Renal Side Effects of COVID-19 Vaccination
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Overall
3.2. Minimal Change Disease (MCD)
3.3. IgA Nephropathy (IgAN)
3.4. Anti-Glomerular Basement Membrane (Anti-GBM) and Anti-Neutrophil Cytoplasmic Autoantibody (ANCA) Vasculitis
3.5. Acute Interstitial Nephritis (AIN)
3.6. Membranous Nephropathy (MN)
3.7. Others
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Ye, Q. Safety and Efficacy of the Common Vaccines against COVID-19. Vaccines 2022, 10, 513. [Google Scholar] [CrossRef]
- McMahon, D.E.; Amerson, E.; Rosenbach, M.; Lipoff, J.B.; Moustafa, D.; Tyagi, A.; Desai, S.R.; French, L.E.; Lim, H.W.; Thiers, B.H.; et al. Cutaneous reactions reported after Moderna and Pfizer COVID-19 vaccination: A registry-based study of 414 cases. J. Am. Acad. Dermatol. 2021, 85, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Finsterer, J. Neurological side effects of SARS-CoV-2 vaccinations. Acta Neurol. Scand. 2022, 145, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Salah, H.M.; Mehta, J.L. COVID-19 Vaccine and Myocarditis. Am. J. Cardiol. 2021, 157, 146–148. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, Z.; Wang, P.; Li, X.M.; Shuai, Z.W.; Ye, D.Q.; Pan, H.F. New-onset autoimmune phenomena post-COVID-19 vaccination. Immunology 2022, 165, 386–401. [Google Scholar] [CrossRef]
- Wu, H.H.L.; Kalra, P.A.; Chinnadurai, R. New-Onset and Relapsed Kidney Histopathology Following COVID-19 Vaccination: A Systematic Review. Vaccines 2021, 9, 1252. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Rao, M.; Xu, G. New-Onset Acute Kidney Disease Post COVID-19 Vaccination. Vaccines 2022, 10, 742. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, G. New-Onset IgA nephropathy Following COVID-19 Vaccination. QJM Mon. J. Assoc. Physicians 2022. [Google Scholar] [CrossRef]
- Morlidge, C.; El-Kateb, S.; Jeevaratnam, P.; Thompson, B. Relapse of minimal change disease following the AstraZeneca COVID-19 vaccine. Kidney Int. 2021, 100, 459. [Google Scholar] [CrossRef]
- Komaba, H.; Wada, T.; Fukagawa, M. Relapse of Minimal Change Disease Following the Pfizer-BioNTech COVID-19 Vaccine. Am. J. Kidney Dis. 2021, 78, 469–470. [Google Scholar] [CrossRef] [PubMed]
- D’Agati, V.D.; Kudose, S.; Bomback, A.S.; Adamidis, A.; Tartini, A. Minimal change disease and acute kidney injury following the Pfizer-BioNTech COVID-19 vaccine. Kidney Int. 2021, 100, 461–463. [Google Scholar] [CrossRef] [PubMed]
- Lebedev, L.; Sapojnikov, M.; Wechsler, A.; Varadi-Levi, R.; Zamir, D.; Tobar, A.; Levin-Iaina, N.; Fytlovich, S.; Yagil, Y. Minimal Change Disease Following the Pfizer-BioNTech COVID-19 Vaccine. Am. J. Kidney Dis. 2021, 78, 142–145. [Google Scholar] [CrossRef]
- Leclerc, S.; Royal, V.; Lamarche, C.; Laurin, L.P. Minimal Change Disease With Severe Acute Kidney Injury Following the Oxford-AstraZeneca COVID-19 Vaccine: A Case Report. Am. J. Kidney Dis. 2021, 78, 607–610. [Google Scholar] [CrossRef] [PubMed]
- Maas, R.J.; Gianotten, S.; van der Meijden, W.A.G. An Additional Case of Minimal Change Disease Following the Pfizer-BioNTech COVID-19 Vaccine. Am. J. Kidney Dis. 2021, 78, 312. [Google Scholar] [CrossRef] [PubMed]
- Kervella, D.; Jacquemont, L.; Chapelet-Debout, A.; Deltombe, C.; Ville, S. Minimal change disease relapse following SARS-CoV-2 mRNA vaccine. Kidney Int. 2021, 100, 457–458. [Google Scholar] [CrossRef] [PubMed]
- Hanna, J.; Ingram, A.; Shao, T. Minimal Change Disease After First Dose of Pfizer-BioNTech COVID-19 Vaccine: A Case Report and Review of Minimal Change Disease Related to COVID-19 Vaccine. Can. J. Kidney Health Dis. 2021, 8, 20543581211058271. [Google Scholar] [CrossRef]
- Weijers, J.; Alvarez, C.; Hermans, M.M.H. Post-vaccinal minimal change disease. Kidney Int. 2021, 100, 459–461. [Google Scholar] [CrossRef]
- Holzworth, A.; Couchot, P.; Cruz-Knight, W.; Brucculeri, M. Minimal change disease following the Moderna mRNA-1273 SARS-CoV-2 vaccine. Kidney Int. 2021, 100, 463–464. [Google Scholar] [CrossRef]
- Salem, F.; Rein, J.L.; Yu, S.M.; Abramson, M.; Cravedi, P.; Chung, M. Report of Three Cases of Minimal Change Disease Following the Second Dose of mRNA SARS-CoV-2 COVID-19 Vaccine. Kidney Int. Rep. 2021, 6, 2523–2524. [Google Scholar] [CrossRef]
