Recent Progress on Vaccines Produced in Transgenic Plants
Abstract
:1. Introduction
2. Host Plant Species Used during Recombinant Protein Production
3. Different Expression Systems Used during Recombinant Protein Production
3.1. Plants
3.2. Mammalian Cells
3.3. Insect Cells
3.4. Bacteria
3.5. Yeasts
4. Transcriptional and Translational Challenges of Using Transgenic Plant Vectors and Strategies to Overcome Them
5. Plant-Based Vaccine Production over the Past 5 Years (2017–2021)
5.1. Cancer Vaccines
5.2. HIV Vaccines
5.3. Vaccines for Other Diseases
6. Adjuvant as a Vaccine Delivery System Tried for Plant-Based Immunogens
7. Optimization of Recombinant Vaccine Recovery and Purification
7.1. Downstream Processing of Recombinant Proteins
7.2. Downstream Processing of Plant-Derived Vaccine Candidates
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arevalo-Villalobos, J.I.; Govea-Alonso, D.O.; Bañuelos-Hernández, B.; González-Ortega, O.; Zarazúa, S.; Rosales-Mendoza, S. Inducible expression of antigens in plants: A study focused on peptides related to multiple sclerosis immunotherapy. J. Biotechnol. 2020, 318, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Schillberg, S.; Raven, N.; Spiegel, H.; Rasche, S.; Buntru, M. Critical analysis of the commercial potential of plants for the production of recombinant proteins. Front. Plant Sci. 2019, 10, 720. [Google Scholar] [CrossRef] [Green Version]
- Venkataraman, S.; Hefferon, K.; Makhzoum, A.; Abouhaidar, M. Combating human viral diseases: Will plant-based vaccines be the answer? Vaccines 2021, 9, 761. [Google Scholar] [CrossRef] [PubMed]
- Lalonde, M.-E.; Durocher, Y. Therapeutic glycoprotein production in mammalian cells. J. Biotechnol. 2017, 251, 128–140. [Google Scholar] [PubMed]
- Tremouillaux-Guiller, J.; Moustafa, K.; Hefferon, K.; Gaobotse, G.; Makhzoum, A. Plant-made HIV vaccines and potential candidates. Curr. Opin. Biotechnol. 2020, 61, 209–216. [Google Scholar] [CrossRef]
- Tremblay, R.; Wang, D.; Jevnikar, A.M.; Ma, S. Tobacco, a highly efficient green bioreactor for production of therapeutic proteins. Biotechnol. Adv. 2010, 28, 214–221. [Google Scholar] [CrossRef]
- Ravi, I.; Baunthiyal, M.; Saxena, J. Advances in Biotechnology; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Arntzen, C.; Mason, H. Oral vaccine production in the edible tissues of transgenic plants. In New Generation Vaccines, 2nd ed.; Marcel Dekker: New York, NY, USA, 1997; pp. 263–277. [Google Scholar]
- Fischer, R.; Schillberg, S. Molecular Farming: Plant-Made Pharmaceuticals and Technical Proteins; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Goff, S.A.; Ricke, D.; Lan, T.-H.; Presting, G.; Wang, R.; Dunn, M.; Glazebrook, J.; Sessions, A.; Oeller, P.; Varma, H. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 2002, 296, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Hu, S.; Wang, J.; Wong, G.K.-S.; Li, S.; Liu, B.; Deng, Y.; Dai, L.; Zhou, Y.; Zhang, X. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 2002, 296, 79–92. [Google Scholar] [CrossRef]
- Hood, E.E.; Witcher, D.R.; Maddock, S.; Meyer, T.; Baszczynski, C.; Bailey, M.; Flynn, P.; Register, J.; Marshall, L.; Bond, D. Commercial production of avidin from transgenic maize: Characterization of transformant, production, processing, extraction and purification. Mol. Breed. 1997, 3, 291–306. [Google Scholar] [CrossRef]
- Witcher, D.R.; Hood, E.E.; Peterson, D.; Bailey, M.; Bond, D.; Kusnadi, A.; Evangelista, R.; Nikolov, Z.; Wooge, C.; Mehigh, R. Commercial production of β-glucuronidase (GUS): A model system for the production of proteins in plants. Mol. Breed. 1998, 4, 301–312. [Google Scholar] [CrossRef]
