Determinants of the Development of SARS-CoV-2 Anti-Spike Immune-Response after Vaccination among Healthcare Workers in Egypt
Abstract
:1. Introduction
2. Method
2.1. Study Population
2.2. Data Collection
2.3. Laboratory Investigation
2.4. Ethical Considerations
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Prevention, Identification and Management of Health Worker Infection in the Context of COVID-19. Available online: https://www.who.int/publications/i/item/10665-336265 (accessed on 15 December 2021).
- World Health Organization. Available online: https://apps.who.int/iris/handle/10665/345300 (accessed on 10 December 2021).
- Health Workers in Focus: Policies and Practices for Successful Public Response to COVID-19 Vaccination. Strategic Considerations for the Member States in the WHO European Region; License: CC BY-NC-SA 3.0 IGO; WHO Regional Office for Europe: Copenhagen, Denmark, 2021.
- Gundlapalli, A.V.; Salerno, R.M.; Brooks, J.T.; Averhoff, F.; Petersen, L.R.; McDonald, L.C.; Iademarco, M.F. SARS-CoV-2 Serologic Assay Needs for the Next Phase of the US COVID-19 Pandemic Response. Open Forum Infect. Dis. 2021, 8, ofaa555. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, P.; Curtis, N. Factors That Influence the Immune Response to Vaccination. Clin. Microbiol. Rev. 2019, 32, e00084-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krammer, F. SARS-CoV-2 vaccines in development. Nature 2020, 586, 516–527. [Google Scholar] [CrossRef]
- Bosch, B.J.; van der Zee, R.; de Haan, C.A.; Rottier, P.J.M. The Coronavirus Spike Protein Is a Class I Virus Fusion Protein: Structural and Functional Characterization of the Fusion Core Complex. J. Virol. 2003, 77, 8801–8811. [Google Scholar] [CrossRef] [Green Version]
- Formica, N.; Mallory, R.; Albert, G.; Robinson, M.; Plested, J.; Cho, I.; Robertson, A.; Dubovsky, F.; Glenn, G.M.; For the 2019nCoV-101 Study Group. Evaluation of a SARS-CoV-2 vaccine NVX-CoV2373 in younger and older adults. medRxiv 2021. [Google Scholar] [CrossRef]
- Coppeta, L.; Somma, G.; Ferrari, C.; Mazza, A.; Rizza, S.; Aurilio, M.T.; Perrone, S.; Magrini, A.; Pietroiusti, A. Persistence of Anti-S titer among Healthcare Workers Vaccinated with BNT162b2 mRNA COVID-19. Vaccines 2021, 9, 947. [Google Scholar] [CrossRef] [PubMed]
- Callender, L.A.; Curran, M.; Bates, S.M.; Mairesse, M.; Weigandt, J.; Betts, C.J. The Impact of Pre-existing Comorbidities and Therapeutic Interventions on COVID-19. Front. Immunol. 2020, 11, 1991. [Google Scholar] [CrossRef]
- Trougakos, I.P.; Terpos, E.; Zirou, C.; Sklirou, A.D.; Apostolakou, F.; Gumeni, S.; Charitaki, I.; Papanagnou, E.-D.; Bagratuni, T.; Liacos, C.-I.; et al. Comparative kinetics of SARS-CoV-2 anti-spike protein RBD IgGs and neutralizing antibodies in convalescent and naïve recipients of the BNT162b2 mRNA vaccine versus COVID-19 patients. BMC Med. 2021, 19, 208. [Google Scholar] [CrossRef]
- Zekri, A.-R.N.; Bahnasy, A.A.; Hafez, M.M.; Hassan, Z.K.; Ahmed, O.S.; Soliman, H.K.; El-Sisi, E.R.; El Dine, M.H.S.; Solimane, M.S.; Latife, L.S.A.; et al. Characterization of the SARS-CoV-2 genomes in Egypt in first and second waves of infection. Sci. Rep. 2021, 11, 1–11. [Google Scholar] [CrossRef]
- Egyptian National Guidelines for COVID-19. Available online: https://hiph.alexu.edu.eg/images/egyptian_national_guidelines_covid-19.pdf (accessed on 15 December 2021).