- Nakazawa, E.; Uchimura, T.; Hirai, Y.; Togashi, H.; Oyama, Y.; Inaba, A.; Shiga, K.; Ito, S. New-onset pediatric nephrotic syndrome following Pfizer-BioNTech SARS-CoV-2 vaccination: A case report and literature review. CEN Case Rep. 2022, 11, 242–246. [Google Scholar] [CrossRef]
- Lim, J.H.; Han, M.H.; Kim, Y.J.; Kim, M.S.; Jung, H.Y.; Choi, J.Y.; Cho, J.H.; Kim, C.D.; Kim, Y.L.; Park, S.H. New-onset Nephrotic Syndrome after Janssen COVID-19 Vaccination: A Case Report and Literature Review. J. Korean Med. Sci. 2021, 36, e218. [Google Scholar] [CrossRef] [PubMed]
- Mancianti, N.; Guarnieri, A.; Tripodi, S.; Salvo, D.P.; Garosi, G. Minimal change disease following vaccination for SARS-CoV-2. J. Nephrol. 2021, 34, 1039–1040. [Google Scholar] [CrossRef]
- Schwotzer, N.; Kissling, S.; Fakhouri, F. Letter regarding “Minimal change disease relapse following SARS-CoV-2 mRNA vaccine”. Kidney Int. 2021, 100, 458–459. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Fugo, K.; Yamazaki, K.; Terawaki, H. Minimal change disease soon after Pfizer-BioNTech COVID-19 vaccination. Clin. Kidney J. 2021, 14, 2606–2607. [Google Scholar] [CrossRef] [PubMed]
- Anupama, Y.J.; Patel, R.G.N.; Vankalakunti, M. Nephrotic Syndrome Following ChAdOx1 nCoV-19 Vaccine Against SARScoV-2. Kidney Int. Rep. 2021, 6, 2248. [Google Scholar] [CrossRef] [PubMed]
- Dirim, A.B.; Safak, S.; Andac, B.; Garayeva, N.; Demir, E.; Artan, A.S.; Ozluk, Y.; Kilicaslan, I.; Oto, O.A.; Ozturk, S.; et al. Minimal change disease following vaccination with CoronaVac. Clin. Kidney J. 2021, 14, 2268–2269. [Google Scholar] [CrossRef] [PubMed]
- Thappy, S.; Thalappil, S.R.; Abbarh, S.; Al-Mashdali, A.; Akhtar, M.; Alkadi, M.M. Minimal change disease following the Moderna COVID-19 vaccine: First case report. BMC Nephrol. 2021, 22, 376. [Google Scholar] [CrossRef]
- Alhosaini, M.N. A Case of Minimal Change Disease after SARS-CoV-2 Vaccination under the Age of 18. Avicenna J. Med. 2022, 12, 31–33. [Google Scholar] [CrossRef]
- Pella, E.; Sarafidis, P.A.; Alexandrou, M.E.; Stangou, M.; Nikolaidou, C.; Kosmidis, D.; Papagianni, A. De novo Minimal Change Disease in an Adolescent after Pfizer-BioNTech COVID-19 Vaccination: A Case Report. Case Rep. Nephrol. Dial. 2022, 12, 44–49. [Google Scholar] [CrossRef]
- Mochizuki, R.I.; Takahashi, N.; Ikenouchi, K.; Shoda, W.; Kuyama, T.; Takahashi, D. A de novo case of minimal change disease following the first dose of the Moderna mRNA-1273 SARS-CoV-2 vaccine without relapse after the second dose. CEN Case Rep. 2022, 18, 1–5. [Google Scholar] [CrossRef]
- Biradar, V.; Konnur, A.; Gang, S.; Hegde, U.; Rajapurkar, M.; Patel, H.; Pandey, S.N.; Soni, S. Adult-onset nephrotic syndrome following coronavirus disease vaccination. Clin. Kidney J. 2022, 15, 168–170. [Google Scholar] [CrossRef] [PubMed]
- Unver, S.; Haholu, A.; Yildirim, S. Nephrotic syndrome and acute kidney injury following CoronaVac anti-SARS-CoV-2 vaccine. Clin. Kidney J. 2021, 14, 2608–2611. [Google Scholar] [CrossRef] [PubMed]
- Jongvilaikasem, P.; Rianthavorn, P. Minimal change disease and acute interstitial nephritis following SARS-CoV-2 BNT162b2 vaccination. Pediatr. Nephrol. 2022, 37, 1419–1421. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; An, W.S.; Rha, S.H.; Kim, S.E.; Lee, S.M. Minimal change glomerulonephritis following the second dose of the Moderna COVID-19 vaccine. QJM Mon. J. Assoc. Physicians 2022, 115, 490–491. [Google Scholar] [CrossRef] [PubMed]
- Abdulgayoom, M.; Albuni, M.K.; Abdelmahmuod, E.; Murshed, K.; Eldeeb, Y. Minimal change nephrotic syndrome four days after the administration of Pfizer-BioNTech COVID-19 vaccine-a new side effect or coincidence? Clin. Case Rep. 2021, 9, e05003. [Google Scholar] [CrossRef] [PubMed]
- Baskaran, K.; Cohen, A.W.S.; Weerasinghe, N.; Vilayur, E. Report of two cases of minimal change disease following vaccination for COVID–19. Nephrology 2022, 27, 111–112. [Google Scholar] [CrossRef]
- Dormann, H.; Knüppel-Ruppert, A.; Amann, K.; Erley, C. Nephrotic Syndrome After Vaccination Against COVID-19: Three New Cases From Germany. Dtsch. Arztebl. Int. 2021, 118, 662–663. [Google Scholar] [CrossRef] [PubMed]
- Nagai, K.; Kageyama, M.; Iwase, M.; Ueda, A. A young adult with nephrotic syndrome following COVID-19 vaccination. CEN Case Rep. 2022, 11, 397–398. [Google Scholar] [CrossRef]
- Hartley, J.L.; Bailey, N.; Sharma, A.; Shawki, H. Nephrotic syndrome with minimal change disease after the Pfizer-BioNTech COVID-19 vaccine: Two cases. BMJ Case Rep. 2022, 15, e244638. [Google Scholar] [CrossRef]
