The Antioxidant Capability of Higenamine: Insights from Theory
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, N.; Lian, Z.; Peng, X.; Li, Z.; Zhu, H. Applications of Higenamine in pharmacology and medicine. J. Ethnopharmacol. 2017, 196, 242–252. [Google Scholar] [CrossRef]
- Bai, J.; Mao, J.; Yang, H.; Khan, A.; Fan, A.; Liu, S.; Zhang, J.; Wang, D.; Gao, H.; Zhang, J. Sucrose non-ferment 1 related protein kinase 2 (SnRK2) genes could mediate the stress responses in potato (Solanum tuberosum L.). BMC Genet. 2017, 18, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosuge, T.; Yokota, M. Studies on cardiac principle of aconite root. Chem. Pharm. Bull. 1976, 24, 176–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, N.; Qu, K.; Wang, M.; Yin, Q.; Wang, W.; Xue, L.; Fu, H.; Zhu, H.; Li, Z. Identification of higenamine as a novel α1 -adrenergic receptor antagonist. Phytother. Res. 2019, 33, 708–717. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Kang, Y.J.; Kim, H.J.; Park, M.K.; Seo, H.G.; Lee, J.H.; Yun-Choi, H.S.; Chang, K.C. Higenamine reduces apoptotic cell death by induction of heme oxygenase-1 in rat myocardial ischemia-reperfusion injury. Apoptosis 2006, 11, 1091–1100. [Google Scholar] [CrossRef]
- Ramalakshmi, K.; Kubra, I.R.; Rao, L.J.M. Antioxidant potential of low-grade coffee beans. Food Res. Int. 2008, 41, 96–103. [Google Scholar] [CrossRef]
- Dandlen, S.A.; Lima, A.S.; Mendes, M.D.D.S.; Miguel, M.G.; Faleiro, M.; Sousa, M.J.; Pedro, L.G.; Barroso, J.G.; Figueiredo, A.C. Antioxidant activity of six Portuguese thyme species essential oils. Flavour Fragr. J. 2010, 25, 150–155. [Google Scholar] [CrossRef] [Green Version]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Duthie, G.G.; Duthie, S.; Kyle, J.A.M. Plant polyphenols in cancer and heart disease: Implications as nutritional antioxidants. Nutr. Res. Rev. 2000, 13, 79–106. [Google Scholar] [CrossRef] [Green Version]
- Betteridge, D.J. What is oxidative stress? Metab. Clin. Exp. 2000, 49, 3–8. [Google Scholar] [CrossRef]
- Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free Radicals, Antioxidants in Disease and Health. Int. J. Biomed. Sci. 2008, 4, 89–96. [Google Scholar] [PubMed]
- Seifried, H.E.; Anderson, D.E.; Fisher, E.I.; Milner, J.A. A review of the interaction among dietary antioxidants and reactive oxygen species. J. Nutr. Biochem. 2007, 18, 567–579. [Google Scholar] [CrossRef] [PubMed]
- Ichikawa, K.; Sasada, R.; Chiba, K.; Gotoh, H. Effect of Side Chain Functional Groups on the DPPH Radical Scavenging Activity of Bisabolane-Type Phenols. Antioxidants 2019, 8, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devasagayam, T.P.; Tilak, J.C.; Boloor, K.K.; Sane, K.S.; Ghaskadbi, S.S.; Lele, R.D. Free radicals and antioxidants in human health: Current status and future prospects. J. Assoc. Phys. India 2004, 52, 4. [Google Scholar]
- Galano, A.; Alvarez-Idaboy, J.R. Computational strategies for predicting free radical scavengers’ protection against oxidative stress: Where are we and what might follow? Int. J. Quantum Chem. 2018, 119, e25665. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.E.; Hwang, H.J.; Ha, J.-S.; Jeong, H.-S.; Kim, J.H. Screening of medicinal plant extracts for antioxidant activity. Life Sci. 2003, 73, 167–179. [Google Scholar] [CrossRef]
