Breakthrough SARS-CoV-2 Infections after Vaccination in North Carolina
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Vaccination
2.3. Primary Outcome: Self-Reported Testing for SARS-CoV-2 Infection
2.4. Time-Varying Covariates
2.5. Missing Data
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Sadoff, J.; Gray, G.; Vandebosch, A.; Cárdenas, V.; Shukarev, G.; Grinsztejn, B.; Goepfert, P.A.; Truyers, C.; Fennema, H.; Spiessens, B.; et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against COVID-19. N. Engl. J. Med. 2021, 384, 2187–2201. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.G.; Burgess, J.L.; Naleway, A.L.; Tyner, H.; Yoon, S.K.; Meece, J.; Olsho, L.E.W.; Caban-Martinez, A.J.; Fowlkes, A.L.; Lutrick, K.; et al. Prevention and Attenuation of COVID-19 with the BNT162b2 and MRNA-1273 Vaccines. N. Engl. J. Med. 2021, 385, 320–329. [Google Scholar] [CrossRef] [PubMed]
- Santacatterina, M.; Sanders, J.W.; Weintraub, W.S. North Carolina COVID-19 Community Research Partnership Prevention of Covid-19 with the BNT162b2 and MRNA-1273 Vaccines. N. Engl. J. Med. 2021, 385, 1817–1818. [Google Scholar] [CrossRef] [PubMed]
- NC Rural Center. Available online: https://www.ncruralcenter.org/about-us/ (accessed on 30 September 2022).
- CDC; COVID-19 Vaccine Breakthrough Case Investigations Team. COVID-19 Vaccine Breakthrough Infections Reported to CDC—United States, January 1–April 30, 2021. MMWR Morb. Mortal Wkly. Rep. 2021, 70, 792–793. [Google Scholar] [CrossRef] [PubMed]
- Tjaden, A.H.; Fette, L.M.; Edelstein, S.L.; Gibbs, M.; Hinkelman, A.N.; Runyon, M.; Santos, R.P.; Weintraub, W.S.; Yukich, J.; Uschner, D.; et al. Self-Reported SARS-CoV-2 Vaccination is Consistent with Electronic Health Record Data among the COVID-19 Community Research Partnership. Vaccines 2022, 10, 1016. [Google Scholar] [CrossRef] [PubMed]
- NCDHHS. North Carolina COVID-19 Dashboard. Available online: https://covid19.ncdhhs.gov/dashboard (accessed on 30 September 2022).
- North Carolina Department of Health and Human Services. Additional Data Sources: Weekly Summary. Respiratory Surveillance: January 23–January 29, 2022; North Carolina Department of Health and Human Services: Raleigh, NC, USA, 2022. [Google Scholar]
- Thernau, T.M.; Grambsch, P.M. Modeling Survival Data: Extending the Cox Model; Springer: New York, NY, USA, 2000; ISBN 978-1-4757-3294-8. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Accorsi, E.K.; Britton, A.; Fleming-Dutra, K.E. Association Between 3 Doses of MRNA COVID-19 Vaccine and Symptomatic Infection Caused by the SARS-CoV-2 Omicron and Delta Variants. JAMA 2022, 327, 639–651. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Davis, P.B.; Kaelber, D.C.; Volkow, N.D.; Xu, R. Comparison of MRNA-1273 and BNT162b2 Vaccines on Breakthrough SARS-CoV-2 Infections, Hospitalizations, and Death During the Delta-Predominant Period. JAMA 2022, 327, 678–680. [Google Scholar] [CrossRef] [PubMed]