- Franklin, S.E.; Mayfield, S.P. Prospects for molecular farming in the green alga Chlamydomonas reinhardtii. Curr. Opin. Plant Biol. 2004, 7, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Mayfield, S.P.; Franklin, S.E.; Lerner, R.A. Expression and assembly of a fully active antibody in algae. Proc. Natl. Acad. Sci. USA 2003, 100, 438–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, H.; He, J.; Engle, M.; Diamond, M.S.; Chen, Q. Robust production of virus-like particles and monoclonal antibodies with geminiviral replicon vectors in lettuce. Plant Biotechnol. J. 2012, 10, 95–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenzi, P.; Scotti, N.; Alagna, F.; Tornesello, M.L.; Pompa, A.; Vitale, A.; De Stradis, A.; Monti, L.; Grillo, S.; Buonaguro, F.M. Translational fusion of chloroplast-expressed human papillomavirus type 16 L1 capsid protein enhances antigen accumulation in transplastomic tobacco. Transgenic Res. 2008, 17, 1091–1102. [Google Scholar] [CrossRef] [PubMed]
- Arlen, P.A.; Singleton, M.; Adamovicz, J.J.; Ding, Y.; Davoodi-Semiromi, A.; Daniell, H. Effective plague vaccination via oral delivery of plant cells expressing F1-V antigens in chloroplasts. Infect. Immun. 2008, 76, 3640–3650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Prete, G.; Santi, L.; Andrianaivoarimanana, V.; Amedei, A.; Domarle, O.; D’elios, M.; Arntzen, C.; Rahalison, L.; Mason, H. Plant-derived recombinant Fl, V, and F1-V fusion antigens of Yersinia pestis activate human cells of the innate and adaptive immune system. Int. J. Immunopathol. Pharmacol. 2009, 22, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Marusic, C.; Nuttall, J.; Buriani, G.; Lico, C.; Lombardi, R.; Baschieri, S.; Benvenuto, E.; Frigerio, L. Expression, intracellular targeting and purification of HIV Nef variants in tobacco cells. BMC Biotechnol. 2007, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.G.; Rodrigues, L.; Rovinski, B.; White, K.A. Production of HIV-1 p24 protein in transgenic tobacco plants. Mol. Biotechnol. 2002, 20, 131–136. [Google Scholar] [CrossRef]
- Sack, M.; Paetz, A.; Kunert, R.; Bomble, M.; Hesse, F.; Stiegler, G.; Fischer, R.; Katinger, H.; Stoeger, E.; Rademacher, T. Functional analysis of the broadly neutralizing human anti-HIV-1 antibody 2F5 produced in transgenic BY-2 suspension cultures. FASEB J. 2007, 21, 1655–1664. [Google Scholar] [CrossRef]
- Peeters, K.; De Wilde, C.; Depicker, A. Highly efficient targeting and accumulation of a Fab fragment within the secretory pathway and apoplast of Arabidopsis thaliana. Eur. J. Biochem. 2001, 268, 4251–4260. [Google Scholar] [CrossRef]
- Kalbina, I.; Engstrand, L.; Andersson, S.; Strid, Å. Expression of Helicobacter pylori TonB protein in transgenic Arabidopsis thaliana: Toward production of vaccine antigens in plants. Helicobacter 2010, 15, 430–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, Y.J.; Hong, S.Y.; Kwon, T.H.; Jang, Y.S.; Yang, M.S. High level of expression of recombinant human granulocyte-macrophage colony stimulating factor in transgenic rice cell suspension culture. Biotechnol. Bioeng. 2003, 82, 778–783. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wu, L.; Yalda, D.; Adkins, Y.; Kelleher, S.L.; Crane, M.; Lonnerdal, B.; Rodriguez, R.L.; Huang, N. Expression of functional recombinant human lysozyme in transgenic rice cell culture. Transgenic Res. 2002, 11, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Zhong, G.-Y.; Peterson, D.; Delaney, D.E.; Bailey, M.; Witcher, D.R.; Register Iii, J.C.; Bond, D.; Li, C.-P.; Marshall, L.; Kulisek, E. Commercial production of aprotinin in transgenic maize seeds. Mol. Breed. 1999, 5, 345–356. [Google Scholar] [CrossRef]
- Park, Y.; Cheong, H. Expression and production of recombinant human interleukin-2 in potato plants. Protein Expr. Purif. 2002, 25, 160–165. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, Y.-H.; Lin, Y.-M.; Rao, Q.; Zheng, G.-G.; Wu, K.-F. Expression and production of bioactive human interleukin-18 in transgenic tobacco plants. Biotechnol. Lett. 2003, 25, 1629–1635. [Google Scholar] [CrossRef]
- Ohya, K.; Matsumura, T.; Ohashi, K.; Onuma, M.; Sugimoto, C. Expression of two subtypes of human IFN-α in transgenic potato plants. J. Interferon Cytokine Res. 2001, 21, 595–602. [Google Scholar] [CrossRef]
