Utilization of Viral Vector Vaccines in Preparing for Future Pandemics
Abstract
:1. Introduction
2. Target Product Profile
2.1. Safety and Efficacy
2.2. Clinical Operations
2.3. Research and Development
3. Virus Vectors in Development
3.1. Adenovirus Vectors
3.2. Modified Vaccinia Ankara (MVA)
3.3. Paramyxovirus Vectors
3.4. Vesicular Stomatitis Virus (VSV)
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 31 January 2022).
- World Health Organization. Prioritizing Diseases for Research and Development in Emergency Contexts. Available online: https://www.who.int/activities/prioritizing-diseases-for-research-and-development-in-emergency-contexts (accessed on 28 December 2021).
- Coalition for Epidemic Preparedness Innovations. Priority Diseases. Available online: https://cepi.net/research_dev/priority-diseases/ (accessed on 2 December 2021).
- Gavi. 10 Infectious Diseases That Could Be the Next Pandemic. Available online: https://www.gavi.org/vaccineswork/10-infectious-diseases-could-be-next-pandemic (accessed on 28 December 2021).
- Ioannidis, J.P.A. Infection fatality rate of COVID-19 inferred from seroprevalence data. Bull World Health Organ. 2021, 99, 19–33f. [Google Scholar] [CrossRef] [PubMed]
- De Wit, E.; van Doremalen, N.; Falzarano, D.; Munster, V.J. SARS and MERS: Recent insights into emerging coronaviruses. Nat. Rev. Microbiol 2016, 14, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.D.; Chi, W.Y.; Su, J.H.; Ferrall, L.; Hung, C.F.; Wu, T.C. Coronavirus vaccine development: From SARS and MERS to COVID-19. J. Biomed. Sci. 2020, 27, 104. [Google Scholar] [CrossRef] [PubMed]
- Memish, Z.A.; Perlman, S.; Van Kerkhove, M.D.; Zumla, A. Middle East respiratory syndrome. Lancet 2020, 395, 1063–1077. [Google Scholar] [CrossRef]
- Forna, A.; Nouvellet, P.; Dorigatti, I.; Donnelly, C.A. Case Fatality Ratio Estimates for the 2013-2016 West African Ebola Epidemic: Application of Boosted Regression Trees for Imputation. Clin. Infect. Dis. 2020, 70, 2476–2483. [Google Scholar] [CrossRef] [PubMed]
- Agua-Agum, J.; Allegranzi, B.; Ariyarajah, A.; Aylward, R.; Blake, I.M.; Barboza, P.; Bausch, D.; Brennan, R.J.; Clement, P.; Coffey, P.; et al. After Ebola in West Africa--Unpredictable Risks, Preventable Epidemics. N. Engl. J. Med. 2016, 375, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, A.; Fiet, C.; Belpois-Duchamp, C.; Tiv, M.; Astruc, K.; Aho Glélé, L.S. Case fatality rates of Ebola virus diseases: A meta-analysis of World Health Organization data. Med. Mal. Infect. 2014, 44, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Nyakarahuka, L.; Kankya, C.; Krontveit, R.; Mayer, B.; Mwiine, F.N.; Lutwama, J.; Skjerve, E. How severe and prevalent are Ebola and Marburg viruses? A systematic review and meta-analysis of the case fatality rates and seroprevalence. BMC Infect. Dis. 2016, 16, 708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richmond, J.K.; Baglole, D.J. Lassa fever: Epidemiology, clinical features, and social consequences. BMJ 2003, 327, 1271–1275. [Google Scholar] [CrossRef]
- Nigeria Centre for Disease Control. Lassa fever Situation Report Epi Week 52: 21–27 December 2020. Available online: https://ncdc.gov.ng/themes/common/files/sitreps/e9cf6841a83cdfdef7d73200813b9126.pdf (accessed on 14 January 2022).
- Kenmoe, S.; Demanou, M.; Bigna, J.J.; Nde Kengne, C.; Fatawou Modiyinji, A.; Simo, F.B.N.; Eyangoh, S.; Sadeuh-Mba, S.A.; Njouom, R. Case fatality rate and risk factors for Nipah virus encephalitis: A systematic review and meta-analysis. J. Clin. Virol. 2019, 117, 19–26. [Google Scholar] [CrossRef]
- Soman Pillai, V.; Krishna, G.; Valiya Veettil, M. Nipah Virus: Past Outbreaks and Future Containment. Viruses 2020, 12, 465. [Google Scholar] [CrossRef] [Green Version]
- Gómez Román, R.; Tornieporth, N.; Cherian, N.G.; Shurtleff, A.C.; L’Azou Jackson, M.; Yeskey, D.; Hacker, A.; Mungai, E.; Le, T.T. Medical countermeasures against henipaviruses: A review and public health perspective. Lancet Infect. Dis. 2022, 22, e13–e27. [Google Scholar] [CrossRef]
- Halpin, K.; Rota, P. A Review of Hendra Virus and Nipah Virus Infections in Man and Other Animals. Zoonoses Infect. Affect. Hum. Anim. 2014, 22, 997–1012. [Google Scholar] [CrossRef]
- Nasirian, H. New aspects about Crimean-Congo hemorrhagic fever (CCHF) cases and associated fatality trends: A global systematic review and meta-analysis. Comp. Immunol. Microbiol. Infect. Dis. 2020, 69, 101429. [Google Scholar] [CrossRef] [PubMed]
- Javelle, E.; Lesueur, A.; Pommier de Santi, V.; de Laval, F.; Lefebvre, T.; Holweck, G.; Durand, G.A.; Leparc-Goffart, I.; Texier, G.; Simon, F. The challenging management of Rift Valley Fever in humans: Literature review of the clinical disease and algorithm proposal. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 4. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Ali, Y.; Elduma, A.; Eldigail, M.H.; Mhmoud, R.A.; Mohamed, N.S.; Ksiazek, T.G.; Dietrich, I.; Weaver, S.C. Unique Outbreak of Rift Valley Fever in Sudan, 2019. Emerg. Infect. Dis. 2020, 26, 3030–3033. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.C.N.; Cardim, L.L.; Teixeira, M.G.; Barreto, M.L.; Carvalho-Sauer, R.d.C.O.d.; Barreto, F.R.; Carvalho, M.S.I.; Oliveira, W.K.; França, G.V.A.; Carmo, E.H.; et al. Case Fatality Rate Related to Microcephaly Congenital Zika Syndrome and Associated Factors: A Nationwide Retrospective Study in Brazil. Viruses 2020, 12, 1228. [Google Scholar] [CrossRef] [PubMed]