- Andrews, N.; Stowe, J.; Kirsebom, F.; Toffa, S.; Rickeard, T.; Gallagher, E.; Gower, C.; Kall, M.; Groves, N.; O’Connell, A.M.; et al. COVID-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. N. Engl. J. Med. 2022, 386, 1532–1546. [Google Scholar] [CrossRef] [PubMed]
- Andrejko, K.L.; Pry, J.M.; Myers, J.F.; Fukui, N.; DeGuzman, J.L.; Openshaw, J.; Watt, J.P.; Lewnard, J.A.; Jain, S. California COVID-19 Case-Control Study Team. Effectiveness of Face Mask or Respirator Use in Indoor Public Settings for Prevention of SARS-CoV-2 Infection—California, February–December 2021. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 212–216. [Google Scholar] [CrossRef] [PubMed]
- Ntziora, F.; Kostaki, E.G.; Karapanou, A.; Mylona, M.; Tseti, I.; Sipsas, N.V.; Paraskevis, D.; Sfikakis, P.P. Pro-tection of vaccination versus hybrid immunity against infection with COVID-19 Omicron variants among Health-Care Workers. Vaccine 2022. In press. [Google Scholar] [CrossRef] [PubMed]
- Abu-Raddad, L.J.; Chemaitelly, H.; Ayoub, H.H.; Yassine, H.M.; Benslimane, F.M.; Al Khatib, H.A.; Tang, P.; Hasan, M.R.; Coyle, P.; Al Kanaani, Z.; et al. Association of Prior SARS-CoV-2 Infection with Risk of Breakthrough Infection Following MRNA Vaccination in Qatar. JAMA 2021, 326, 1930–1939. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Univariate | Multivariate | |||||
---|---|---|---|---|---|---|---|
Fixed Covariates | N (%) | Of Events (%) | Event Rate (95% CI) | Hazard Ratio (95% CI) | p-Value | Hazard Ratio (95% CI) | p-Value |
Overall | 15808 (100%) | 638 (4%) | 6.7 (6.2–7.2) | ||||
Age | |||||||
18–44 (Reference group) | 5169 (33%) | 244 (4.7%) | 8.6 (7.6–9.8) | ||||
45-64 | 7485 (47%) | 315 (4.2%) | 6.9 (6.2–7.7) | 0.71 (0.60–0.84) | <0.0001 | 0.70 (0.59–0.82) | <0.0001 |
65+ | 3154 (20%) | 79 (2.5%) | 3.7 (3.0–4.6) | 0.35 (0.27–0.45) | <0.0001 | 0.41 (0.32–0.54) | <0.0001 |
Sex | |||||||
Female (Reference group) | 11631 (74%) | 471 (4%) | 6.7 (6.1–7.3) | ||||
Male | 4177 (26%) | 167 (4%) | 6.6 (5.7–7.7) | 0.97 (0.82–1.15) | 0.7387 | 1.11 (0.93–1.32) | 0.2399 |
Race/Ethnicity | |||||||
Non-Hispanic White (Reference group) | 14854 (94%) | 611 (4.1%) | 6.8 (6.2–7.3) | ||||
Non-Hispanic Black | 400 (3%) | 8 (2%) | 3.8 (1.9–7.6) | 0.72 (0.36–1.43) | 0.3484 | 0.7 (0.35–1.41) | 0.3163 |
Hispanic | 165 (1%) | 6 (3.6%) | 7.0 (3.1–15.6) | 1.24 (0.56–2.75) | 0.6041 | 0.96 (0.43–2.16) | 0.9289 |
Non-Hispanic Other | 389 (2%) | 13 (3.3%) | 6.2 (3.6–10.7) | 1.04 (0.61–1.78) | 0.8785 | 1.01 (0.59–1.73) | 0.9789 |
Healthcare Worker Status | |||||||
No (Reference group) | 10518 (67%) | 374 (3.6%) | 6.0 (5.4–6.6) | ||||
Yes | 5290 (33%) | 264 (5%) | 8.1 (7.1–9.1) | 1.14 (0.96–1.35) | 0.1268 | 1.12 (0.92–1.36) | 0.2647 |
Vaccination Product | |||||||
Moderna-mRNA-1273 (Reference group) | 3985 (25%) | 120 (3%) | 5.1 (4.2–6.1) | ||||