- Yu, J.; Langridge, W. Expression of rotavirus capsid protein VP6 in transgenic potato and its oral immunogenicity in mice. Transgenic Res. 2003, 12, 163–169. [Google Scholar] [CrossRef]
- Stoger, E.; Sack, M.; Perrin, Y.; Vaquero, C.; Torres, E.; Twyman, R.M.; Christou, P.; Fischer, R. Practical considerations for pharmaceutical antibody production in different crop systems. Mol. Breed. 2002, 9, 149–158. [Google Scholar] [CrossRef]
- Sandhu, J.S.; Krasnyanski, S.F.; Domier, L.L.; Korban, S.S.; Osadjan, M.D.; Buetow, D.E. Oral immunization of mice with transgenic tomato fruit expressing respiratory syncytial virus-F protein induces a systemic immune response. Transgenic Res. 2000, 9, 127–135. [Google Scholar] [CrossRef]
- Kapusta, J.; Modelska, A.; Figlerowicz, M.; Pniewski, T.; Letellier, M.; Lisowa, O.; Yusibov, V.; Koprowski, H.; Plucienniczak, A.; Legocki, A. A plant-derived edible vaccine against hepatitis B virus. FASEB J. 1999, 13, 1796–1799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pniewski, T.; Kapusta, J.; Bociąg, P.; Wojciechowicz, J.; Kostrzak, A.; Gdula, M.; Fedorowicz-Strońska, O.; Wójcik, P.; Otta, H.; Samardakiewicz, S. Low-dose oral immunization with lyophilized tissue of herbicide-resistant lettuce expressing hepatitis B surface antigen for prototype plant-derived vaccine tablet formulation. J. Appl. Genet. 2011, 52, 125–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koprowski, H. Old and new prescriptions for infectious diseases and the newest recipes for biomedical products in plants. Arch. Immunol. Ther. Exp. 2002, 50, 365–369. [Google Scholar]
- Morrow, J.F.; Cohen, S.N.; Chang, A.C.; Boyer, H.W.; Goodman, H.M.; Helling, R.B. Replication and Transcription of Eukaryotic DNA in Esherichia coli. Proc. Natl. Acad. Sci. USA 1974, 71, 1743–1747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faye, L.; Gomord, V. Success stories in molecular farming—A brief overview. Plant Biotechnol. J. 2010, 8, 525–528. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, M. US signs contract with ZMapp maker to accelerate development of the Ebola drug. BMJ 2014, 349, g5488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCormick, A.; Reddy, S.; Reinl, S.; Cameron, T.; Czerwinkski, D.; Vojdani, F.; Hanley, K.; Garger, S.; White, E.; Novak, J. Plant-produced idiotype vaccines for the treatment of non-Hodgkin’s lymphoma: Safety and immunogenicity in a phase I clinical study. Proc. Natl. Acad. Sci. USA 2008, 105, 10131–10136. [Google Scholar] [CrossRef] [Green Version]
- Richter, L.J.; Thanavala, Y.; Arntzen, C.J.; Mason, H.S. Production of hepatitis B surface antigen in transgenic plants for oral immunization. Nat. Biotechnol. 2000, 18, 1167–1171. [Google Scholar] [CrossRef]
- Tacket, C.O.; Mason, H.S.; Losonsky, G.; Clements, J.D.; Levine, M.M.; Arntzen, C.J. Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potato. Nat. Med. 1998, 4, 607–609. [Google Scholar] [CrossRef] [PubMed]
- Tacket, C.O.; Mason, H.S.; Losonsky, G.; Estes, M.K.; Levine, M.M.; Arntzen, C.J. Human immune responses to a novel Norwalk virus vaccine delivered in transgenic potatoes. J. Infect. Dis. 2000, 182, 302–305. [Google Scholar] [CrossRef]
- Chen, R. Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol. Adv. 2012, 30, 1102–1107. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Tyo, K.E.; Martínez, J.L.; Petranovic, D.; Nielsen, J. Different expression systems for production of recombinant proteins in Saccharomyces cerevisiae. Biotechnol. Bioeng. 2012, 109, 1259–1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.; Davis, K.R. The potential of plants as a system for the development and production of human biologics. F1000Research 2016, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, X.; Wong, G.; Audet, J.; Bello, A.; Fernando, L.; Alimonti, J.B.; Fausther-Bovendo, H.; Wei, H.; Aviles, J.; Hiatt, E. Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature 2014, 514, 47–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gelvin, S.B. Agrobacterium-mediated plant transformation: The biology behind the “gene-jockeying” tool. Microbiol. Mol. Biol. Rev. 2003, 67, 16–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montoya, A.; Chilton, M.; Gordon, M.; Sciaky, D.; Nester, E. Octopine and nopaline metabolism in Agrobacterium tumefaciens and crown gall tumor cells: Role of plasmid genes. J. Bacteriol. 1977, 129, 101–107. [Google Scholar] [CrossRef] [Green Version]