- Naaber, P.; Adamson, A.; Sepp, E.; Tserel, L.; Kisand, K.; Peterson, P. Antibody response after COVID-19 mRNA vaccination in relation to age, sex, and side effects. medRxiv 2021. [Google Scholar] [CrossRef]
- Goodwin, K.; Viboud, C.; Simonsen, L. Antibody response to influenza vaccination in the elderly: A quantitative review. Vaccine 2006, 24, 1159–1169. [Google Scholar] [CrossRef] [PubMed]
- Uysal, E.B.; Gümüş, S.; Bektöre, B.; Bozkurt, H.; Gözalan, A. Evaluation of antibody response after COVID-19 vaccination of healthcare workers. J. Med Virol. 2021. [Google Scholar] [CrossRef]
- Takahashi, T.; Ellingson, M.K.; Wong, P.; Israelow, B.; Lucas, C.; Klein, J.; Silva, J.; Mao, T.; Oh, J.E.; Tokuyama, M.; et al. Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature 2020, 588, 315–320. [Google Scholar] [CrossRef]
- Terpos, E.; Trougakos, I.P.; Apostolakou, F.; Charitaki, I.; Sklirou, A.D.; Mavrianou, N.; Papanagnou, E.-D.; Liacos, C.-I.; Gumeni, S.; Rentziou, G.; et al. Age-dependent and gender-dependent antibody responses against SARS-CoV -2 in health workers and octogenarians after vaccination with the BNT162b2 mRNA vaccine. Am. J. Hematol. 2021, 96, E257–E259. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L. COVID-19 Vaccine Antibodies Are Inversely Related to BMI in Obese Men, but Not Women. News-Medical. 7 September 2021. Available online: https://www.news-medical.net/news/20210907/COVID-19-vaccine-antibodies-inversely-related-to-BMI-in-obese-men-but-not-women.aspx (accessed on 8 December 2021).
- Dicker, D.; Bettini, S.; Farpour-Lambert, N.; Frühbeck, G.; Golan, R.; Goossens, G.; Halford, J.; O’malley, G.; Mullerova, D.; Salas, X.R.; et al. Obesity and COVID-19: The Two Sides of the Coin. Obes. Facts 2020, 13, 430–438. [Google Scholar] [CrossRef]
- Sheridan, P.A.; Paich, H.A.; Handy, J.; Karlsson, E.A.; Hudgens, M.G.; Sammon, A.B.; Holland, L.A.; Weir, S.; Noah, T.L.; Beck, M.A. Obesity is associated with impaired immune response to influenza vaccination in humans. Int. J. Obes. 2012, 36, 1072–1077. [Google Scholar] [CrossRef] [Green Version]
- MacKenzie, J.S.; MacKenzie, I.H.; Holt, P.G. The effect of cigarette smoking on susceptibility to epidemic influenza and on serological responses to live attenuated and killed subunit influenza vaccines. J. Hyg. 1976, 77, 409–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saha, N.; Link between Tobacco Product Use and Alcohol Consumption with Anti-SARS-CoV-2 Antibody Titers after BNT162b2 Vaccine. News-Medical. 8 December 2021. Available online: https://www.news-medical.net/news/20211202/Smoking-and-drinking-impair-the-immune-response-to-COVID-19-vaccine.aspx (accessed on 10 December 2021).