- Li, X.; Lin, J.; Chen, B.; Xie, H.; Chen, D. Antioxidant and Cytoprotective Effects of Kukoamines A and B: Comparison and Positional Isomeric Effect. Molecules 2018, 23, 973. [Google Scholar] [CrossRef] [Green Version]
- Herraiz, T.; Galisteo, J. Tetrahydro-β-carboline Alkaloids Occur in Fruits and Fruit Juices. Activity as Antioxidants and Radical Scavengers. J. Agric. Food Chem. 2003, 51, 7156–7161. [Google Scholar] [CrossRef]
- Herraiz, T.; Galisteo, J.; Chamorro, C. l-Tryptophan Reacts with Naturally Occurring and Food-Occurring Phenolic Aldehydes To Give Phenolic Tetrahydro-β-carboline Alkaloids: Activity as Antioxidants and Free Radical Scavengers. J. Agric. Food Chem. 2003, 51, 2168–2173. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, C.; Xiang, L.; Zheng, Y. Phenolic alkaloids as a new class of antioxidants inPortulaca oleracea. Phytother. Res. 2009, 23, 1032–1035. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Li, X.; Chen, J.; Deng, Y.; Lu, W.; Chen, D. pH Effect and Chemical Mechanisms of Antioxidant Higenamine. Molecules 2018, 23, 2176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marino, T.; Russo, N.; Galano, A. A deeper insight on the radical scavenger activity of two simple coumarins toward OOH radical. Comput. Theor. Chem. 2016, 1077, 133–138. [Google Scholar] [CrossRef]
- Galano, A.; Mazzone, G.; Alvarez-Diduk, R.; Marino, T.; Alvarez-Idaboy, J.R.; Russo, N. Food Antioxidants: Chemical Insights at the Molecular Level. Annu. Rev. Food Sci. Technol. 2016, 7, 335–352. [Google Scholar] [CrossRef]
- Leopoldini, M.; Russo, N.; Toscano, M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 2011, 125, 288–306. [Google Scholar] [CrossRef]
- Terpinc, P.; Abramovič, H. A kinetic approach for evaluation of the antioxidant activity of selected phenolic acids. Food Chem. 2010, 121, 366–371. [Google Scholar] [CrossRef]
- Sies, H. Oxidative stress: Oxidants and antioxidants. Exp. Physiol. 1997, 82, 291–295. [Google Scholar] [CrossRef]
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian 09, revision B. 01, Gaussian, Inc., Wallingford CT, 2009 Search PubMed;(b) NM O’Boyle, AL Tenderholt and KM Langner. J. Comput. Chem. 2008, 29, 839. [Google Scholar]
- Zhao, Y.; Truhlar, D. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06 functionals and 12 other functionals. Theor. Chem. Acc. 2008, 119, 525. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Busch, D.H.; Subramaniam, B.; Thompson, W.H. Role of Tunable Acid Catalysis in Decomposition of α-Hydroxyalkyl Hydroperoxides and Mechanistic Implications for Tropospheric Chemistry. J. Phys. Chem. A 2014, 118, 9701–9711. [Google Scholar] [CrossRef] [Green Version]
- Alarcón, P.; Bohn, B.; Zetzsch, C.; Rayez, M.-T. Reversible addition of the OH radical to p -cymene in the gas phase: Multiple adduct formation. Part 2. Phys. Chem. Chem. Phys. 2014, 16, 17315–17326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denegri, B.; Matić, M.; Kronja, O. A DFT-based model for calculating solvolytic reactivity. The nucleofugality of aliphatic carboxylates in terms of N f parameters. Org. Biomol. Chem. 2014, 12, 5698. [Google Scholar] [CrossRef] [PubMed]