- Chandra, P.; Roldao, M.; Drachenberg, C.; Santos, P.; Washida, N.; Clark, A.; Bista, B.; Mitsuna, R.; Yango, A. Minimal change disease and COVID-19 vaccination: Four cases and review of literature. Clin. Nephrol. Case Stud. 2022, 10, 54–63. [Google Scholar] [CrossRef]
- Klomjit, N.; Alexander, M.P.; Fervenza, F.C.; Zoghby, Z.; Garg, A.; Hogan, M.C.; Nasr, S.H.; Minshar, M.A.; Zand, L. COVID-19 Vaccination and Glomerulonephritis. Kidney Int. Rep. 2021, 6, 2969–2978. [Google Scholar] [CrossRef] [PubMed]
- Sekar, A.; Campbell, R.; Tabbara, J.; Rastogi, P. ANCA glomerulonephritis after the Moderna COVID-19 vaccination. Kidney Int. 2021, 100, 473–474. [Google Scholar] [CrossRef] [PubMed]
- Shakoor, M.T.; Birkenbach, M.P.; Lynch, M. ANCA-Associated Vasculitis Following Pfizer-BioNTech COVID-19 Vaccine. Am. J. Kidney Dis. 2021, 78, 611–613. [Google Scholar] [CrossRef] [PubMed]
- Feghali, E.J.; Zafar, M.; Abid, S.; Santoriello, D.; Mehta, S. De-novo Antineutrophil Cytoplasmic Antibody-Associated Vasculitis Following the mRNA-1273 (Moderna) Vaccine for COVID-19. Cureus 2021, 13, e19616. [Google Scholar] [CrossRef]
- Chen, C.C.; Chen, H.Y.; Lu, C.C.; Lin, S.H. Case Report: Anti-neutrophil Cytoplasmic Antibody-Associated Vasculitis With Acute Renal Failure and Pulmonary Hemorrhage May Occur After COVID-19 Vaccination. Front. Med. 2021, 8, 765447. [Google Scholar] [CrossRef]
- Kim, B.C.; Kim, H.S.; Han, K.H.; Han, S.Y.; Jo, H.A. A Case Report of MPO-ANCA-Associated Vasculitis Following Heterologous mRNA1273 COVID-19 Booster Vaccination. J. Korean Med. Sci. 2022, 37, e204. [Google Scholar] [CrossRef]
- Anderegg, M.A.; Liu, M.; Saganas, C.; Montani, M.; Vogt, B.; Huynh-Do, U.; Fuster, D.G. De novo vasculitis after mRNA-1273 (Moderna) vaccination. Kidney Int. 2021, 100, 474–476. [Google Scholar] [CrossRef] [PubMed]
- Gillion, V.; Jadoul, M.; Demoulin, N.; Aydin, S.; Devresse, A. Granulomatous vasculitis after the AstraZeneca anti-SARS-CoV-2 vaccine. Kidney Int. 2021, 100, 706–707. [Google Scholar] [CrossRef]
- Dube, G.K.; Benvenuto, L.J.; Batal, I. Antineutrophil Cytoplasmic Autoantibody-Associated Glomerulonephritis Following the Pfizer-BioNTech COVID-19 Vaccine. Kidney Int. Rep. 2021, 6, 3087–3089. [Google Scholar] [CrossRef]
- Villa, M.; Díaz-Crespo, F.; Pérez de José, A.; Verdalles, Ú.; Verde, E.; Almeida Ruiz, F.; Acosta, A.; Mijaylova, A.; Goicoechea, M. A case of ANCA-associated vasculitis after AZD1222 (Oxford-AstraZeneca) SARS-CoV-2 vaccination: Casualty or causality? Kidney Int. 2021, 100, 937–938. [Google Scholar] [CrossRef]
- Hakroush, S.; Tampe, B. Case Report: ANCA-Associated Vasculitis Presenting With Rhabdomyolysis and Pauci-Immune Crescentic Glomerulonephritis After Pfizer-BioNTech COVID-19 mRNA Vaccination. Front. Immunol. 2021, 12, 762006. [Google Scholar] [CrossRef] [PubMed]
- Kudose, S.; Friedmann, P.; Albajrami, O.; D’Agati, V.D. Histologic correlates of gross hematuria following Moderna COVID-19 vaccine in patients with IgA nephropathy. Kidney Int. 2021, 100, 468–469. [Google Scholar] [CrossRef] [PubMed]
- Hanna, C.; Herrera Hernandez, L.P.; Bu, L.; Kizilbash, S.; Najera, L.; Rheault, M.N.; Czyzyk, J.; Kouri, A.M. IgA nephropathy presenting as macroscopic hematuria in 2 pediatric patients after receiving the Pfizer COVID-19 vaccine. Kidney Int. 2021, 100, 705–706. [Google Scholar] [CrossRef]
- Sacker, A.; Kung, V.; Andeen, N. Anti-GBM nephritis with mesangial IgA deposits after SARS-CoV-2 mRNA vaccination. Kidney Int. 2021, 100, 471–472. [Google Scholar] [CrossRef]
- Aydın, M.F.; Yıldız, A.; Oruç, A.; Sezen, M.; Dilek, K.; Güllülü, M.; Yavuz, M.; Ersoy, A. Relapse of primary membranous nephropathy after inactivated SARS-CoV-2 virus vaccination. Kidney Int. 2021, 100, 464–465. [Google Scholar] [CrossRef] [PubMed]
- Perrin, P.; Bassand, X.; Benotmane, I.; Bouvier, N. Gross hematuria following SARS-CoV-2 vaccination in patients with IgA nephropathy. Kidney Int. 2021, 100, 466–468. [Google Scholar] [CrossRef]
- Negrea, L.; Rovin, B.H. Gross hematuria following vaccination for severe acute respiratory syndrome coronavirus 2 in 2 patients with IgA nephropathy. Kidney Int. 2021, 99, 1487. [Google Scholar] [CrossRef] [PubMed]