- Ikejezie, J.; Shapiro, C.N.; Kim, J.; Chiu, M.; Almiron, M.; Ugarte, C.; Espinal, M.A.; Aldighieri, S. Zika Virus Transmission—Region of the Americas, 15 May 2015–15 December 2016. MMWR Morb. Mortal. Wkly. Rep. 2017, 66, 329–334. [Google Scholar] [CrossRef] [Green Version]
- Jacob, S.T.; Crozier, I.; Fischer, W.A., 2nd; Hewlett, A.; Kraft, C.S.; Vega, M.A.; Soka, M.J.; Wahl, V.; Griffiths, A.; Bollinger, L.; et al. Ebola virus disease. Nat. Rev. Dis. Primers 2020, 6, 13. [Google Scholar] [CrossRef] [Green Version]
- Inungu, J.; Iheduru-Anderson, K.; Odio, O.J. Recurrent Ebolavirus disease in the Democratic Republic of Congo: Update and challenges. AIMS Public Health 2019, 6, 502–513. [Google Scholar] [CrossRef]
- Henao-Restrepo, A.M.; Camacho, A.; Longini, I.M.; Watson, C.H.; Edmunds, W.J.; Egger, M.; Carroll, M.W.; Dean, N.E.; Diatta, I.; Doumbia, M.; et al. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: Final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!). Lancet 2017, 389, 505–518. [Google Scholar] [CrossRef] [Green Version]
- Purushotham, J.; Lambe, T.; Gilbert, S.C. Vaccine platforms for the prevention of Lassa fever. Immunol. Lett. 2019, 215, 1–11. [Google Scholar] [CrossRef]
- Vrba, S.M.; Kirk, N.M.; Brisse, M.E.; Liang, Y.; Ly, H. Development and Applications of Viral Vectored Vaccines to Combat Zoonotic and Emerging Public Health Threats. Vaccines 2020, 8, 680. [Google Scholar] [CrossRef] [PubMed]
- Halperin, S.A.; Arribas, J.R.; Rupp, R.; Andrews, C.P.; Chu, L.; Das, R.; Simon, J.K.; Onorato, M.T.; Liu, K.; Martin, J.; et al. Six-Month Safety Data of Recombinant Vesicular Stomatitis Virus-Zaire Ebola Virus Envelope Glycoprotein Vaccine in a Phase 3 Double-Blind, Placebo-Controlled Randomized Study in Healthy Adults. J. Infect. Dis. 2017, 215, 1789–1798. [Google Scholar] [CrossRef]
- Wolf, J.; Jannat, R.; Dubey, S.; Troth, S.; Onorato, M.T.; Coller, B.A.; Hanson, M.E.; Simon, J.K. Development of Pandemic Vaccines: ERVEBO Case Study. Vaccines 2021, 9, 190. [Google Scholar] [CrossRef] [PubMed]
- Kelton, J.G.; Arnold, D.M.; Nazy, I. Lessons from vaccine-induced immune thrombotic thrombocytopenia. Nat. Rev. Immunol. 2021, 21, 753–755. [Google Scholar] [CrossRef]
- U.S. Centers for Disease Control and Prevention. Interim Clinical Considerations for Use of COVID-19 Vaccines Currently Approved or Authorized in the United States. Available online: https://www.cdc.gov/vaccines/covid-19/clinical-considerations/covid-19-vaccines-us.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fvaccines%2Fcovid-19%2Finfo-by-product%2Fclinical-considerations.html (accessed on 12 February 2022).
- Simonsen, K.A.; Snowden, J. Smallpox; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Belongia, E.A.; Naleway, A.L. Smallpox vaccine: The good, the bad, and the ugly. Clin. Med. Res. 2003, 1, 87–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, H.; Ehmann, R.; Smith, G.L. Smallpox in the Post-Eradication Era. Viruses 2020, 12, 138. [Google Scholar] [CrossRef] [Green Version]
- Jusu, M.O.; Glauser, G.; Seward, J.F.; Bawoh, M.; Tempel, J.; Friend, M.; Littlefield, D.; Lahai, M.; Jalloh, H.M.; Sesay, A.B.; et al. Rapid Establishment of a Cold Chain Capacity of −60 °C or Colder for the STRIVE Ebola Vaccine Trial During the Ebola Outbreak in Sierra Leone. J. Infect. Dis. 2018, 217, S48–S55. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, J.R.; Robertson, J.; Hsu, J.S.; Yu, S.L.; Driscoll, A.J.; Williams, S.R.; Chen, W.H.; Fitzpatrick, M.C.; Sow, S.; Biellik, R.J.; et al. The potential effects of deploying SARS-Cov-2 vaccines on cold storage capacity and immunization workload in countries of the WHO African Region. Vaccine 2021, 39, 2165–2176. [Google Scholar] [CrossRef] [PubMed]
- Crommelin, D.J.A.; Volkin, D.B.; Hoogendoorn, K.H.; Lubiniecki, A.S.; Jiskoot, W. The Science is There: Key Considerations for Stabilizing Viral Vector-Based Covid-19 Vaccines. J. Pharm. Sci. 2021, 110, 627–634. [Google Scholar] [CrossRef] [PubMed]
- Wherry, E.J.; Jaffee, E.M.; Warren, N.; D’Souza, G.; Ribas, A.; Force, A.C.; Task, C. How Did We Get a COVID-19 Vaccine in Less Than 1 Year? Clin. Cancer Res. 2021, 27, 2136–2138. [Google Scholar] [CrossRef] [PubMed]
- Tatsis, N.; Ertl, H.C. Adenoviruses as vaccine vectors. Mol. Ther. 2004, 10, 616–629. [Google Scholar] [CrossRef] [PubMed]
- NeuroRx, I. Phase 2b/3 Trial of VSV-ΔG SARS-CoV-2 Vaccine (BRILIFE) against Approved Comparator Vaccine. Available online: https://ClinicalTrials.gov/show/NCT04990466 (accessed on 14 December 2021).