- Parkhomenko, D.; Edeleva, M.V.; Kiselev, V.; Bagryanskaya, E.G. pH-Sensitive C–ON Bond Homolysis of Alkoxyamines of Imidazoline Series: A Theoretical Study. J. Phys. Chem. B 2014, 118, 5542–5550. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, G. Reaction of Methacrolein with the Hydroxyl Radical in Air: Incorporation of Secondary O2 Addition into the MACR + OH Master Equation. J. Phys. Chem. A 2012, 116, 5317–5324. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. How Well Can New-Generation Density Functionals Describe the Energetics of Bond-Dissociation Reactions Producing Radicals? J. Phys. Chem. A 2008, 112, 1095–1099. [Google Scholar] [CrossRef]
- Galano, A.; Alvarez-Idaboy, J.R. Kinetics of radical-molecule reactions in aqueous solution: A benchmark study of the performance of density functional methods. J. Comput. Chem. 2014, 35, 2019–2026. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Maeda, S.; Harabuchi, Y.; Ono, Y.; Taketsugu, T.; Morokuma, K. Intrinsic reaction coordinate: Calculation, bifurcation, and automated search. Int. J. Quantum Chem. 2014, 115, 258–269. [Google Scholar] [CrossRef]
- Galano, A.; Medina, M.E.; Tan, D.X.; Reiter, R.J. Melatonin and its metabolites as copper chelating agents and their role in inhibiting oxidative stress: A physicochemical analysis. J. Pineal Res. 2014, 58, 107–116. [Google Scholar] [CrossRef]
- Galano, A.; Alvarez-Idaboy, J.R. A computational methodology for accurate predictions of rate constants in solution: Application to the assessment of primary antioxidant activity. J. Comput. Chem. 2013, 34, 2430–2445. [Google Scholar] [CrossRef]
- Foster, J.P.; Weinhold, F. Natural hybrid orbitals. J. Am. Chem. Soc. 1980, 102, 7211–7218. [Google Scholar] [CrossRef]
- Reed, A.E.; Weinhold, F. Natural bond orbital analysis of near-Hartree–Fock water dimer. J. Chem. Phys. 1983, 78, 4066–4073. [Google Scholar] [CrossRef]
- Reed, A.E.; Weinstock, R.B.; Weinhold, F. Natural population analysis. J. Chem. Phys. 1985, 83, 735–746. [Google Scholar] [CrossRef]
- Galano, A.; Perez-Gonzalez, A.; Castañeda-Arriaga, R.; Muñoz-Rugeles, L.; Mendoza-Sarmiento, G.; Romero-Silva, A.; Ibarra-Escutia, A.; Rebollar-Zepeda, A.M.; Leon-Carmona, J.R.; Hernández-Olivares, M.A.; et al. Empirically Fitted Parameters for Calculating pKaValues with Small Deviations from Experiments Using a Simple Computational Strategy. J. Chem. Inf. Model. 2016, 56, 1714–1724. [Google Scholar] [CrossRef]
- Grunewald, G.L.; Seim, M.R.; Lu, J.; Makboul, M.; Criscione, K.R. Application of the Goldilocks Effect to the Design of Potent and Selective Inhibitors of PhenylethanolamineN-Methyltransferase: Balancing pKaand Steric Effects in the Optimization of 3-Methyl-1,2,3,4-tetrahydroisoquinoline Inhibitors by β-Fluorination1. J. Med. Chem. 2006, 49, 2939–2952. [Google Scholar] [CrossRef] [Green Version]
- Castañeda-Arriaga, R.; Perez-Gonzalez, A.; Reina, M.; Alvarez-Idaboy, J.R.; Galano, A. Comprehensive Investigation of the Antioxidant and Pro-oxidant Effects of Phenolic Compounds: A Double-Edged Sword in the Context of Oxidative Stress? J. Phys. Chem. B 2018, 122, 6198–6214. [Google Scholar] [CrossRef]
- Alberto, M.E.; Grand, A.; Russo, N.; Galano, A. A physicochemical examination of the free radical scavenging activity of Trolox: Mechanism, kinetics and influence of the environment. Phys. Chem. Chem. Phys. 2013, 15, 4642. [Google Scholar] [CrossRef]
- Leon-Carmona, J.R.; Galano, A. Is Caffeine a Good Scavenger of Oxygenated Free Radicals? J. Phys. Chem. B 2011, 115, 4538–4546. [Google Scholar] [CrossRef]
- Galano, A. On the direct scavenging activity of melatonin towards hydroxyl and a series of peroxyl radicals. Phys. Chem. Chem. Phys. 2011, 13, 7178. [Google Scholar] [CrossRef]