- Yokote, S.; Ueda, H.; Shimizu, A.; Okabe, M.; Yamamoto, K.; Tsuboi, N.; Yokoo, T. IgA nephropathy with glomerular capillary IgA deposition following SARS-CoV-2 mRNA vaccination: A report of three cases. CEN Case Rep. 2022, 13, 1–7. [Google Scholar] [CrossRef]
- Uchiyama, Y.; Fukasawa, H.; Ishino, Y.; Nakagami, D.; Kaneko, M.; Yasuda, H.; Furuya, R. Sibling cases of gross hematuria and newly diagnosed IgA nephropathy following SARS-CoV-2 vaccination. BMC Nephrol. 2022, 23, 216. [Google Scholar] [CrossRef]
- Rahim, S.E.G.; Lin, J.T.; Wang, J.C. A case of gross hematuria and IgA nephropathy flare-up following SARS-CoV-2 vaccination. Kidney Int. 2021, 100, 238. [Google Scholar] [CrossRef]
- Martinez Valenzuela, L.; Oliveras, L.; Gomà, M.; Quiros, E.; Antón-Pámpols, P.; Gómez-Preciado, F.; Fulladosa, X.; Cruzado, J.M.; Torras, J.; Draibe, J. Th1 Cytokines Signature in 2 Cases of IgA Nephropathy Flare after mRNA-Based SARS-CoV-2 Vaccine: Exploring the Pathophysiology. Nephron 2022, 31, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Abramson, M.; Mon-Wei Yu, S.; Campbell, K.N.; Chung, M.; Salem, F. IgA Nephropathy After SARS-CoV-2 Vaccination. Kidney Med. 2021, 3, 860–863. [Google Scholar] [CrossRef] [PubMed]
- Niel, O.; Florescu, C. IgA nephropathy presenting as rapidly progressive glomerulonephritis following first dose of COVID-19 vaccine. Pediatr. Nephrol. 2022, 37, 461–462. [Google Scholar] [CrossRef]
- Abdel-Qader, D.H.; Hazza Alkhatatbeh, I.; Hayajneh, W.; Annab, H.; Al Meslamani, A.Z.; Elmusa, R.A. IgA nephropathy in a pediatric patient after receiving the first dose of Pfizer-BioNTech COVID-19 vaccine. Vaccine 2022, 40, 2528–2530. [Google Scholar] [CrossRef] [PubMed]
- Okada, M.; Kikuchi, E.; Nagasawa, M.; Oshiba, A.; Shimoda, M. An adolescent girl diagnosed with IgA nephropathy following the first dose of the COVID-19 vaccine. CEN Case Rep. 2022, 11, 376–379. [Google Scholar] [CrossRef] [PubMed]
- Fujita, Y.; Yoshida, K.; Ichikawa, D.; Shibagaki, Y.; Yazawa, M. Abrupt worsening of occult IgA nephropathy after the first dose of SARS-CoV-2 vaccination. CEN Case Rep. 2022, 11, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Fenoglio, R.; Lalloni, S.; Marchisio, M.; Oddone, V.; De Simone, E.; Del Vecchio, G.; Sciascia, S.; Roccatello, D. New Onset Biopsy-Proven Nephropathies after COVID Vaccination. Am. J. Nephrol. 2022, 53, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Lo, W.K.; Chan, K.W. Gross haematuria after mRNA COVID-19 vaccination in two patients with histological and clinical diagnosis of IgA nephropathy. Nephrology 2022, 27, 110–111. [Google Scholar] [CrossRef]
- Leong, L.C.; Hong, W.Z.; Khatri, P. Reactivation of minimal change disease and IgA nephropathy after COVID-19 vaccination. Clin. Kidney J. 2022, 15, 569–570. [Google Scholar] [CrossRef]
- Tan, H.Z.; Tan, R.Y.; Choo, J.C.J.; Lim, C.C.; Tan, C.S.; Loh, A.H.L.; Tien, C.S.; Tan, P.H.; Woo, K.T. Is COVID-19 vaccination unmasking glomerulonephritis? Kidney Int. 2021, 100, 469–471. [Google Scholar] [CrossRef]
- Horino, T.; Sawamura, D.; Inotani, S.; Ishihara, M.; Komori, M.; Ichii, O. Newly diagnosed IgA nephropathy with gross haematuria following COVID-19 vaccination. QJM Mon. J. Assoc. Physicians 2022, 115, 28–29. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, V.; Geara, A.S.; Han, S.; Hogan, J.J.; Coppock, G. Need for symptom monitoring in IgA nephropathy patients post COVID-19 vaccination. Clin. Nephrol. 2022, 97, 193–194. [Google Scholar] [CrossRef] [PubMed]
- Morisawa, K.; Honda, M. Two patients presenting IgA nephropathy after COVID-19 vaccination during a follow-up for asymptomatic hematuria. Pediatr. Nephrol. 2022, 37, 1695–1696. [Google Scholar] [CrossRef] [PubMed]
- Nihei, Y.; Kishi, M.; Suzuki, H.; Koizumi, A.; Yoshida, M.; Hamaguchi, S.; Iwasaki, M.; Fukuda, H.; Takahara, H.; Kihara, M.; et al. IgA Nephropathy with Gross Hematuria Following COVID-19 mRNA Vaccination. Intern. Med. 2022, 61, 1033–1037. [Google Scholar] [CrossRef]
- Horino, T. IgA nephropathy flare-up following SARS-CoV-2 vaccination. QJM Mon. J. Assoc. Physicians 2021, 114, 735–736. [Google Scholar] [CrossRef]
- Watanabe, S.; Zheng, S.; Rashidi, A. IgA nephropathy relapse following COVID-19 vaccination treated with corticosteroid therapy: Case report. BMC Nephrol. 2022, 23, 135. [Google Scholar] [CrossRef]
- Udagawa, T.; Motoyoshi, Y. Macroscopic hematuria in two children with IgA nephropathy remission following Pfizer COVID-19 vaccination. Pediatr. Nephrol. 2022, 37, 1693–1694. [Google Scholar] [CrossRef]