- Gamaleya Research Institute of Epidemiology and Microbiology. Study of Safety and Immunogenicity of BVRS-GamVac-Combi. Available online: https://ClinicalTrials.gov/show/NCT04128059 (accessed on 14 December 2021).
- Tomori, O.; Kolawole, M.O. Ebola virus disease: Current vaccine solutions. Curr. Opin. Immunol. 2021, 71, 27–33. [Google Scholar] [CrossRef] [PubMed]
- International AIDS Vaccine Initiative. A Clinical Trial to Evaluate the Safety and Immunogenicity of rVSV∆G-LASV-GPC Vaccine in Adults in Good General Heath. Available online: https://ClinicalTrials.gov/show/NCT04794218 (accessed on 14 December 2021).
- Themis Bioscience GmbH. A Trial to Evaluate the Optimal Dose of MV-LASV (V182-001). Available online: https://ClinicalTrials.gov/show/NCT04055454 (accessed on 14 December 2021).
- Themis Bioscience GmbH. Zika-Vaccine Dose Finding Study Regarding Safety, Immunogenicity and Tolerability (V186-001). Available online: https://ClinicalTrials.gov/show/NCT02996890 (accessed on 14 December 2021).
- Themis Bioscience GmbH. Safety and Immunogenicity of a Novel Vaccine Formulation MV-ZIKA-RSP (V187-001). Available online: https://ClinicalTrials.gov/show/NCT04033068 (accessed on 14 December 2021).
- National Institute of Allergy and Infectious Diseases. Evaluating the Live-Attenuated Human Parainfluenza Virus Type 3 Vectored Vaccine Candidate Expressing Ebolavirus Zaire Glycoprotein as the Sole Envelope Glycoprotein. Available online: https://ClinicalTrials.gov/show/NCT03462004 (accessed on 14 December 2021).
- CyanVac LLC. Phase 1 Study of Intranasal PIV5-vectored COVID-19 Vaccine Expressing SARS-CoV-2 Spike Protein in Healthy Adults. Available online: https://ClinicalTrials.gov/show/NCT04954287 (accessed on 14 December 2021).
- International Clinical Trials Registry Platform. A Phase III Clinical Trial of Influenza Virus Vector COVID- 19 Vaccine for Intranasal Spray (DelNS1-2019-nCoV-RBD-OPT1). Available online: https://trialsearch.who.int/Trial2.aspx?TrialID=ChiCTR2100051391 (accessed on 14 December 2021).
- Halperin, S.A.; Ye, L.; MacKinnon-Cameron, D.; Smith, B.; Cahn, P.E.; Ruiz-Palacios, G.M.; Ikram, A.; Lanas, F.; Lourdes Guerrero, M.; Muñoz Navarro, S.R.; et al. Final efficacy analysis, interim safety analysis, and immunogenicity of a single dose of recombinant novel coronavirus vaccine (adenovirus type 5 vector) in adults 18 years and older: An international, multicentre, randomised, double-blinded, placebo-controlled phase 3 trial. Lancet 2022, 399, 237–248. [Google Scholar] [CrossRef] [PubMed]
- A Ph 2 Trial with an Oral Tableted COVID-19 Vaccine. Available online: https://ClinicalTrials.gov/show/NCT05067933 (accessed on 14 December 2021).
- COVID-19 Vaccination Using a 2nd Generation (E1/E2B/E3-Deleted) Adenoviral-COVID-19 in Normal Healthy Volunteers. Available online: https://ClinicalTrials.gov/show/NCT04591717 (accessed on 14 December 2021).
- McMaster University. Phase 1 Trial of ChAd68 and Ad5 Adenovirus COVID-19 Vaccines Delivered by Aerosol. Available online: https://ClinicalTrials.gov/show/NCT05094609 (accessed on 14 December 2021).
- Gamaleya Research Institute of Epidemiology and Microbiology. Study of Safety and Immunogenicity of BVRS-GamVac. Available online: https://ClinicalTrials.gov/show/NCT04130594 (accessed on 14 December 2021).
- U.S. Food & Drug Administration. Janssen COVID-19 Vaccine. Available online: https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/janssen-covid-19-vaccine (accessed on 14 December 2021).
- European Medicines Agency. COVID-19 Vaccine Janssen. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/covid-19-vaccine-janssen (accessed on 14 December 2021).
- Nogrady, B. Mounting evidence suggests Sputnik COVID vaccine is safe and effective. Nature News 2021, 595, 339–340. [Google Scholar] [CrossRef] [PubMed]
- Janssen Vaccines & Prevention, B.V. A Study to Evaluate the Safety, Reactogenicity and Immunogenicity of Ad26.ZIKV.001 in Healthy Adult Volunteers. Available online: https://ClinicalTrials.gov/show/NCT03356561 (accessed on 14 December 2021).
- European Medicines Agency. Vaxzevria (previously COVID-19 Vaccine AstraZeneca). Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/vaxzevria-previously-covid-19-vaccine-astrazeneca (accessed on 14 December 2021).
- Bosaeed, M.; Balkhy, H.H.; Almaziad, S.; Aljami, H.A.; Alhatmi, H.; Alanazi, H.; Alahmadi, M.; Jawhary, A.; Alenazi, M.W.; Almasoud, A.; et al. Safety and immunogenicity of ChAdOx1 MERS vaccine candidate in healthy Middle Eastern adults (MERS002): An open-label, non-randomised, dose-escalation, phase 1b trial. Lancet Microbe. 2022, 3, e11–e20. [Google Scholar] [CrossRef]
- University of Oxford. A Study of a New Vaccine against Two Types of Ebola. Available online: https://ClinicalTrials.gov/show/NCT05079750 (accessed on 14 December 2021).
- University of Oxford. Safety and Immunogenicity of a Candidate RVFV Vaccine (RVF001). Available online: https://ClinicalTrials.gov/show/NCT04754776 (accessed on 14 December 2021).
- University of Oxford. Research Study to Assess New Chikungunya and Zika Vaccines in Healthy Adults in Mexico. Available online: https://ClinicalTrials.gov/show/NCT04440774 (accessed on 14 December 2021).