- De Jesus, M.; Wurm, F.M. Manufacturing recombinant proteins in kg-ton quantities using animal cells in bioreactors. Eur. J. Pharm. Biopharm. 2011, 78, 184–188. [Google Scholar] [CrossRef]
- Hacker, D.L.; Kiseljak, D.; Rajendra, Y.; Thurnheer, S.; Baldi, L.; Wurm, F.M. Polyethyleneimine-based transient gene expression processes for suspension-adapted HEK-293E and CHO-DG44 cells. Protein Expr. Purif. 2013, 92, 67–76. [Google Scholar] [CrossRef]
- Hunter, M.; Yuan, P.; Vavilala, D.; Fox, M. Optimization of protein expression in mammalian cells. Curr. Protoc. Protein Sci. 2019, 95, e77. [Google Scholar] [CrossRef] [Green Version]
- Schneider, I. Cell lines derived from late embryonic stages of Drosophila melanogaster. Development 1972, 27, 353–365. [Google Scholar] [CrossRef]
- Ikonomou, L.; Schneider, Y.-J.; Agathos, S. Insect cell culture for industrial production of recombinant proteins. Appl. Microbiol. Biotechnol. 2003, 62, 1–20. [Google Scholar] [CrossRef]
- Kollewe, C.; Vilcinskas, A. Production of recombinant proteins in insect cells. Am. J. Biochem. Biotechnol 2013, 9, 255–271. [Google Scholar] [CrossRef]
- Sharma, S.S.; Blattner, F.R.; Harcum, S.W. Recombinant protein production in an Escherichia coli reduced genome strain. Metab. Eng. 2007, 9, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Kolisnychenko, V.; Plunkett, G.; Herring, C.D.; Fehér, T.; Pósfai, J.; Blattner, F.R.; Pósfai, G. Engineering a reduced Escherichia coli genome. Genome Res. 2002, 12, 640–647. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, F. Recombinant expression systems in the pharmaceutical industry. Appl. Microbiol. Biotechnol. 2004, 65, 363–372. [Google Scholar] [CrossRef]
- Burnett, M.J.; Burnett, A.C. Therapeutic recombinant protein production in plants: Challenges and opportunities. Plants People Planet 2020, 2, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Shanmugaraj, B.; Bulaon, C.J.I.; Phoolcharoen, W. Plant Molecular Farming: A Viable Platform for Recombinant Biopharmaceutical Production. Plants 2020, 9, 842. [Google Scholar] [CrossRef]
- Shanmugaraj, B.; Malla, A.; Phoolcharoen, W. Emergence of Novel Coronavirus 2019-nCoV: Need for Rapid Vaccine and Biologics Development. Pathogens 2020, 9, 148. [Google Scholar] [CrossRef] [Green Version]
- Hansen, H.G.; Pristovšek, N.; Kildegaard, H.F.; Lee, G.M. Improving the secretory capacity of Chinese hamster ovary cells by ectopic expression of effector genes: Lessons learned and future directions. Biotechnol. Adv. 2017, 35, 64–76. [Google Scholar] [CrossRef] [Green Version]
- Raven, N.; Rasche, S.; Kuehn, C.; Anderlei, T.; Klöckner, W.; Schuster, F.; Henquet, M.; Bosch, D.; Büchs, J.; Fischer, R. Scaled-up manufacturing of recombinant antibodies produced by plant cells in a 200-L orbitally-shaken disposable bioreactor. Biotechnol. Bioeng. 2015, 112, 308–321. [Google Scholar] [CrossRef]
- Habibi, P.; Sa, M.F.G.D.; Makhzoum, A.; Malik, S.; Silva, A.L.L.d.; Hefferon, K.; Soccol, C.R. Bioengineering hairy roots: Phytoremediation, secondary metabolism, molecular pharming, plant-plant interactions and biofuels. In Sustainable Agriculture Reviews; Springer: Cham, Switzerland, 2017; pp. 213–251. [Google Scholar]
- Makhzoum, A.; Bjelica, A.; Petit-Paly, G.; Bernards, M.A. Novel plant regeneration and transient gene expression in Catharanthus roseus. All Results J. Biol. 2015, 6, 1–9. [Google Scholar]
- Makhzoum, A.B.; Sharma, P.; Bernards, M.A.; Trémouillaux-Guiller, J. Hairy roots: An ideal platform for transgenic plant production and other promising applications. In Phytochemicals, Plant Growth, and the Environment; Springer: Berlin/Heidelberg, Germany, 2013; pp. 95–142. [Google Scholar]