- Lim, J.H.; Kim, M.S.; Kim, Y.J.; Han, M.H.; Jung, H.Y.; Choi, J.Y.; Cho, J.H.; Kim, C.D.; Kim, Y.L.; Park, S.H. New-Onset Kidney Diseases after COVID-19 Vaccination: A Case Series. Vaccines 2022, 10, 302. [Google Scholar] [CrossRef]
- Plasse, R.; Nee, R.; Gao, S.; Olson, S. Acute kidney injury with gross hematuria and IgA nephropathy after COVID-19 vaccination. Kidney Int. 2021, 100, 944–945. [Google Scholar] [CrossRef]
- Park, J.S.; Lee, E.Y. Renal side effects of COVID-19 vaccines in patients with immunoglobulin A nephropathy. Kidney Res. Clin. Pract. 2022, 41, 124–127. [Google Scholar] [CrossRef]
- Tuschen, K.; Bräsen, J.H.; Schmitz, J.; Vischedyk, M.; Weidemann, A. Relapse of class V lupus nephritis after vaccination with COVID-19 mRNA vaccine. Kidney Int. 2021, 100, 941–944. [Google Scholar] [CrossRef] [PubMed]
- Zavala-Miranda, M.F.; González-Ibarra, S.G.; Pérez-Arias, A.A.; Uribe-Uribe, N.O.; Mejia-Vilet, J.M. New-onset systemic lupus erythematosus beginning as class V lupus nephritis after COVID-19 vaccination. Kidney Int. 2021, 100, 1340–1341. [Google Scholar] [CrossRef] [PubMed]
- Da, Y.; Goh, G.H.; Khatri, P. A case of membranous nephropathy following Pfizer-BioNTech mRNA vaccination against COVID-19. Kidney Int. 2021, 100, 938–939. [Google Scholar] [CrossRef]
- Gueguen, L.; Loheac, C.; Saidani, N.; Khatchatourian, L. Membranous nephropathy following anti-COVID-19 mRNA vaccination. Kidney Int. 2021, 100, 1140–1141. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.H.; Kang, K.S.; Han, K.H. Two adolescent cases of acute tubulointerstitial nephritis after second dose of COVID-19 mRNA vaccine. Hum. Vaccines Immunother. 2022, 18, 2059308. [Google Scholar] [CrossRef] [PubMed]
- Dheir, H.; Sipahi, S.; Cakar, G.C.; Yaylaci, S.; Hacibekiroglu, T.; Karabay, O. Acute tubulointerstitial nephritis after COVID-19 m-RNA BNT162b2 vaccine. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 6171–6173. [Google Scholar] [PubMed]
- Mira, F.S.; Costa Carvalho, J.; de Almeida, P.A.; Pimenta, A.C.; Alen Coutinho, I.; Figueiredo, C.; Rodrigues, L.; Sousa, V.; Ferreira, E.; Pinto, H.; et al. A Case of Acute Interstitial Nephritis After Two Doses of the BNT162b2 SARS-CoV-2 Vaccine. Int. J. Nephrol. Renov. Dis 2021, 14, 421–426. [Google Scholar] [CrossRef]
- Rieckmann, S.; Seibert, F.S.; Hogeweg, M.; Bertram, S.; Doevelaar, A.A.N.; Amann, K.; Babel, N.; Westhoff, T.H. Acute interstitial nephritis after vaccination with BNT162b2. J. Nephrol. 2022, 35, 779–782. [Google Scholar] [CrossRef]
- Tan, F.S.; Kabir, M.E.; Bhandari, S. Acute interstitial nephritis after COVID-19 vaccination. BMJ Case Rep. 2022, 15, e246841. [Google Scholar] [CrossRef]
- Hong, L.-Y.; Lee, C.-H.; Chiu, I.J. De novo podocytopathy following moderna COVID-19 vaccine: A case report and racial disproportionality in adverse effect reports. Front. Med. 2022, 9, 844004. [Google Scholar] [CrossRef]
- Kim, H.J.; Jung, M.; Lim, B.J.; Han, S.H. New-onset class III lupus nephritis with multi-organ involvement after COVID-19 vaccination. Kidney Int. 2022, 101, 826–828. [Google Scholar] [CrossRef] [PubMed]
- Marampudi, S.; Beshai, R.; Banker, G. Reactivation of minimal change disease after pfizer vaccine against COVID-19. J. Osteopath. Med. 2022, 122, 499–501. [Google Scholar] [CrossRef] [PubMed]
- Ran, E.; Wang, M.; Wang, Y.; Liu, R.; Yi, Y.; Liu, Y. New-onset crescent IgA nephropathy following the CoronaVac vaccine: A case report. Medicine 2022, 101, e30066. [Google Scholar] [CrossRef] [PubMed]
- Fillon, A.; Sautenet, B.; Barbet, C.; Moret, L.; Thillard, E.M.; Jonville-Béra, A.P.; Halimi, J.M. De novo and relapsing necrotizing vasculitis after COVID-19 vaccination. Clin. Kidney J. 2022, 15, 560–563. [Google Scholar] [CrossRef]
- David, R.; Hanna, P.; Lee, K.; Ritchie, A. Relapsed ANCA associated vasculitis following Oxford AstraZeneca ChAdOx1-S COVID-19 vaccination: A case series of two patients. Nephrology 2022, 27, 109–110. [Google Scholar] [CrossRef]
- Schaubschlager, T.; Rajora, N.; Diep, S.; Kirtek, T.; Cai, Q.; Hendricks, A.R.; Shastri, S.; Zhou, X.J.; Saxena, R. De novo or recurrent glomerulonephritis and acute tubulointerstitial nephritis after COVID-19 vaccination: A report of six cases from a single center. Clin. Nephrol. 2022, 97, 289–297. [Google Scholar] [CrossRef]