- GlaxoSmithKline. A Study to Evaluate the Safety and Immunogenicity of a Candidate Ebola Vaccine in Adults. Available online: https://ClinicalTrials.gov/show/NCT02485301 (accessed on 14 December 2021).
- National Institute of Allergy and Infectious Diseases. cAd3-Marburg Vaccine in Healthy Adults. Available online: https://ClinicalTrials.gov/show/NCT03475056 (accessed on 14 December 2021).
- Albert, B.; Sabin Vaccine Institute. Evaluation of Safety, Tolerability and Immune Responses of Ebola-S and Marburg Vaccines in Healthy Adults. Available online: https://clinicaltrials.gov/ct2/show/NCT04723602 (accessed on 14 December 2021).
- National Institute of Allergy and Infectious Diseases. Ebola Sudan Chimpanzee Adenovirus Vector Vaccine in Healthy Adults. Available online: https://ClinicalTrials.gov/show/NCT04041570 (accessed on 14 December 2021).
- National Institute of Allergy and Infectious Diseases. Safety, Tolerability, and Immunogenicity of the Ebola Chimpanzee Adenovirus Vector Vaccine (cAd3-EBO), VRC-EBOADC069-00-VP, in Healthy Adults. Available online: https://ClinicalTrials.gov/show/NCT02231866 (accessed on 14 December 2021).
- Tetherex Pharmaceuticals Corporation. A Phase 1, First-In-Human Study of the Investigational COVID-19 Vaccine SC-Ad6-1 in Healthy Volunteers. Available online: https://ClinicalTrials.gov/show/NCT04839042 (accessed on 14 December 2021).
- Bharat Biotech International Limited. Safety and Immunogenicity of an Intranasal SARS-CoV-2 Vaccine (BBV154) for COVID-19. Available online: https://ClinicalTrials.gov/show/NCT04751682 (accessed on 14 December 2021).
- Cellid Co., Ltd. Safety and Immunogenicity Study of AdCLD-CoV19: A COVID-19 Preventive Vaccine in Healthy Volunteers. Available online: https://ClinicalTrials.gov/show/NCT04666012 (accessed on 14 December 2021).
- ReiThera Srl. Study of GRAd-COV2 for the Prevention of COVID-19 in Adults. Available online: https://ClinicalTrials.gov/show/NCT04791423 (accessed on 14 December 2021).
- Biocad. Clinical Study of the Safety and Immunogenicity of a Recombinant Viral Vector AAV5 (Adeno-Associated Virus Type 5)-RBD (Receptor Binding Domain)-S Vaccine for the Prevention of Coronavirus Infection (COVID-19). Available online: https://ClinicalTrials.gov/show/NCT05037188 (accessed on 14 December 2021).
- Universitätsklinikum Hamburg-Eppendorf. Safety and Immunogenicity of the Candidate Vaccine MVA-SARS-2-S and a Booster Vaccination with a Licensed Vaccine against COVID-19. Available online: https://ClinicalTrials.gov/show/NCT04569383 (accessed on 14 December 2021).
- Universitätsklinikum Hamburg-Eppendorf. Safety, Tolerability and Immunogenicity of the Candidate Vaccine MVA-SARS-2-ST against COVID-19. Available online: https://ClinicalTrials.gov/show/NCT04895449 (accessed on 14 December 2021).
- City of Hope Medical Center. SARS-CoV-2 Vaccine (COH04S1) Versus Emergency Use Authorization SARS-COV-2 Vaccine for the Treatment of COVID-19 in Patients with Blood Cancer. Available online: https://ClinicalTrials.gov/show/NCT04977024 (accessed on 14 December 2021).
- Universitätsklinikum Hamburg-Eppendorf. Safety, Tolerability and Immunogenicity of Vaccine Candidate MVA-MERS-S. Available online: https://ClinicalTrials.gov/show/NCT03615911 (accessed on 14 December 2021).
- Institute of Vaccines and Medical Biologicals Vietnam. A Phase 1/2 Safety and Immunogenicity Trial of COVID-19 Vaccine COVIVAC. Available online: https://ClinicalTrials.gov/show/NCT04830800 (accessed on 14 December 2021).
- Cazzola, M.; Rogliani, P.; Mazzeo, F.; Matera, M.G. Controversy surrounding the Sputnik V vaccine. Respir. Med. 2021, 187, 106569. [Google Scholar] [CrossRef] [PubMed]
- Zak, D.E.; Andersen-Nissen, E.; Peterson, E.R.; Sato, A.; Hamilton, M.K.; Borgerding, J.; Krishnamurty, A.T.; Chang, J.T.; Adams, D.J.; Hensley, T.R.; et al. Merck Ad5/HIV induces broad innate immune activation that predicts CD8+ T-cell responses but is attenuated by preexisting Ad5 immunity. Proc. Natl. Acad. Sci. USA 2012, 109, 3503–3512. [Google Scholar] [CrossRef] [Green Version]
- Teigler, J.E.; Iampietro, M.J.; Barouch, D.H. Vaccination with adenovirus serotypes 35, 26, and 48 elicits higher levels of innate cytokine responses than adenovirus serotype 5 in rhesus monkeys. J. Virol. 2012, 86, 9590–9598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colloca, S.; Folgori, A.; Ammendola, V.; Capone, S.; Cirillo, A.; Siani, L.; Naddeo, M.; Grazioli, F.; Esposito, M.L.; Ambrosio, M.; et al. Generation and screening of a large collection of novel simian Adenovirus allows the identification of vaccine vectors inducing potent cellular immunity in humans. Sci. Transl. Med. 2012, 4, 115ra2. [Google Scholar] [CrossRef] [Green Version]