- Gutierrez-Valdes, N.; Häkkinen, S.T.; Lemasson, C.; De Groot, J.; Ele-Ekouna, J.P.; Guillet, M.; Cardon, F.; Ritala, A. Improving yield of a recombinant biologic in a Brassica hairy root manufacturing process. Biotechnol. Bioeng. 2022, 119, 2831–2841. [Google Scholar] [CrossRef]
- Takai, K.; Sawasaki, T.; Endo, Y. Practical cell-free protein synthesis system using purified wheat embryos. Nat. Protoc. 2010, 5, 227–238. [Google Scholar] [CrossRef]
- Havenith, H.; Kern, K.; Rautenberger, P.; Spiegel, H.; Szardenings, M.; Ueberham, E.; Lehmann, J.; Buntru, M.; Vogel, S.; Treudler, R. Combination of two epitope identification techniques enables the rational design of soy allergen Gly m 4 mutants. Biotechnol. J. 2017, 12, 1600441. [Google Scholar] [CrossRef]
- Park, S.H.; Ji, K.-Y.; Kim, H.M.; Ma, S.H.; Park, S.Y.; Do, J.H.; Oh, D.-B.; Kang, H.S.; Shim, J.S.; Joung, Y.H. Optimization of the human colorectal carcinoma antigen GA733-2 production in tobacco plants. Plant Biotechnol. Rep. 2021, 15, 55–67. [Google Scholar] [CrossRef]
- Yiemchavee, S.; Wong-Arce, A.; Romero-Maldonado, A.; Shanmugaraj, B.; Monsivais-Urenda, A.E.; Phoolcharoen, W.; Rosales-Mendoza, S. Expression and immunogenicity assessment of a plant-made immunogen targeting the cytotoxic T-lymphocyte associated antigen-4: A possible approach for cancer immunotherapy. J. Biotechnol. 2021, 329, 29–37. [Google Scholar] [CrossRef]
- Yanez, R.J.; Lamprecht, R.; Granadillo, M.; Weber, B.; Torrens, I.; Rybicki, E.P.; Hitzeroth, I.I. Expression optimization of a cell membrane-penetrating human papillomavirus type 16 therapeutic vaccine candidate in Nicotiana benthamiana. PLoS ONE 2017, 12, e0183177. [Google Scholar] [CrossRef] [Green Version]
- Yanez, R.J.; Lamprecht, R.; Granadillo, M.; Torrens, I.; Arcalís, E.; Stöger, E.; Rybicki, E.P.; Hitzeroth, I.I. LALF32-51-E7, a HPV-16 therapeutic vaccine candidate, forms protein body-like structures when expressed in Nicotiana benthamiana leaves. Plant Biotechnol. J. 2018, 16, 628–637. [Google Scholar] [CrossRef] [Green Version]
- Beihaghi, M.; Marashi, H.; Bagheri, A.; Sankian, M. Transient expression of CCL21as recombinant protein in tomato. Biotechnol. Rep. 2018, 17, 10–15. [Google Scholar] [CrossRef]
- Jin, N.; Lee, J.W.; Heo, W.; Ryu, M.Y.; So, M.K.; Ko, B.J.; Kim, H.-Y.; Yoon, S.M.; Lee, J.; Kim, J.Y. Low binding affinity and reduced complement-dependent cell death efficacy of ofatumumab produced using a plant system (Nicotiana benthamiana L.). Protein Expr. Purif. 2019, 159, 34–41. [Google Scholar] [CrossRef]
- Lakshmi, P.S.; Verma, D.; Yang, X.; Lloyd, B.; Daniell, H. Low cost tuberculosis vaccine antigens in capsules: Expression in chloroplasts, bio-encapsulation, stability and functional evaluation in vitro. PLoS ONE 2013, 8, e54708. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Li, J.; Yao, N.; Wang, D.; Liu, X.; Wang, N.; Li, X.; Wang, F.; Li, H.; Jiang, C. Seed-specific expression and analysis of recombinant anti-HER2 single-chain variable fragment (scFv-Fc) in Arabidopsis thaliana. Protein Expr. Purif. 2017, 133, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Liew, O.W.; Ling, S.S.; Lilyanna, S.; Zhou, Y.; Wang, P.; Chong, J.P.; Ng, Y.X.; Lim, A.E.; Leong, E.R.; Lin, Q. Epitope-directed monoclonal antibody production using a mixed antigen cocktail facilitates antibody characterization and validation. Commun. Biol. 2021, 4, 441. [Google Scholar] [CrossRef] [PubMed]
- Bolaños-Martínez, O.C.; Govea-Alonso, D.O.; Fragoso, G.; Sciutto, E.; Rosales-Mendoza, S. Carrot cells expressing the VP1 and VP2 poliovirus proteins effectively elicited mucosal immunity. Plant Cell Tissue Organ Cult. 2022, 148, 545–556. [Google Scholar] [CrossRef]
- Inam, S.; Abbas, Z.; Noor, S.; Rehman, N.; Zafar, S.A.; Khan, M.R.; Kaimkhani, Z.A.; Al-Misned, F.; Shah, M.; Mahboob, S. Isolation, cloning and transgenic expression of hepatitis B surface antigen (HBsAg) in Solanum lycopersicum L. Saudi J. Biol. Sci. 2022, 29, 1559–1564. [Google Scholar] [CrossRef]
