no. 4: 348. https://doi.org/10.3390/antiox9040348
APA StyleDeligiannidou, G. -E., Papadopoulos, R. -E., Kontogiorgis, C., Detsi, A., Bezirtzoglou, E., & Constantinides, T. (2020). Unraveling Natural Products’ Role in Osteoarthritis Management—An Overview. Antioxidants, 9(4), 348. https://doi.org/10.3390/antiox9040348