- Chavarot, N.; Padden, M.; Amrouche, L.; Malard, S.; Scemla, A.; Sberro-Soussan, R.; Leon, J.; Legendre, C.; Duong, J.P.; Zuber, J.; et al. De novo posttransplant membranous nephropathy following BNT162b2 mRNA COVID-19 vaccine in a kidney transplant recipient. Am. J. Transplant. 2022. [Google Scholar] [CrossRef]
- Fulchiero, R.; Amaral, S. Focal segmental glomerulosclerosis recurrence in a young adult with kidney transplant after mRNA COVID-19 vaccination. Pediatr. Nephrol. 2022, 37, 2217. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Voysey, M.; Clemens, S.A.C.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021, 397, 99–111. [Google Scholar] [CrossRef]
- Logunov, D.Y.; Dolzhikova, I.V.; Shcheblyakov, D.V.; Tukhvatulin, A.I.; Zubkova, O.V.; Dzharullaeva, A.S.; Kovyrshina, A.V.; Lubenets, N.L.; Grousova, D.M.; Erokhova, A.S.; et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: An interim analysis of a randomised controlled phase 3 trial in Russia. Lancet 2021, 397, 671–681. [Google Scholar] [CrossRef]
- Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. mRNA vaccines—A new era in vaccinology. Nat. Rev. Drug Discov. 2018, 17, 261–279. [Google Scholar] [CrossRef] [Green Version]
- Sprent, J.; King, C. COVID-19 vaccine side effects: The positives about feeling bad. Sci. Immunol. 2021, 6, eabj9256. [Google Scholar] [CrossRef]
- Sayedahmed, E.E.; Elkashif, A.; Alhashimi, M.; Sambhara, S.; Mittal, S.K. Adenoviral Vector-Based Vaccine Platforms for Developing the Next Generation of Influenza Vaccines. Vaccines 2020, 8, 574. [Google Scholar] [CrossRef] [PubMed]
- Vivarelli, M.; Massella, L.; Ruggiero, B.; Emma, F. Minimal Change Disease. Clin. J. Am. Soc. Nephrol. CJASN 2017, 12, 332–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sette, A.; Crotty, S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell 2021, 184, 861–880. [Google Scholar] [CrossRef]
- Sahin, U.; Muik, A.; Derhovanessian, E.; Vogler, I.; Kranz, L.M.; Vormehr, M.; Baum, A.; Pascal, K.; Quandt, J.; Maurus, D.; et al. COVID-19 vaccine BNT162b1 elicits human antibody and T(H)1 T cell responses. Nature 2020, 586, 594–599. [Google Scholar] [CrossRef]
- Schena, F.P.; Nistor, I. Epidemiology of IgA Nephropathy: A Global Perspective. Semin. Nephrol. 2018, 38, 435–442. [Google Scholar] [CrossRef]
- Lai, K.N. Pathogenesis of IgA nephropathy. Nat. Rev. Nephrol. 2012, 8, 275–283. [Google Scholar] [CrossRef]
- Lai, K.N.; Tang, S.C.; Schena, F.P.; Novak, J.; Tomino, Y.; Fogo, A.B.; Glassock, R.J. IgA nephropathy. Nat. Rev. Dis. Prim. 2016, 2, 16001. [Google Scholar] [CrossRef]
- Patel, C.; Shah, H.H. Vaccine-associated kidney diseases: A narrative review of the literature. Saudi J. Kidney Dis. Transplant. 2019, 30, 1002–1009. [Google Scholar] [CrossRef]
- Wisnewski, A.V.; Campillo Luna, J.; Redlich, C.A. Human IgG and IgA responses to COVID-19 mRNA vaccines. PLoS ONE 2021, 16, e0249499. [Google Scholar] [CrossRef] [PubMed]
- Jeffs, L.S.; Nitschke, J.; Tervaert, J.W.; Peh, C.A.; Hurtado, P.R. Viral RNA in the influenza vaccine may have contributed to the development of ANCA-associated vasculitis in a patient following immunisation. Clin. Rheumatol. 2016, 35, 943–951. [Google Scholar] [CrossRef] [PubMed]
- Uppal, N.N.; Kello, N.; Shah, H.H.; Khanin, Y.; De Oleo, I.R.; Epstein, E.; Sharma, P.; Larsen, C.P.; Bijol, V.; Jhaveri, K.D. De Novo ANCA-Associated Vasculitis With Glomerulonephritis in COVID-19. Kidney Int. Rep. 2020, 5, 2079–2083. [Google Scholar] [CrossRef] [PubMed]
- Vlachoyiannopoulos, P.G.; Magira, E.; Alexopoulos, H.; Jahaj, E.; Theophilopoulou, K.; Kotanidou, A.; Tzioufas, A.G. Autoantibodies related to systemic autoimmune rheumatic diseases in severely ill patients with COVID-19. Ann. Rheum. Dis. 2020, 79, 1661–1663. [Google Scholar] [CrossRef] [PubMed]
- Prendecki, M.; Clarke, C.; Cairns, T.; Cook, T.; Roufosse, C.; Thomas, D.; Willicombe, M.; Pusey, C.D.; McAdoo, S.P. Anti-glomerular basement membrane disease during the COVID-19 pandemic. Kidney Int. 2020, 98, 780–781. [Google Scholar] [CrossRef] [PubMed]
- Arunachalam, P.S.; Scott, M.K.D.; Hagan, T.; Li, C.; Feng, Y.; Wimmers, F.; Grigoryan, L.; Trisal, M.; Edara, V.V.; Lai, L.; et al. Systems vaccinology of the BNT162b2 mRNA vaccine in humans. Nature 2021, 596, 410–416. [Google Scholar] [CrossRef]