- Kasinger, L.E.S.; Dent, M.W.; Mahajan, G.; Hamorsky, K.T.; Matoba, N. A novel anti-HIV-1 bispecific bNAb-Lectin fusion protein engineered in a plant-based transient expression system. Plant Biotechnol. J. 2019, 17, 1646–1656. [Google Scholar] [CrossRef] [Green Version]
- Margolin, E.; Chapman, R.; Meyers, A.E.; Van Diepen, M.T.; Ximba, P.; Hermanus, T.; Crowther, C.; Weber, B.; Morris, L.; Williamson, A.-L. Production and immunogenicity of soluble plant-produced HIV-1 subtype C envelope gp140 immunogens. Front. Plant Sci. 2019, 10, 1378. [Google Scholar] [CrossRef]
- Margolin, E.; Oh, Y.J.; Verbeek, M.; Naude, J.; Ponndorf, D.; Meshcheriakova, Y.A.; Peyret, H.; van Diepen, M.T.; Chapman, R.; Meyers, A.E. Co-expression of human calreticulin significantly improves the production of HIV gp140 and other viral glycoproteins in plants. Plant Biotechnol. J. 2020, 18, 2109–2117. [Google Scholar] [CrossRef] [Green Version]
- Hoelscher, M.; Tiller, N.; Teh, A.Y.-H.; Wu, G.-Z.; Ma, J.K.; Bock, R. High-level expression of the HIV entry inhibitor griffithsin from the plastid genome and retention of biological activity in dried tobacco leaves. Plant Mol. Biol. 2018, 97, 357–370. [Google Scholar] [CrossRef] [Green Version]
- Elghanam, M.S.; Attia, A.S.; Shoeb, H.A.; Hashem, A.E.M. Expression and purification of hepatitis B surface antigen S from Escherichia coli; a new simple method. BMC Res. Notes 2012, 5, 125. [Google Scholar] [CrossRef] [Green Version]
- Pyrski, M.; Rugowska, A.; Wierzbiński, K.R.; Kasprzyk, A.; Bogusiewicz, M.; Bociąg, P.; Samardakiewicz, S.; Czyż, M.; Kurpisz, M.; Pniewski, T. HBcAg produced in transgenic tobacco triggers Th1 and Th2 response when intramuscularly delivered. Vaccine 2017, 35, 5714–5721. [Google Scholar] [CrossRef]
- Kim, M.Y.; Copland, A.; Nayak, K.; Chandele, A.; Ahmed, M.S.; Zhang, Q.; Diogo, G.R.; Paul, M.J.; Hofmann, S.; Yang, M.S. Plant-expressed Fc-fusion protein tetravalent dengue vaccine with inherent adjuvant properties. Plant Biotechnol. J. 2018, 16, 1283–1294. [Google Scholar] [CrossRef]
- Bai, G.; Tian, Y.; Wu, J.; Gu, Y.; Chen, Z.; Zeng, F.; Liu, J. Construction of a fusion anti-caries DNA vaccine in transgenic tomato plants for PAcA gene and cholera toxin B subunit. Biotechnol. Appl. Biochem. 2019, 66, 924–929. [Google Scholar] [CrossRef]
- Bolaños-Martínez, O.C.; Govea-Alonso, D.O.; Cervantes-Torres, J.; Hernández, M.; Fragoso, G.; Sciutto-Conde, E.; Rosales-Mendoza, S. Expression of immunogenic poliovirus Sabin type 1 VP proteins in transgenic tobacco. J. Biotechnol. 2020, 322, 10–20. [Google Scholar] [CrossRef]
- Fernández-San Millán, A.; Ortigosa, S.M.; Hervás-Stubbs, S.; Corral-Martínez, P.; Seguí-Simarro, J.M.; Gaétan, J.; Coursaget, P.; Veramendi, J. Human papillomavirus L1 protein expressed in tobacco chloroplasts self-assembles into virus-like particles that are highly immunogenic. Plant Biotechnol. J. 2008, 6, 427–441. [Google Scholar] [CrossRef]
- Arevalo-Villalobos, J.I.; Alonso, D.O.G.; Rosales-Mendoza, S. Using carrot cells as biofactories and oral delivery vehicles of LTB-Syn: A low-cost vaccine candidate against synucleinopathies. J. Biotechnol. 2020, 309, 75–80. [Google Scholar] [CrossRef]
- Menzel, S.; Holland, T.; Boes, A.; Spiegel, H.; Fischer, R.; Buyel, J.F. Downstream processing of a plant-derived malaria transmission-blocking vaccine candidate. Protein Expr. Purif. 2018, 152, 122–130. [Google Scholar] [CrossRef]
- Yang, M.; Sun, H.; Lai, H.; Hurtado, J.; Chen, Q. Plant-produced Zika virus envelope protein elicits neutralizing immune responses that correlate with protective immunity against Zika virus in mice. Plant Biotechnol. J. 2018, 16, 572–580. [Google Scholar] [CrossRef] [Green Version]
- Petrovsky, N.; Aguilar, J.C. Vaccine adjuvants: Current state and future trends. Immunol. Cell Biol. 2004, 82, 488–496. [Google Scholar] [CrossRef]
- Sander, V.A.; Corigliano, M.G.; Clemente, M. Promising plant-derived adjuvants in the development of coccidial vaccines. Front. Vet. Sci. 2019, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Coffman, R.L.; Sher, A.; Seder, R.A. Vaccine adjuvants: Putting innate immunity to work. Immunity 2010, 33, 492–503. [Google Scholar] [CrossRef] [Green Version]