- Carrillo-Vico, A.; Guerrero, J.; Lardone, P.J.; Reiter, R.J. A Review of the Multiple Actions of Melatonin on the Immune System. Endocrine 2005, 27, 189–200. [Google Scholar] [CrossRef]
- Tan, D.X.; Chen, L.D.; Poeggeler, B.; Manchester, L.C.; Reiter, R.J.; Poeggler, B. Melatonin a potent endogenous hydroxyl radical scavenger. Endocr. J. 1993, 1, 57–60. [Google Scholar]
- Shi, X.; Dalal, N.; Jain, A. Antioxidant behaviour of caffeine: Efficient scavenging of hydroxyl radicals. Food Chem. Toxicol. 1991, 29, 1–6. [Google Scholar] [CrossRef]
H4A+ | H3A | H2A− | HA2− | A3− |
---|---|---|---|---|
0.861 | 0.136 | 0.002 | 0.000 | 0.000 |
H4A+ | H3A | H2A− | ||||
---|---|---|---|---|---|---|
ΔG | ΔG⧧ | ΔG | ΔG⧧ | ΔG | ΔG⧧ | |
HAT-O4′ | 1.82 | 23.35 | −0.26 | 21.80 | −3.81 | 21.36 |
HAT-O6 | −3.62 | 19.99 | ||||
HAT-O7 | −2.58 | 20.93 | −13.34 | 8.49 | −15.63 | 1.33 |
HAT-C1 | 2.43 | −0.85 | 13.39 | |||
HAT-C3 | 16.46 | 15.58 | ||||
HAT-C4 | 3.19 | 2.55 | ||||
HAT-C7 | 6.33 | 7.57 | ||||
SET | 31.19 (91.53) | 4.42 (36.60) | −1.03 (15.11) | |||
RAF-C7 | 15.58 | 23.89 | ||||
RAF-C8 | 19.14 | 21.61 | ||||
RAF-C9 | 22.73 | 24.11 | ||||
RAF-C10 | 15.93 | 20.17 | ||||
RAF-C5 | 19.14 | 21.61 | ||||
RAF-C6 | 15.65 | 24.37 | ||||
RAF-C1′ | 19.84 | 26.42 | ||||
RAF-C6′ | 22.21 | 28.95 | ||||
RAF-C2′ | 18.17 | 28.09 | ||||
RAF-C5′ | 18.65 | 24.36 |
H4A+ | H3A | H2A− | ||||
---|---|---|---|---|---|---|
k | Γ(%) | k | Γ(%) | k | Γ(%) | |
HAT-O4′ | 1.62 × 101 | 11.02 | 3.11 × 101 | ~0.00 | 6.85 × 101 | ~0.00 |
HAT-O6 | 1.01 × 102 | 68.67 | ~ | ~ | ~ | ~ |
HAT-O7 | 2.12 × 101 | 14.41 | 5.03 × 108 | 65.58 | 2.79 × 109 | 29.25 |
HAT-C1 | ~ | ~ | 1.25 × 105 | 0.02 | ~ | ~ |
SET | 1.04 × 10−13 | ~0.00 | 2.64 × 108 | 34.40 | 6.75 × 109 | 70.75 |
RAF-C7 | 1.53 × 10−2 | 0.01 | ||||
RAF-C8 | 4.07 × 10−3 | ~0.00 | ||||
RAF-C9 | 9.68 × 10−3 | 0.01 | ||||
RAF-C10 | 7.85 × 101 | 5.34 | ||||
RAF-C5 | 7.22 × 10−1 | 0.49 | ||||
RAF-C6 | 7.15 × 10−3 | ~0.00 | ||||
RAF-C1′ | 2.07 × 10−4 | ~0.00 | ||||
RAF-C6′ | 1.46 × 10−5 | ~0.00 | ||||
RAF-C2′ | 3.43 × 10−6 | ~0.00 | ||||
RAF-C5′ | 5.69 × 10−2 | 0.04 | ||||
RAF-C3′ | 7.37 × 10−3 | 0.01 | ||||
RAF-C4′ | 2.10 × 10−5 | ~0.00 | ||||
Overall | 1.47 × 102 | 7.67 × 108 | 9.54 × 109 |
f | ktot | fktot | |
---|---|---|---|
H4A+ | 0.861 | 1.47 × 102 | 1.26 × 102 |
H3A | 0.136 | 7.67 × 108 | 1.04 × 108 |
H2A− | 0.002 | 9.54 × 109 | 1.91 × 107 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romeo, I.; Parise, A.; Galano, A.; Russo, N.; Alvarez-Idaboy, J.R.; Marino, T. The Antioxidant Capability of Higenamine: Insights from Theory. Antioxidants 2020, 9, 358. https://doi.org/10.3390/antiox9050358
Romeo I, Parise A, Galano A, Russo N, Alvarez-Idaboy JR, Marino T. The Antioxidant Capability of Higenamine: Insights from Theory. Antioxidants. 2020; 9(5):358. https://doi.org/10.3390/antiox9050358
Chicago/Turabian StyleRomeo, Isabella, Angela Parise, Annia Galano, Nino Russo, Juan Raúl Alvarez-Idaboy, and Tiziana Marino. 2020. "The Antioxidant Capability of Higenamine: Insights from Theory" Antioxidants 9, no. 5: 358. https://doi.org/10.3390/antiox9050358
APA StyleRomeo, I., Parise, A., Galano, A., Russo, N., Alvarez-Idaboy, J. R., & Marino, T. (2020). The Antioxidant Capability of Higenamine: Insights from Theory. Antioxidants, 9(5), 358. https://doi.org/10.3390/antiox9050358