- Abbink, P.; Lemckert, A.A.; Ewald, B.A.; Lynch, D.M.; Denholtz, M.; Smits, S.; Holterman, L.; Damen, I.; Vogels, R.; Thorner, A.R.; et al. Comparative seroprevalence and immunogenicity of six rare serotype recombinant adenovirus vaccine vectors from subgroups B and D. J. Virol. 2007, 81, 4654–4663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Custers, J.; Kim, D.; Leyssen, M.; Gurwith, M.; Tomaka, F.; Robertson, J.; Heijnen, E.; Condit, R.; Shukarev, G.; Heerwegh, D.; et al. Vaccines based on replication incompetent Ad26 viral vectors: Standardized template with key considerations for a risk/benefit assessment. Vaccine 2021, 39, 3081–3101. [Google Scholar] [CrossRef]
- Sadoff, J.; Gray, G.; Vandebosch, A.; Cárdenas, V.; Shukarev, G.; Grinsztejn, B.; Goepfert, P.A.; Truyers, C.; Fennema, H.; Spiessens, B.; et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19. N. Engl. J. Med. 2021, 384, 2187–2201. [Google Scholar] [CrossRef] [PubMed]
- Alter, G.; Yu, J.; Liu, J.; Chandrashekar, A.; Borducchi, E.N.; Tostanoski, L.H.; McMahan, K.; Jacob-Dolan, C.; Martinez, D.R.; Chang, A.; et al. Immunogenicity of Ad26.COV2.S vaccine against SARS-CoV-2 variants in humans. Nature 2021, 596, 268–272. [Google Scholar] [CrossRef]
- Geisbert, T.W.; Bailey, M.; Hensley, L.; Asiedu, C.; Geisbert, J.; Stanley, D.; Honko, A.; Johnson, J.; Mulangu, S.; Pau, M.G.; et al. Recombinant adenovirus serotype 26 (Ad26) and Ad35 vaccine vectors bypass immunity to Ad5 and protect nonhuman primates against ebolavirus challenge. J. Virol. 2011, 85, 4222–4233. [Google Scholar] [CrossRef] [Green Version]
- Dicks, M.D.; Spencer, A.J.; Edwards, N.J.; Wadell, G.; Bojang, K.; Gilbert, S.C.; Hill, A.V.; Cottingham, M.G. A novel chimpanzee adenovirus vector with low human seroprevalence: Improved systems for vector derivation and comparative immunogenicity. PLoS One 2012, 7, e40385. [Google Scholar] [CrossRef] [Green Version]
- Van Doremalen, N.; Haddock, E.; Feldmann, F.; Meade-White, K.; Bushmaker, T.; Fischer, R.J.; Okumura, A.; Hanley, P.W.; Saturday, G.; Edwards, N.J.; et al. A single dose of ChAdOx1 MERS provides protective immunity in rhesus macaques. Sci. Adv. 2020, 6, eaba8399. [Google Scholar] [CrossRef]
- Falsey, A.R.; Sobieszczyk, M.E.; Hirsch, I.; Sproule, S.; Robb, M.L.; Corey, L.; Neuzil, K.M.; Hahn, W.; Hunt, J.; Mulligan, M.J.; et al. Phase 3 Safety and Efficacy of AZD1222 (ChAdOx1 nCoV-19) Covid-19 Vaccine. N. Engl. J. Med. 2021, 385, 2348–2360. [Google Scholar] [CrossRef]
- Swanson, P.A.; Padilla, M.; Hoyland, W.; McGlinchey, K.; Fields, P.A.; Bibi, S.; Faust, S.N.; McDermott, A.B.; Lambe, T.; Pollard, A.J.; et al. AZD1222/ChAdOx1 nCoV-19 vaccination induces a polyfunctional spike protein-specific TH1 response with a diverse TCR repertoire. Sci. Transl. Med. 2021, 13, eabj7211. [Google Scholar] [CrossRef] [PubMed]
- Tapia, M.D.; Sow, S.O.; Ndiaye, B.P.; Mbaye, K.D.; Thiongane, A.; Ndour, C.T.; Mboup, S.; Ake, J.A.; Keshinro, B.; Akintunde, G.A.; et al. Safety, reactogenicity, and immunogenicity of a chimpanzee adenovirus vectored Ebola vaccine in adults in Africa: A randomised, observer-blind, placebo-controlled, phase 2 trial. Lancet Infect. Dis. 2020, 20, 707–718. [Google Scholar] [CrossRef]
- Woolsey, C.; Geisbert, T.W. Current state of Ebola virus vaccines: A snapshot. PLoS Pathog. 2021, 17, e1010078. [Google Scholar] [CrossRef] [PubMed]
- Bricker, T.L.; Darling, T.L.; Hassan, A.O.; Harastani, H.H.; Soung, A.; Jiang, X.; Dai, Y.-N.; Zhao, H.; Adams, L.J.; Holtzman, M.J.; et al. A single intranasal or intramuscular immunization with chimpanzee adenovirus-vectored SARS-CoV-2 vaccine protects against pneumonia in hamsters. Cell Rep. 2021, 36, 109400. [Google Scholar] [CrossRef] [PubMed]
- Barry, M. Single-cycle adenovirus vectors in the current vaccine landscape. Expert Rev. Vaccines 2018, 17, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Anguiano-Zarate, S.S.; Matchett, W.E.; Nehete, P.N.; Sastry, J.K.; Marzi, A.; Barry, M.A. A Replicating Single-Cycle Adenovirus Vaccine Against Ebola Virus. J. Infect. Dis. 2018, 218, 1883–1889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaynarcalidan, O.; Moreno Mascaraque, S.; Drexler, I. Vaccinia Virus: From Crude Smallpox Vaccines to Elaborate Viral Vector Vaccine Design. Biomedicines 2021, 9, 1780. [Google Scholar] [CrossRef] [PubMed]
- Callendret, B.; Vellinga, J.; Wunderlich, K.; Rodriguez, A.; Steigerwald, R.; Dirmeier, U.; Cheminay, C.; Volkmann, A.; Brasel, T.; Carrion, R.; et al. A prophylactic multivalent vaccine against different filovirus species is immunogenic and provides protection from lethal infections with Ebolavirus and Marburgvirus species in non-human primates. PLoS One 2018, 13, e0192312. [Google Scholar] [CrossRef] [Green Version]