- Brunner, R.; Jensen-Jarolim, E.; Pali-Schöll, I. The ABC of clinical and experimental adjuvants—A brief overview. Immunol. Lett. 2010, 128, 29–35. [Google Scholar] [CrossRef]
- Wang, J.; Thorson, L.; Stokes, R.W.; Santosuosso, M.; Huygen, K.; Zganiacz, A.; Hitt, M.; Xing, Z. Single mucosal, but not parenteral, immunization with recombinant adenoviral-based vaccine provides potent protection from pulmonary tuberculosis. J. Immunol. 2004, 173, 6357–6365. [Google Scholar] [CrossRef] [Green Version]
- Criscuolo, E.; Caputo, V.; Diotti, R.A.; Sautto, G.A.; Kirchenbaum, G.A.; Clementi, N. Alternative methods of vaccine delivery: An overview of edible and intradermal vaccines. J. Immunol. Res. 2019, 2019, 8303648. [Google Scholar] [CrossRef] [Green Version]
- Mason, H.S.; Lam, D.; Arntzen, C.J. Expression of hepatitis B surface antigen in transgenic plants. Proc. Natl. Acad. Sci. USA 1992, 89, 11745–11749. [Google Scholar] [CrossRef] [Green Version]
- Makhzoum, A.; Benyammi, R.; Moustafa, K.; Trémouillaux-Guiller, J. Recent advances on host plants and expression cassettes’ structure and function in plant molecular pharming. BioDrugs 2014, 28, 145–159. [Google Scholar] [CrossRef]
- Makhzoum, A.; Tahir, S.; Locke, M.E.O.; Trémouillaux-Guiller, J.; Hefferon, K. An in silico overview on the usefulness of tags and linkers in plant molecular pharming. Plant Sci. Today 2014, 1, 201–212. [Google Scholar] [CrossRef] [Green Version]
- Moustafa, K.; Makhzoum, A.; Trémouillaux-Guiller, J. Molecular farming on rescue of pharma industry for next generations. Crit. Rev. Biotechnol. 2016, 36, 840–850. [Google Scholar] [CrossRef] [Green Version]
- Singhabahu, S.; Hefferon, K.; Makhzoum, A. Transgenesis and plant molecular pharming. In Transgenesis and Secondary Metabolism, Reference Series in Phytochemistry; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Wilken, L.R.; Nikolov, Z.L. Recovery and purification of plant-made recombinant proteins. Biotechnol. Adv. 2012, 30, 419–433. [Google Scholar] [CrossRef]
- Fischer, R.; Schillberg, S.; Hellwig, S.; Twyman, R.M.; Drossard, J. GMP issues for recombinant plant-derived pharmaceutical proteins. Biotechnol. Adv. 2012, 30, 434–439. [Google Scholar] [CrossRef]
- Singh, N.; Herzer, S. Downstream processing technologies/capturing and final purification. In New Bioprocessing Strategies: Development and Manufacturing of Recombinant Antibodies and Proteins; Springer: Cham, Switzerland, 2017; pp. 115–178. [Google Scholar]
- Chen, Q.; He, J.; Phoolcharoen, W.; Mason, H.S. Geminiviral vectors based on bean yellow dwarf virus for production of vaccine antigens and monoclonal antibodies in plants. Hum. Vaccines 2011, 7, 331–338. [Google Scholar] [CrossRef]
- Tusé, D.; Tu, T.; McDonald, K.A. Manufacturing economics of plant-made biologics: Case studies in therapeutic and industrial enzymes. BioMed Res. Int. 2014, 2014, 256135. [Google Scholar] [CrossRef] [Green Version]
- Klimyuk, V.; Pogue, G.; Herz, S.; Butler, J.; Haydon, H. Production of recombinant antigens and antibodies in Nicotiana benthamiana using ‘magnifection’technology: GMP-compliant facilities for small-and large-scale manufacturing. Plant Viral Vectors 2012, 127–154. [Google Scholar] [CrossRef]
- Peyret, H.; Lomonossoff, G.P. When plant virology met Agrobacterium: The rise of the deconstructed clones. Plant Biotechnol. J. 2015, 13, 1121–1135. [Google Scholar] [CrossRef] [Green Version]
- Bendandi, M.; Marillonnet, S.; Kandzia, R.; Thieme, F.; Nickstadt, A.; Herz, S.; Fröde, R.; Inoges, S.; De Cerio, A.L.-D.; Soria, E. Rapid, high-yield production in plants of individualized idiotype vaccines for non-Hodgkin’s lymphoma. Ann. Oncol. 2010, 21, 2420–2427. [Google Scholar] [CrossRef]
- Dugdale, B.; Mortimer, C.L.; Kato, M.; James, T.A.; Harding, R.M.; Dale, J.L. In plant activation: An inducible, hyperexpression platform for recombinant protein production in plants. Plant Cell 2013, 25, 2429–2443. [Google Scholar] [CrossRef] [Green Version]