- Watanabe, M.; Balena, A.; Tuccinardi, D.; Tozzi, R.; Risi, R.; Masi, D.; Caputi, A.; Rossetti, R.; Spoltore, M.E.; Filippi, V.; et al. Central obesity, smoking habit, and hypertension are associated with lower antibody titers in response to COVID-19 mRNA vaccine. Diabetes/Metab. Res. Rev. 2021, 38, e3465. [Google Scholar] [CrossRef]
- Krammer, F.; Srivastava, K.; Alshammary, H.; Amoako, A.A.; Awawda, M.H.; Beach, K.F.; Bermúdez-González, M.C.; Bielak, D.A.; Carreño, J.M.; Chernet, R.L.; et al. Antibody responses in seropositive persons after a single dose of SARS-CoV-2 mRNA vaccine. N. Engl. J. Med. 2021, 384, e3465. [Google Scholar] [CrossRef] [PubMed]
- Wise, J. COVID-19: People who have had infection might only need one dose of mRNA vaccine. BMJ 2021, 372, n308. [Google Scholar] [CrossRef] [PubMed]
- Manisty, C.; Otter, A.D.; Treibel, T.A.; McKnight, Á.; Altmann, D.M.; Brooks, T.; Noursadeghi, M.; Boyton, R.J.; Semper, A.; Moon, J.C. Antibody response to first BNT162b2 dose in previously SARS-CoV-2-infected individuals. Lancet 2021, 397, 1057–1058. [Google Scholar] [CrossRef]
- Anichini, G.; Terrosi, C.; Gandolfo, C.; Savellini, G.G.; Fabrizi, S.; Miceli, G.B.; Cusi, M.G. SARS-CoV-2 Antibody Response in Persons with Past Natural Infection. N. Engl. J. Med. 2021, 1, 90–92. [Google Scholar] [CrossRef] [PubMed]
- Belleau, S.; Woudenberg, T.; Rosado, J.; Donnadieu, F.; Garcia, L.; Obadia, T.; Gardais, S.; Elgharbawy, Y.; Velay, A.; Gonzalez, M. Serological reconstruction of COVID-19 epidemics through analysis of antibody kinetics to SARS-CoV-2 proteins. medRxiv 2021. [Google Scholar] [CrossRef]
- Dashdorj, N.J.; Wirz, O.F.; Röltgen, K.; Haraguchi, E.; Buzzanco, A.S.; Sibai, M.; Wang, H.; Miller, J.A.; Solis, D.; Sahoo, M.K.; et al. Direct comparison of antibody responses to four SARS-CoV-2 vaccines in Mongolia. Cell Host Microbe 2021, 29, 1738–1743. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Vaccine Efficacy, Effectiveness and Protection. Available online: https://www.who.int/news-room/feature-stories/detail/vaccine-efficacy-effectiveness-and-protection (accessed on 8 October 2021).
- Bayram, A.; Demirbakan, H.; Karadeniz, P.G.; Erdoğan, M.; Koçer, I. Quantitation of antibodies against SARS-CoV-2 spike protein after two doses of CoronaVac in healthcare workers. J. Med Virol. 2021, 93, 5560–5567. [Google Scholar] [CrossRef]
- Eyre, D.W.; Lumley, S.F.; Wei, J.; Cox, S.; James, T.; Justice, A.; Jesuthasan, G.; O’Donnell, D.; Howarth, A.; Hatch, S.B.; et al. Quantitative SARS-CoV-2 anti-spike responses to Pfizer–BioNTech and Oxford–AstraZeneca vaccines by previous infection status. Clin. Microbiol. Infect. 2021, 27, 1516.e7–1516.e14. [Google Scholar] [CrossRef]
- Ebinger, J.E.; Fert-Bober, J.; Printsev, I.; Wu, M.; Sun, N.; Prostko, J.C.; Frias, E.C.; Stewart, J.L.; Van Eyk, J.E.; Braun, J.G.; et al. Antibody responses to the BNT162b2 mRNA vaccine in individuals previously infected with SARS-CoV-2. Nat Med. 2021, 27, 981–984. [Google Scholar] [CrossRef] [PubMed]
- Ciccone, E.J.; Zhu, D.R.; Ajeen, R.; Lodge, E.K.; Shook-Sa, B.E.; Boyce, R.M.; Aiello, A.E. COVID HCP Study Team. SARS-CoV-2 seropositivity after infection and antibody response to mRNA-based vaccination. medRxiv 2021. [Google Scholar] [CrossRef]
- Tanriover, M.D.; Doğanay, H.L.; Akova, M.; Güner, H.R.; Azap, A.; Akhan, S.; Köse, Ş.; Erdinç, F.Ş.; Akalın, E.H.; Tabak, Ö.F.; et al. Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): Interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet 2021, 398, 213–222. [Google Scholar] [CrossRef]