- Pollard, A.J.; Launay, O.; Lelievre, J.D.; Lacabaratz, C.; Grande, S.; Goldstein, N.; Robinson, C.; Gaddah, A.; Bockstal, V.; Wiedemann, A.; et al. Safety and immunogenicity of a two-dose heterologous Ad26.ZEBOV and MVA-BN-Filo Ebola vaccine regimen in adults in Europe (EBOVAC2): A randomised, observer-blind, participant-blind, placebo-controlled, phase 2 trial. Lancet Infect. Dis. 2021, 21, 493–506. [Google Scholar] [CrossRef]
- Taub, D.D.; Ershler, W.B.; Janowski, M.; Artz, A.; Key, M.L.; McKelvey, J.; Muller, D.; Moss, B.; Ferrucci, L.; Duffey, P.L.; et al. Immunity from smallpox vaccine persists for decades: A longitudinal study. Am. J. Med. 2008, 121, 1058–1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altenburg, A.F.; van Trierum, S.E.; de Bruin, E.; de Meulder, D.; van de Sandt, C.E.; van der Klis, F.R.M.; Fouchier, R.A.M.; Koopmans, M.P.G.; Rimmelzwaan, G.F.; de Vries, R.D. Effects of pre-existing orthopoxvirus-specific immunity on the performance of Modified Vaccinia virus Ankara-based influenza vaccines. Sci. Rep. 2018, 8, 6474. [Google Scholar] [CrossRef] [PubMed]
- Zuniga, A.; Wang, Z.; Liniger, M.; Hangartner, L.; Caballero, M.; Pavlovic, J.; Wild, P.; Viret, J.F.; Glueck, R.; Billeter, M.A.; et al. Attenuated measles virus as a vaccine vector. Vaccine 2007, 25, 2974–2983. [Google Scholar] [CrossRef] [PubMed]
- Samal, S.K. Paramyxoviruses as Vaccine Vectors. In Viral Vectors in Veterinary Vaccine Development; Springer: Cham, Switzerland, 2020; pp. 113–139. [Google Scholar]
- Reisinger, E.C.; Tschismarov, R.; Beubler, E.; Wiedermann, U.; Firbas, C.; Loebermann, M.; Pfeiffer, A.; Muellner, M.; Tauber, E.; Ramsauer, K. Immunogenicity, safety, and tolerability of the measles-vectored chikungunya virus vaccine MV-CHIK: A double-blind, randomised, placebo-controlled and active-controlled phase 2 trial. Lancet 2019, 392, 2718–2727. [Google Scholar] [CrossRef]
- Frantz, P.N.; Teeravechyan, S.; Tangy, F. Measles-derived vaccines to prevent emerging viral diseases. Microbes Infect. 2018, 20, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Mateo, M.; Reynard, S.; Journeaux, A.; Germain, C.; Hortion, J.; Carnec, X.; Picard, C.; Baillet, N.; Borges-Cardoso, V.; Merabet, O.; et al. A single-shot Lassa vaccine induces long-term immunity and protects cynomolgus monkeys against heterologous strains. Sci. Transl. Med. 2021, 13, eabf6348. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.; Garron, T.; Lubaki, N.M.; Mire, C.E.; Fenton, K.A.; Klages, C.; Olinger, G.G.; Geisbert, T.W.; Collins, P.L.; Bukreyev, A. Aerosolized Ebola vaccine protects primates and elicits lung-resident T cell responses. J. Clin. Investig. 2015, 125, 3241–3255. [Google Scholar] [CrossRef] [Green Version]
- Osterholm, M.T.; Moore, K.A.; Kelley, N.S.; Brosseau, L.M.; Wong, G.; Murphy, F.A.; Peters, C.J.; LeDuc, J.W.; Russell, P.K.; Van Herp, M.; et al. Transmission of Ebola viruses: What we know and what we do not know. mBio 2015, 6, e00137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bukreyev, A.; Marzi, A.; Feldmann, F.; Zhang, L.; Yang, L.; Ward, J.M.; Dorward, D.W.; Pickles, R.J.; Murphy, B.R.; Feldmann, H.; et al. Chimeric human parainfluenza virus bearing the Ebola virus glycoprotein as the sole surface protein is immunogenic and highly protective against Ebola virus challenge. Virology 2009, 383, 348–361. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Xu, P.; Salyards, G.W.; Harvey, S.B.; Rada, B.; Fu, Z.F.; He, B. Evaluating a parainfluenza virus 5-based vaccine in a host with pre-existing immunity against parainfluenza virus 5. PLoS One 2012, 7, e50144. [Google Scholar] [CrossRef]
- Park, M.S.; Shaw, M.L.; Muñoz-Jordan, J.; Cros, J.F.; Nakaya, T.; Bouvier, N.; Palese, P.; García-Sastre, A.; Basler, C.F. Newcastle disease virus (NDV)-based assay demonstrates interferon-antagonist activity for the NDV V protein and the Nipah virus V, W, and C proteins. J. Virol. 2003, 77, 1501–1511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitisuttithum, P.; Luvira, V.; Lawpoolsri, S.; Muangnoicharoen, S.; Kamolratanakul, S.; Sivakorn, C.; Narakorn, P.; Surichan, S.; Prangpratanporn, S.; Puksuriwong, S.; et al. Safety and Immunogenicity of an Inactivated Recombinant Newcastle Disease Virus Vaccine Expressing SARS-CoV-2 Spike: Interim Results of a Randomised, Placebo-Controlled, Phase 1/2 Trial. medRxiv 2021. [CrossRef]
- Sun, W.; Liu, Y.; Amanat, F.; Gonzalez-Dominguez, I.; McCroskery, S.; Slamanig, S.; Coughlan, L.; Rosado, V.; Lemus, N.; Jangra, S.; et al. A Newcastle disease virus-vector expressing a prefusion-stabilized spike protein of SARS-CoV-2 induces protective immune responses against prototype virus and variants of concern in mice and hamsters. BioRxiv 2021. [CrossRef]