- Summers, S.A.; Steinmetz, O.M.; Gan, P.Y.; Ooi, J.D.; Odobasic, D.; Kitching, A.R.; Holdsworth, S.R. Toll-like receptor 2 induces Th17 myeloperoxidase autoimmunity while Toll-like receptor 9 drives Th1 autoimmunity in murine vasculitis. Arthritis Rheum. 2011, 63, 1124–1135. [Google Scholar] [CrossRef]
- Kumar, N.; Admane, N.; Kumari, A.; Sood, D.; Grover, S.; Prajapati, V.K.; Chandra, R.; Grover, A. Cytotoxic T-lymphocyte elicited vaccine against SARS-CoV-2 employing immunoinformatics framework. Sci. Rep. 2021, 11, 7653. [Google Scholar] [CrossRef]
- Ruebner, R.L.; Fadrowski, J.J. Tubulointerstitial Nephritis. Pediatr. Clin. N. Am. 2019, 66, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Segal, Y.; Shoenfeld, Y. Vaccine-induced autoimmunity: The role of molecular mimicry and immune crossreaction. Cell. Mol. Immunol. 2018, 15, 586–594. [Google Scholar] [CrossRef] [PubMed]
Characteristics | MCD | IgAN | ANCA | AIN |
---|---|---|---|---|
(n = 52) | (n = 48) | (n = 16) | (n = 12) | |
Age (years) | 44 (14–83) | 33 (12–79) | 75 (29–82) | 44 (12–77) |
Male sex (%) | 31 (60.0) | 23 (47.9) | 9 (56.3) | 5 (41.7) |
Medical history, n (%) | ||||
None | 15 (28.8) | 6 (12.5) | 5 (31.3) | 6 (50.0) |
Hypertension | 5 (9.6) | 3 (6.3) | 3 (18.8) | 1 (8.3) |
Diabetes/dyslipidemia | 6 (11.5) | 2 (4.2) | 1 (6.3) | 3 (25.0) |
Kidney disease/abnormal urine | 10 (19.2) | 31 (64.6) | 0 (0.0) | 0 (0.0) |
Vaccine type, n (%) | ||||
BNT-162b2 (Pfizer) | 27 (51.9) | 30 (62.5) | 7 (43.8) | 8 (66.7) |
mRNA-1273 (Moderna) | 14 (26.9) | 15 (31.3) | 6 (37.5) | 3 (25.0) |
Adenovirus vector (AstraZeneca) | 7 (13.5) | 2 (4.2) | 3 (18.8) | 1 (8.3) |
Adenovirus vector (Janssen) | 2 (3.8) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Inactivated vaccine (CoronaVac) | 2 (3.8) | 1 (2.1) | 0 (0.0) | 0 (0.0) |
Cases, n (%) | ||||
New cases | 38 (73.1) | 29 (60.4) | 10 (62.5) | 12 (100.0) |
Relapsed cases | 14 (26.9) | 19 (39.6) | 6 (37.5) | 0 (0.0) |
Symptoms occur after 1st or 2nd dose, n (%) | ||||
1st dose | 28 (53.8) | 13 (27.1) | 5 (31.3) | 4 (33.3) |
2nd dose | 24 (46.2) | 35 (72.9) | 11 (68.8) | 8 (66.7) |
Onset, n (%) | ||||
New cases 1st dose | 22 (42.3) | 10 (20.8) | 2 (12.5) | 4 (33.3) |
New cases 2nd dose | 16 (30.8) | 19 (39.6) | 8 (50.0) | 8 (66.7) |
Relapse cases 1st dose | 6 (11.5) | 3 (6.3) | 3 (18.8) | 0 (0.0) |
Relapse cases 2nd dose | 8 (15.4) | 16 (33.3) | 3 (18.8) | 0 (0.0) |
Symptoms, n (%) | ||||
Gross hematuria | 0 (0.0) | 43 (89.6) | 2 (12.5) | 0 (0.0) |
Proteinuria | 7 (13.5) | 7 (14.6) | 2 (12.5) | 0 (0.0) |
Edema | 40 (76.9) | 0 (0.0) | 1 (6.3) | 0 (0.0) |
Acute kidney injury/renal failure | 3 (5.8) | 10 (20.8) | 3 (18.8) | 12 (100.0) |
Fever/headache/nausea/vomiting/ anorexia/diarrhea | 5 (9.6) | 14 (29.2) | 4 (25.0) | 5 (41.7) |
Timing of symptom onset, n (%) | ||||
1 day | 4 (7.7) | 18 (37.5) | 3 (18.8) | 0 (0.0) |
2–7 days | 25 (48.1) | 20 (41.7) | 4 (25.0) | 4 (33.3) |
> 7 days | 23 (44.2) | 9 (18.8) | 9 (56.3) | 8 (66.7) |
Timing of symptom onset, days | ||||
1st dose | 7 (1–46) | 4.0 (1–61) | 7 (1–35) | 14.5 (2–28) |
2nd dose | 8 (2–88) | 2 (1–42) | 14 (1–60) | 14.0 (2–42) |
Laboratory on presentation | ||||
Baseline serum creatinine (mg/dl) | 0.9 (0.7–1.2) | 0.8 (0.5–1.3) | 0.8 (0.7–2.6) | 0.9 (0.9–1.0) |
Serum creatinine (mg/dl) | 1.2 (0.6–10.6) | 1.2 (0.5–3.6) | 1.8 (1.3–8.4) | 4.5 (1.7–19.0) |
Serum albumin (g/dl) | 2.1 (0.5–4.7) | 4.1 (1.9–5.3) | - | - |
Urine protein (g/d) | 14.0 (0.8–23.4) | 1.5 (0.3–14.0) | - | - |
UPCR (g/g) | 10.7 (1.3–22.6) | 1.3 (0.1–19.1) | - | 0.9 (0.1–4.6) |
Treatment, n (%) | ||||
Immunosuppression (steroid) | 39 (75.0) | 12 (25.0) | 2 (12.5) | 7 (58.3) |
Combination immunosuppression | 5 (9.6) | 4 (8.3) | 6 (37.5) | 0 (0.0) |
Steroid + plasmapheresis/hemodialysis | 3 (5.8) | 3 (6.3) | 8 (50.0) | 4 (33.3) |
Conservative management | 2 (3.8) | 24 (50.0) | 0 (0.0) | 1 (8.3) |
Spontaneously | 0 (0.0) | 4 (8.3) | 0 (0.0) | 0 (0.0) |
Not report | 3 (5.8) | 1 (2.1) | 0 (0.0) | 0 (0.0) |
Outcome *, n (%) | ||||
Response | 41 (97.6) | 37 (92.5) | 10 (91.0) | 12 (100.0) |
Not response | 1 (2.4) | 3 (7.5) | 1 (9.0) | 0 (0.0) |
Authors | Age/Sex | Medical History | Vaccine | Timing of Symptom Onset | New/Relapse | Presenting Symptoms | Diagnosis | Baseline Scr (mg/dL) | Presentation Scr (mg/dL) | Presentation Urinalysis | Treatments | Outcomes |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Da et al. [83] | 70/M | None | Pfizer | Day 1 after 2nd dose | New | Edema | MN | NA | 1.29 | UTP: 4.4 g/d, RBC: 17/μL | Conservative | No spontaneous remission after 2 months |