- Werner, S.; Breus, O.; Symonenko, Y.; Marillonnet, S.; Gleba, Y. High-level recombinant protein expression in transgenic plants by using a double-inducible viral vector. Proc. Natl. Acad. Sci. USA 2011, 108, 14061–14066. [Google Scholar] [CrossRef] [Green Version]
- Kwon, K.-C.; Daniell, H. Oral delivery of protein drugs bioencapsulated in plant cells. Mol. Ther. 2016, 24, 1342–1350. [Google Scholar] [CrossRef] [Green Version]
- Su, J.; Sherman, A.; Doerfler, P.A.; Byrne, B.J.; Herzog, R.W.; Daniell, H. Oral delivery of Acid Alpha Glucosidase epitopes expressed in plant chloroplasts suppresses antibody formation in treatment of Pompe mice. Plant Biotechnol. J. 2015, 13, 1023–1032. [Google Scholar] [CrossRef] [Green Version]
- Su, J.; Zhu, L.; Sherman, A.; Wang, X.; Lin, S.; Kamesh, A.; Norikane, J.H.; Streatfield, S.J.; Herzog, R.W.; Daniell, H. Low cost industrial production of coagulation factor IX bioencapsulated in lettuce cells for oral tolerance induction in hemophilia B. Biomaterials 2015, 70, 84–93. [Google Scholar] [CrossRef]
Host Plant Species | Applications |
---|---|
Tobacco |
|
Arabidopsis thaliana | |
Rice (Oryza sativa) | |
Maize (Zea Mays) |
|
Potato (Solanum tuberosum) |
|
Tomato (Lycopersicon esculentum) | |
Alga (Chlamydomonas reinhardtii) |
|
Lettuce (Lactuca sativa) |
|
Expression System | Advantages | Disadvantages |
---|---|---|
Plant |
|
|
Mammalian cells |
|
|
Insect cells |
|
|
Bacteria |
|
|
Yeast |
|
|
Recombinant Protein | Expression Plant Species | Disease | Method of Transformation | Level of Protein Expression | Reference |
---|---|---|---|---|---|
GA733-2 | Tobacco (Nicotiana benthamiana) | Colorectal cancer | Agrobacterium (Transient expression) | 15.92 μg/g | [70] |
LTB-CTLA4) | Tobacco (Nicotiana benthamiana) | Cancer | Agrobacterium (Transient expression) | 1.29 μg/g FW | [71] |
LALF32–51-E7 | Tobacco (Nicotiana benthamiana) | Human papillomavirus (HPV) | Agrobacterium (Transient expression) | 0.017% TSP | [72] |
Griffithsin | Tobacco (Nicotiana tabacum) | Human immunodeficiency virus (HIV) | Biolistic bombardment (Stable expression/Chloroplast) | 5% TSP | [84] |
NBcAg | Tobacco (Nicotiana tabacum) | Hepatitis B virus (HBV) | Agrobacterium (Stable expression/Chloroplast) | 110–250 mg/g FW | [86] |
D-PIGS | Tobacco (Nicotiana benthamiana) | Dengue virus | Agrobacterium (Transient expression) | 17 mg/kg FW | [87] |
LTB-Syn | Carrot (Daucus carota) | Synucleinopathies | Agrobacterium (Transient expression) | 2.3 μg/g dry biomass | [91] |
BV Proteins | Tobacco (Nicotiana tabacum) | Multiple sclerosis | Agrobacterium (Stable expression) | 0.5 μg/g | [1] |
L1 | Tobacco (Nicotiana tabacum) | HPV | Biolistic bombardment (Stable expression/Chloroplast) | 3 mg/g FW | [90] |
FQS | Tobacco (Nicotiana benthamiana) | Malaria | Agrobacterium (Transient expression) | 51 mg/kg | [92] |
ZIKV E | Tobacco (Nicotiana benthamiana) | Zika virus | Agrobacterium (Transient expression) | 160 μg/g FW | [93] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaobotse, G.; Venkataraman, S.; Mmereke, K.M.; Moustafa, K.; Hefferon, K.; Makhzoum, A. Recent Progress on Vaccines Produced in Transgenic Plants. Vaccines 2022, 10, 1861. https://doi.org/10.3390/vaccines10111861
Gaobotse G, Venkataraman S, Mmereke KM, Moustafa K, Hefferon K, Makhzoum A. Recent Progress on Vaccines Produced in Transgenic Plants. Vaccines. 2022; 10(11):1861. https://doi.org/10.3390/vaccines10111861
Chicago/Turabian StyleGaobotse, Goabaone, Srividhya Venkataraman, Kamogelo M. Mmereke, Khaled Moustafa, Kathleen Hefferon, and Abdullah Makhzoum. 2022. "Recent Progress on Vaccines Produced in Transgenic Plants" Vaccines 10, no. 11: 1861. https://doi.org/10.3390/vaccines10111861
APA StyleGaobotse, G., Venkataraman, S., Mmereke, K. M., Moustafa, K., Hefferon, K., & Makhzoum, A. (2022). Recent Progress on Vaccines Produced in Transgenic Plants. Vaccines, 10(11), 1861. https://doi.org/10.3390/vaccines10111861