- Fathi, A.; Dahlke, C.; Addo, M.M. Recombinant vesicular stomatitis virus vector vaccines for WHO blueprint priority pathogens. Hum. Vaccin. Immunother. 2019, 15, 2269–2285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, D.; Wright, K.J.; Calderon, P.C.; Guo, M.; Nasar, F.; Johnson, J.E.; Coleman, J.W.; Lee, M.; Kotash, C.; Yurgelonis, I.; et al. Attenuation of recombinant vesicular stomatitis virus-human immunodeficiency virus type 1 vaccine vectors by gene translocations and g gene truncation reduces neurovirulence and enhances immunogenicity in mice. J. Virol. 2008, 82, 207–219. [Google Scholar] [CrossRef] [Green Version]
- Coller, B.G.; Blue, J.; Das, R.; Dubey, S.; Finelli, L.; Gupta, S.; Helmond, F.; Grant-Klein, R.J.; Liu, K.; Simon, J.; et al. Clinical development of a recombinant Ebola vaccine in the midst of an unprecedented epidemic. Vaccine 2017, 35, 4465–4469. [Google Scholar] [CrossRef] [PubMed]
- Grais, R.F.; Kennedy, S.B.; Mahon, B.E.; Dubey, S.A.; Grant-Klein, R.J.; Liu, K.; Hartzel, J.; Coller, B.-A.; Welebob, C.; Hanson, M.E.; et al. Estimation of the correlates of protection of the rVSVΔG-ZEBOV-GP Zaire ebolavirus vaccine: A post-hoc analysis of data from phase 2/3 clinical trials. Lancet Microbe 2021, 2, E70–E78. [Google Scholar] [CrossRef]
- Halperin, S.A.; Das, R.; Onorato, M.T.; Liu, K.; Martin, J.; Grant-Klein, R.J.; Nichols, R.; Coller, B.A.; Helmond, F.A.; Simon, J.K.; et al. Immunogenicity, Lot Consistency, and Extended Safety of rVSVΔG-ZEBOV-GP Vaccine: A Phase 3 Randomized, Double-Blind, Placebo-Controlled Study in Healthy Adults. J. Infect. Dis. 2019, 220, 1127–1135. [Google Scholar] [CrossRef]
- Dahlke, C.; Kasonta, R.; Lunemann, S.; Krähling, V.; Zinser, M.E.; Biedenkopf, N.; Fehling, S.K.; Ly, M.L.; Rechtien, A.; Stubbe, H.C.; et al. Dose-dependent T-cell Dynamics and Cytokine Cascade Following rVSV-ZEBOV Immunization. EBioMedicine 2017, 19, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Monath, T.P.; Fast, P.E.; Modjarrad, K.; Clarke, D.K.; Martin, B.K.; Fusco, J.; Nichols, R.; Heppner, D.G.; Simon, J.K.; Dubey, S.; et al. rVSVΔG-ZEBOV-GP (also designated V920) recombinant vesicular stomatitis virus pseudotyped with Ebola Zaire Glycoprotein: Standardized template with key considerations for a risk/benefit assessment. Vaccine X 2019, 1, 100009. [Google Scholar] [CrossRef]
- Kurup, D.; Fisher, C.R.; Scher, G.; Yankowski, C.; Testa, A.; Keshwara, R.; Abreu-Mota, T.; Lambert, R.; Ferguson, M.; Rinaldi, W.; et al. Tetravalent Rabies-Vectored Filovirus and Lassa Fever Vaccine Induces Long-term Immunity in Nonhuman Primates. J. Infect. Dis. 2021, 224, 995–1004. [Google Scholar] [CrossRef]
Virus | Fatality Rate | Disease/ Symptoms | Largest Outbreak | Licensed Vaccine |
---|---|---|---|---|
SARS-CoV-2 | 0.27% [5] | Respiratory illness - acute respiratory distress syndrome (ARDS) | COVID-19 pandemic (as of 31 January 2022) [1] Est. Cases: 373,229,380 Est. Deaths: 5,658,702 | Licensed: Yes |
SARS-CoV | 10% [6] | Respiratory illness - ARDS | 2002–2004 SARS pandemic [6] Est. Cases: 8096 Est. Deaths: 774 | Licensed: No (Clinical stage candidates [7]) |
MERS-CoV | 34.3% [8] | Respiratory illness - ARDS | 2012–2019 sporadic outbreaks [8] Est. Cases: 2499 Est. Deaths: 858 | Licensed: No |
Ebola virus | 50% (25–90% range) [9] | Hemorrhagic fever | 2013–2016 West Africa epidemic [10] Est. Cases: 28,616 Est. Deaths: 11,310 | Licensed: Yes |
Sudan virus | 55% [11] | Hemorrhagic fever | 2000–2001 Uganda outbreak [11] Est. Cases: 425 Est. Deaths: 224 | Licensed: No |
Marburg virus | 53.8% [12] | Hemorrhagic fever | 2004–2005 Angola outbreak [12] Est. Cases: 252 Est. Deaths: 227 | Licensed: No |
Lassa virus | 1–2% [13] | Hemorrhagic fever | Endemic in West Africa 2020 Nigeria cumulative: [14] Est. cases: 6732 Est deaths: 244 | Licensed: No |
Nipah virus | 61.0% [15] | Respiratory symptoms Encephalitis | 1998–1999 Malaysia outbreak [16] Est. Cases: 265 Est. Deaths: 105 | Licensed: No (Clinical stage candidate [17]) |
Hendra virus | 57% [18] | Respiratory symptoms Encephalitis | Totality of human cases (1994–2008) [17] Est. Cases: 7 Est. Deaths: 4 | Licensed: No (Clinical stage candidate for NiV cross-protective for HeV in NHP [16]) |
Crimean-Congo hemorrhagic fever virus | 26.5% [19] | Hemorrhagic fever | Turkey, 2002–2009 period [19] Est. Cases: 4431 Est. Deaths: 222 | Licensed: No (Clinical stage candidate) |
Rift Valley fever virus | 0.5 to 2% [20] | Respiratory symptoms Hemorrhagic fever Encephalitis | 2019 Sudan outbreak [21] Est. Cases: 1129 Est. Deaths: 123 | Licensed: No |
Zika virus | Non-fatal/ 10% for CZS [22] | Fever, arthralgia, maculopapular rash Congenital Zika syndrome (CZS | 2015–2016 Zika epidemic (Region of the Americas) Est. Cases: 707,133 [23] Est. Deaths due to CZS (Brazil): 603/6059 CZS cases [22] | Licensed: No |