Anti-S Antibody Response | p-Value | |||
---|---|---|---|---|
Positive | Negative | |||
No. (%) | No. (%) | |||
Gender | Male | 54 (84.4) | 10 (15.6) | 0.893 |
Female | 66 (83.5) | 13 (16.5) | ||
Age in years | <40 | 55 (88.7%) | 7 (11.3%) | 0.172 |
≥40 | 65 (80.2%) | 16 (19.8%) | ||
Comorbidities | ||||
Diabetes (n = 16) | 12 (75%) | 4 (25%) | 0.291 | |
Hypertension (n = 32) | 26 (81.2%) | 6 (18.8%) | 0.641 | |
Lung diseases (n = 4) | 3 (75%) | 1 (25%) | 0.508 | |
Cardiac diseases (n = 4) | 4 (100%) | 0 (0%) | 0.999 | |
Renal diseases (n = 1) | 1 (100%) | 0 (0%) | 0.660 | |
BMI | ||||
Normal | 20 (76.9%) | 6 (23.1%) | 0.677 | |
Overweight | 50 (83.3%) | 10 (16.7%) | ||
Obese | 33 (86.8%) | 5 (13.2%) | ||
Morbid obesity | 17 (89.5%) | 2 (10.5%) |
Anti-S Antibody Response | p-Value | |||
---|---|---|---|---|
Positive | Negative | |||
No. (%) | No. (%) | |||
COVID-19 infection | Yes | 45 (97.8%) | 1 (2.2%) | p < 0.002 |
No | 75 (77.3%) | 22 (22.7) | ||
Frequency of infection | Once | 44 (100%) | 0 (0%) | p = 0.044 |
Twice | 1 (50%) | 1 (50%) | ||
Duration since diagnosis (months) | ≤3 | 2 (66.7%) | 1 (33.3%) | p = 0.065 |
>3 | 43 (100%) | 0 (0%) |
Anti-S Antibody Response | p-Value | |||
---|---|---|---|---|
Positive | Negative | |||
No. (%) | No. (%) | |||
Type of vaccine | Oxford/AstraZeneca vaccine (AZD1222) (n = 109) | 97 (88.9%) | 12 (11.1%) | p = 0.012 |
Median = 71.9 RU/ml | ||||
Sinopharm (BBIBP-CorV) (n = 31) | 21 (67.7%) | 10 (32.3%) | ||
Median = 5 8.0 RU/ml | ||||
Others (n = 3) | 2 (66.7%) | 1 (33.3%) | ||
Number of received doses | one | 24 (61.5%) | 15 (38.5%) | p = 0.001 |
Two | 96 (92.3%) | 8 (7.7%) | ||
Duration since last dose (days) | <14 | 21 (63.6%) | 12 (36.4%) | p = 0.43 |
≥14 | 99 (90%) | 11 (10%) |
Factors | p-Value | OR A | 95% C.I for OR | |
---|---|---|---|---|
Lower | Upper | |||
Non-Smokers | 0.048 * | 4.5 | 1.6 | 20.6 |
COVID infection | 0.017 * | 10.5 | 1.8 | 35.9 |
Frequency of infection | 0.021 * | 4.2 | 1.7 | 22.9 |
Oxford/AstraZeneca vaccine (AZD1222) | 0.042 * | 12.6 | 2.2 | 69.5 |
Number of vaccine doses (2 doses) | 0.001 ** | 95.0 | 20.9 | 115.3 |
Duration since vaccination | 0.043 * | 1.1 | 1.0 | 3.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Ghitany, E.M.; Hashish, M.H.; Farag, S.; Omran, E.A.; Farghaly, A.G.; Azzam, N.F.A.E.-M. Determinants of the Development of SARS-CoV-2 Anti-Spike Immune-Response after Vaccination among Healthcare Workers in Egypt. Vaccines 2022, 10, 174. https://doi.org/10.3390/vaccines10020174
El-Ghitany EM, Hashish MH, Farag S, Omran EA, Farghaly AG, Azzam NFAE-M. Determinants of the Development of SARS-CoV-2 Anti-Spike Immune-Response after Vaccination among Healthcare Workers in Egypt. Vaccines. 2022; 10(2):174. https://doi.org/10.3390/vaccines10020174
Chicago/Turabian StyleEl-Ghitany, Engy Mohamed, Mona H. Hashish, Shehata Farag, Eman A. Omran, Azza Galal Farghaly, and Nashwa Fawzy Abd El-Moez Azzam. 2022. "Determinants of the Development of SARS-CoV-2 Anti-Spike Immune-Response after Vaccination among Healthcare Workers in Egypt" Vaccines 10, no. 2: 174. https://doi.org/10.3390/vaccines10020174
APA StyleEl-Ghitany, E. M., Hashish, M. H., Farag, S., Omran, E. A., Farghaly, A. G., & Azzam, N. F. A. E. -M. (2022). Determinants of the Development of SARS-CoV-2 Anti-Spike Immune-Response after Vaccination among Healthcare Workers in Egypt. Vaccines, 10(2), 174. https://doi.org/10.3390/vaccines10020174