Fenoglio et al. [67] | 82/F | NA | Pfizer | Day 88 after 2nd dose | New | Nephrotic syndrome | MN | NA | NA | NA | Glucocorticoids | NA |
67/F | NA | Pfizer | Day 89 after 2nd dose | New | Nephrotic syndrome | MN | NA | NA | NA | Rituximab | NA | |
82/M | NA | Pfizer | Day 29 after 2nd dose | New | Nephrotic syndrome | MN | NA | NA | NA | Rituximab | NA | |
Klomjit et al. [41] | 50/F | NA | Pfizer | 4 weeks after 2nd dose | New | Joint pain and proteinuria | NELL-1 MN | 0.84 | 0.7 | UTP: 6.5 g/d, RBC: 3–10/ HPF | Conservative | Response; Scr was 0.7 mg/dL, RBC: <3/HPF, UTP was 0.4 g/d during last follow-up |
39/M | MN | Pfizer | 1 week after 2nd dose | Relapse | Edema | PLA2R MN | 0.91 | 1.13 | UTP: 8.7 g/d, RBC: 3–10/ HPF | Tacrolimus | Response; Scr was 1.1 mg/dL, RBC:3–10/HPF, UTP was 5.7 g/d during last follow-up | |
70/M | MN | Moderna | 4 weeks after 2nd dose | Relapse | Edema | PLA2R MN | 1.7 | 2.1 | UTP: 16.6 g/d, RBC: <3/ HPF | Obinutuzumab | NA | |
Aydın et al. [55] | 66/F | Primary MN, diabetes mellitus and hyperlipidemia | Sinovac | 2 weeks after 1st dose | Relapse | Edema | PLA2R MN | NA | 2.78 | UPCR: 9.42 g/g | NA | NA |
Dormann et al. [37] | 20/F | None | Pfizer | Day 5 after 1st dose | New | Edema | FSGS | NA | 0.47 | UPCR:10.3 g/g | Prednisolone, diuretic and lipid-lowering | Partial remission with persisting proteinuria and hyperlipoproteinemia |
Fenoglio et al. [67] | 24/F | NA | Pfizer | Day 88 after 2nd dose | New | Nephrotic syndrome | FSGS (tip variant) | NA | NA | NA | Glucocorticoids | NA |
Klomjit et al. [41] | 29/F | FSGS | Pfizer | 3 weeks after 2nd dose | Relapse | Edema | FSGS (tip variant) | 0.6 | 0.6 | UTP: 10 g/d, RBC: <3/ HPF | Steroid, tacrolimus | Response; Scr was 0.7 mg/dL, RBC: <3/HPF, UTP was 3.7 g/d during last follow-up |
Gillion et al. [48] | 77/M | None | AstraZeneca | 4 weeks after 1st dose | New | Fever, night sweating, and anorexia | Granulomatous vasculitis | 1.2 | 2.7 | Normal proteinuria, no hematuria | Methylprednisolone | Scr normalized within 4 weeks |
Sacker et al. [54] | Older/F | None | Moderna | 2 weeks after 2nd dose | New | Fever, anorexia, nausea, and gross hematuria | Anti-GBM with mesangial IgA deposits | NA | 7.8 | UPCR: 1.9 g/g | Methylprednisolone, cyclophosphamid, plasmapheresis, and hemodialysis | No response; dialysis-dependent |
Tan et al. [70] | 60/F | Hyperlipidemia | Pfizer | Day 1 after 2nd dose | New | Gross hematuria | Anti-GBM nephritis | NA | 6.11 | UPCR: 7.58 g/g | Methylprednisolone, prednisolone, cyclophosphamide, plasma exchange | NA |
Klomjit et al. [41] | 77/M | NA | Pfizer | 1 week after 1st dose | New | Hypertension | Atypical anti-GBM nephritis | 1 | 1.8 | UTP: 1.6 g/d, RBC: 51–100/ HPF | Prednisone, mycophenolate | No response; Scr was 2.9 mg/dL, RBC: 51–100/HPF, UTP was 0.3 g/d during last follow-up |
Tuschen et al. [81] | 42/F | LN | Pfizer | 1 week after 1st dose | Relapse | Nephrotic syndrome | Class V LN | NA | NA | UTP: 8.4 g/d | Mycophenolate mofetil and prednisolone | Proteinuria improved |
Kim et al. [91] | 60/F | Oral corticosteroids for a skin rash | AstraZeneca | Several weeks after 2nd dose | New | Edema, proteinuria | Class III LN | 0.74 | 1.81 | UPCR: 4.82 g/g | Methylprednisolone, cyclophosphamide, prednisolone and hydroxychloroquine | Response; Scr was 0.93 mg/dL, UPCR: 1.64 g/g after ten days treatment |
Zavala et al. [82] | 22/F | None | AstraZeneca | 1 week after 1st dose | New | Edema, proteinuria | Class V LN | NA | 0.8 | UTP: 12.6 g/d, UPCR: 11.0 g/g | Mycophenolate mofetil, glucocorticoids, hydroxychloroquine, and diuretics | Edema improved after 3 weeks follow-up |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Cao, J.; Ye, Q. Renal Side Effects of COVID-19 Vaccination. Vaccines 2022, 10, 1783. https://doi.org/10.3390/vaccines10111783
Zhang J, Cao J, Ye Q. Renal Side Effects of COVID-19 Vaccination. Vaccines. 2022; 10(11):1783. https://doi.org/10.3390/vaccines10111783
Chicago/Turabian StyleZhang, Junfeng, Jiajia Cao, and Qing Ye. 2022. "Renal Side Effects of COVID-19 Vaccination" Vaccines 10, no. 11: 1783. https://doi.org/10.3390/vaccines10111783
APA StyleZhang, J., Cao, J., & Ye, Q. (2022). Renal Side Effects of COVID-19 Vaccination. Vaccines, 10(11), 1783. https://doi.org/10.3390/vaccines10111783