Pfizer/BNT-BNT162b2 | 10999 (70%) | 473 (4.3%) | 7.0 (6.4–7.7) | 1.24 (1.02–1.51) | 0.0351 | 1.35 (1.10–1.66) | 0.0042 |
J&J-Ad26.COV2.S | 824 (5%) | 45 (5.5%) | 10.2 (7.6–13.6) | 2.22 (1.59–3.10) | <0.0001 | 1.74 (1.24–2.44) | 0.0014 |
Prior COVID Infection | |||||||
No (Reference group) | 14743 (93%) | 610 (4.1%) | 6.8 (6.3–7.4) | ||||
Yes | 1065 (7%) | 28 (2.6%) | 4.8 (3.3–6.9) | 0.79 (0.54–1.15) | 0.2129 | 0.58 (0.39–0.85) | 0.0052 |
County Classification | |||||||
Urban (Reference group) | 10554 (67%) | 410 (3.9%) | 6.3 (5.7–7.0) | ||||
Suburban | 2361 (15%) | 111 (4.7%) | 8.1 (6.7–9.7) | 1.32 (1.07–1.62) | 0.0087 | 1.33 (1.08- 1.64) | 0.0076 |
Rural | 2893 (18%) | 117 (4%) | 7.0 (5.8–8.4) | 1.20 (0.98–1.47) | 0.0756 | 1.24 (1.01–1.53) | 0.0396 |
Time-varying covariates | |||||||
Vaccination Rate in County of Residence 3 weeks prior | |||||||
≤60% (Reference group) | |||||||
>60% | 0.81 (0.61–1.07) | 0.1425 | 0.85 (0.64–1.13) | 0.2692 | |||
Mask Usage in week prior | |||||||
≤90% (Reference group) | |||||||
>90% | 0.61 (0.52–0.73) | <0.0001 | 0.66 (0.56–0.79) | <0.0001 | |||
Delta Time Frame * | |||||||
Not in Delta Time Frame (Reference group) | |||||||
In Delta Time Frame | 0.87 (0.71–1.07) | 0.1814 | 3.54 (2.34–5.35) | <0.0001 | |||
Omicron Time Frame ** | |||||||
Not in Omicron Time Frame (Reference group) | |||||||
In Omicron Time Frame | 4.19 (3.33–5.28) | <0.0001 | 16.68 (10.05–27.68) | <0.0001 | |||
Receipt of booster shot | |||||||
No (Reference group) | |||||||
Yes | 0.35 (0.29–0.43) | <0.0001 | 0.33 (0.27–0.40) | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uschner, D.; Bott, M.; Lagarde, W.H.; Keating, J.; Tapp, H.; Berry, A.A.; Seals, A.L.; Munawar, I.; Schieffelin, J.; Yukich, J.; et al. Breakthrough SARS-CoV-2 Infections after Vaccination in North Carolina. Vaccines 2022, 10, 1922. https://doi.org/10.3390/vaccines10111922
Uschner D, Bott M, Lagarde WH, Keating J, Tapp H, Berry AA, Seals AL, Munawar I, Schieffelin J, Yukich J, et al. Breakthrough SARS-CoV-2 Infections after Vaccination in North Carolina. Vaccines. 2022; 10(11):1922. https://doi.org/10.3390/vaccines10111922
Chicago/Turabian StyleUschner, Diane, Matthew Bott, William H. Lagarde, Joseph Keating, Hazel Tapp, Andrea A. Berry, Austin L. Seals, Iqra Munawar, John Schieffelin, Joshua Yukich, and et al. 2022. "Breakthrough SARS-CoV-2 Infections after Vaccination in North Carolina" Vaccines 10, no. 11: 1922. https://doi.org/10.3390/vaccines10111922
APA StyleUschner, D., Bott, M., Lagarde, W. H., Keating, J., Tapp, H., Berry, A. A., Seals, A. L., Munawar, I., Schieffelin, J., Yukich, J., Santacatterina, M., Gunaratne, M., Fette, L. M., Burke, B., Strylewicz, G., Edelstein, S. L., Ahmed, A., Miller, K., Sanders, J. W., ... on behalf of the COVID-19 Community Research Partnership. (2022). Breakthrough SARS-CoV-2 Infections after Vaccination in North Carolina. Vaccines, 10(11), 1922. https://doi.org/10.3390/vaccines10111922