Criteria | Objective |
---|---|
Indication for use | For active immunization of persons considered at-risk of exposure; reactive use in response to outbreaks may be preferrable |
Target population | All adults and pediatrics down to 6 months of age |
Safety/Reactogenicity | Safety and reactogenicity that provide a favorable benefit-risk profile in context with vaccine efficacy; ideally only mild, transient vaccination-related adverse events (AE) and no vaccine-related serious AEs (SAEs) |
Efficacy (clinical) | Greater than 90% efficacy in preventing infection or disease in healthy adults (70% minimum). If demonstration of clinical efficacy is not feasible, pre-clinical immunogenicity and efficacy in a standardized and relevant animal model together with clinical immunogenicity may be considered. |
Efficacy (nonclinical based on Animal Rule) | Demonstration of protection in relevant animal models in line with FDA Animal Rule guidance |
Onset to protection | Rapid onset to protection within two weeks after first dose |
Duration of protection | Primary series confers long-lasting protection of 1 year or more, and can be maintained by booster doses |
Dosing regimen | Single-dose primary series |
Route of administration | Injectable (IM, ID, or SC) using standard volumes suitable for a single injection, but oral or other needle-free approaches would be preferred. |
Storage temperature | Room temperature > 2–8 °C > −20 °C |
Replication | Vector | Target | Vaccine | Status |
---|---|---|---|---|
Replicating | VSV | SARS-CoV-2 | VSV-ΔG SARS-CoV-2 | Phase 2/3 active [41] |
MERS-CoV-2 | BVRS-GamVac-Combi (Ad5 & VSV) | Phase 1/2 active [42] | ||
EBOV | rVSVΔG-ZEBOV-GP | Approved [43] | ||
GamEvac-Combi & GamEvac-Lyo (Ad5 & VSV) | Licensed (Russia) [43] | |||
LASV | rVSV∆G-LASV-GPC | Phase 1 active [44] | ||
MeV | LASV | MV-LASV | Phase 1 complete [45] | |
ZIKV | MV-ZIKA & MV-ZIKA-RSP | Phase 1 complete [46,47] | ||
HPIV3 | EBOV | HPIV3-EbovZ GP | Phase 1 complete [48] | |
PIV5 | SARS-CoV-2 | CVXGA1-001 | Phase 1 active [49] | |
LAIV | SARS-CoV-2 | DelNS1-2019-nCoV-RBD-OPT1 | Phase 3 active [50] | |
Non-replicating | Ad5 | SARS-CoV-2 | Ad5-nCoV | Authorized (China) [51] |
VXA-Cov2-1 | Phase 2 active [52] | |||
hAd5-S-Fusion+N-ETSD | Phase 1/2 active [53] | |||
Ad5-triCoV/Mac | Phase 1 active [54] | |||
MERS-CoV | MERS BVRS-GamVac | Phase 1/2 active [55] | ||
MERS BVRS-GamVac-Combi (Ad5 & VSV) | Phase 1/2 active [42] | |||
EBOV | Ad5-EBOV | Licensed (China) [43] | ||
GamEvac-Combi & Lyo (Ad5 & VSV) | Licensed (Russia) [43] | |||
Ad26 | SARS-CoV-2 | Ad26.COV2.S | Authorized [56,57] | |
Sputnik Light | Approved (Russia) [58] | |||
EBOV | Ad26.ZEBOV-GP (in Zabdeno/Mvabea vaccine) | Authorized [43] | ||
ZIKV | Ad26.ZIKV.001 | Phase 1 complete [59] | ||
ChAdOx1 | SARS-CoV-2 | ChAdOx1-S | Authorized [60] | |
MERS-CoV | ChAdOx1 MERS | Phase 1 complete [61] | ||
EBOV/SUDV | ChAdOx1 biEBOV | Phase 1 active [62] | ||
RVFV | ChAdOx1 RVF | Phase 1 active [63] | ||
ZIKV | ChAdOx1 Zika | Phase 1 active [64] | ||
CAd3 | EBOV | ChAd3-EBO-Z | Phase 2 complete [65] | |
MARV | cAd3-MARV | Phase 1 complete [66,67] | ||
SUDV | cAd3-EBO S | Phase 1 complete [67] | ||
EBOV/SUDV | cAd3-EBO | Phase 1 complete [68] | ||
ChAd68 | SARS-CoV-2 | ChAdV68-S | Phase 1 active [69] | |
Ad6 single cycle | SARS-CoV-2 | SC-Ad6-1 | Phase 1 active [70] | |
Ad36 | SARS-CoV-2 | BBV154 | Phase 1 active [71] | |
Ad5/35 | SARS-CoV-2 | AdCLD-CoV19 | Phase 1/2 active [72] | |
GRAd32 | SARS-CoV-2 | GRAd-COV2 | Phase 2/3 active [73] | |
AAV5 | SARS-CoV-2 | AAV5-RBD-S | Phase 1/2 active [74] | |
MVA | SARS-CoV-2 | MVA-SARS-2-S | Phase 1 complete [75] | |
MVA-SARS2-ST | Phase 1 active [76] | |||
COH04S1 | Phase 2 active [77] | |||
MERS-CoV-2 | MVA-MERS-S | Phase 1 complete [78] | ||
Filovirus multivalent | MVA-BN-Filo (in Zabdeno/Mvabea vaccine) | Authorized [43] | ||
NDV | SARS-CoV-2 | NDV-HXP-S +/− CpG 1018 | Phase 1/2 active [79] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hofmeyer, K.A.; Bianchi, K.M.; Wolfe, D.N. Utilization of Viral Vector Vaccines in Preparing for Future Pandemics. Vaccines 2022, 10, 436. https://doi.org/10.3390/vaccines10030436
Hofmeyer KA, Bianchi KM, Wolfe DN. Utilization of Viral Vector Vaccines in Preparing for Future Pandemics. Vaccines. 2022; 10(3):436. https://doi.org/10.3390/vaccines10030436
Chicago/Turabian StyleHofmeyer, Kimberly A., Katherine M. Bianchi, and Daniel N. Wolfe. 2022. "Utilization of Viral Vector Vaccines in Preparing for Future Pandemics" Vaccines 10, no. 3: 436. https://doi.org/10.3390/vaccines10030436
APA StyleHofmeyer, K. A., Bianchi, K. M., & Wolfe, D. N. (2022). Utilization of Viral Vector Vaccines in Preparing for Future Pandemics. Vaccines, 10(3), 436. https://doi.org/10.3390/vaccines10030436