A Diagnostic Strategy for Gauging Individual Humoral Ex Vivo Immune Responsiveness Following COVID-19 Vaccination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Sampling
Determination of Circulating Levels of Anti-SARS-CoV-2 Antibodies
2.3. Surrogate Assays for SARS-CoV-2-Neutralizing Activity
2.4. Full Virus Endpoint Dilution Neutralization Test
2.5. Statistical Methods
3. Results
4. Discussion
4.1. Rationale and Aim
4.2. Salient Findings
- Humoral vaccination responses exhibited a huge interindividual heterogeneity in the study collective in terms of (i) maximal serum levels of S1-AB induced by vaccination, (ii) time courses of S1-AB levels over six months and (iii) residual S1-AB levels after six months. These observations are in line with other studies [35].
- Immediate response and long-term maintenance of vaccination-induced antibodies were not stringently linked in quantitative terms, precluding judgement of durability of vaccination response from antibody levels measured shortly thereafter.
- Four types of time courses of vaccination response could be identified: (i) high initial response followed by rapid decline, (ii) middling initial response followed by slow decline, (iii) middling initial response followed by fast decline and (iv) low initial and overall response. Types (iii) and (iv) tended to result in sub-average S1-AB levels after six months and were found in about half of the participants.
- Surrogate assays for gauging the vaccination-induced serological potential of virus neutralization failed to provide meaningful information shortly after vaccinations due to limitations of measuring range and upper measuring limits.
- At six months after vaccination, the serological potential of virus neutralization tended to be overestimated by surrogate assays as compared to the full virus NT, supporting previous notions that indiscriminate use of these assays would not provide adequate warning of crucial waning of immunity [36].
- Lack of functional virus protection (as defined by full virus NT negativity) can possibly be detected during prolonged waning periods by a staged strategy employing surrogate assays to detect S1-AB levels below a cut-off of <1000 U/mL, which were judged by an elevated cut-off of around 70%. At six months after the second vaccination, virus NT-negative samples could thus be detected with a sensitivity of >80% and a specificity of between 80 and 90%, depending on which surrogate assay was used.
4.3. Limitations
- All participants were vaccinated with Spikevax (Moderna Biotech), which rendered the study collective homogenous and produced significant results for this specific kind of vaccine. Our findings cannot be readily applied to other vaccines, especially protein- or vector-based ones.
- Our serological tests were not adapted to virus mutants. Thus, our results apply only to the initial SARS-CoV-2 Wuhan virus isolate. Existing SARS-CoV-2 vaccines have been found to be less efficient against Delta, Omicron and other SARS-CoV-2 variants of concern (VOCs) [18]. Consequently, application of the proposed strategy to assess vaccinations against such VOCs will require adaption of the immunogenic assay target and re-evaluation of sensitivities, specificities and cut-offs.
- Having included only three infected people in our study, we cannot add significantly to previous studies comparing antibody levels in persons with or without SARS-CoV-2 infection before and during vaccination on a larger scale [31,37]. However, we clearly show that the proposed diagnostic strategy worked similarly for vaccinated persons with and without infection.
- The full virus NT is currently considered as the ex vivo test that most closely reflects functional humoral immune response [34]. However, it is not a direct measure of immunity itself, and it remains unknown how these data are related to real-life immunity. The same limitation applies to our data, which have been calibrated to the full virus NT. Yet, it is not fully understood which serological or cellular parameter is a direct correlate to sufficient immune protection. Therefore, measuring neutralizing antibodies can indicate the necessity for re-vaccination but cannot be understood as a strict recommendation.
4.4. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/table (accessed on 30 October 2021).
- Tsang, H.F.; Chan, L.W.C.; Cho, W.C.S.; Yu, A.C.S.; Yim, A.K.Y.; Chan, A.K.C.; Ng, L.P.W.; Wong, Y.K.E.; Pei, X.M.; Li, M.J.W.; et al. An update on COVID-19 pandemic: The epidemiology, pathogenesis, prevention and treatment strategies. Expert Rev. Anti-Infect. Ther. 2021, 19, 877–888. [Google Scholar] [CrossRef] [PubMed]
- The Lancet. Facing up to long COVID. Lancet 2020, 396, 1861. [Google Scholar] [CrossRef]
- Pollard, C.A.; Morran, M.P.; Nestor-Kalinoski, A.L. The COVID-19 pandemic: A global health crisis. Physiol Genom. 2020, 52, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Silveira, M.M.; Moreira, G.; Mendonça, M. DNA vaccines against COVID-19: Perspectives and challenges. Life Sci. 2021, 267, 118919. [Google Scholar] [CrossRef]
- Bubar, K.M.; Reinholt, K.; Kissler, S.M.; Lipsitch, M.; Cobey, S.; Grad, Y.H.; Larremore, D.B. Model-informed COVID-19 vaccine prioritization strategies by age and serostatus. medRxiv 2021. [Google Scholar] [CrossRef]
- Knezevic, I.; Mattiuzzo, G.; Page, M.; Minor, P.; Griffiths, E.; Nuebling, M.; Moorthy, V. WHO International Standard for evaluation of the antibody response to COVID-19 vaccines: Call for urgent action by the scientific community. Lancet Microbe 2021, 3, e235–e240. [Google Scholar] [CrossRef]
- World Health Organization. Establishment of the WHO International Standard and Reference Panel for Anti-SARS-CoV-2 Antibody; Expert Committee on Biological Standardization: Geneva, Switzerland, 2020; pp. 9–10. [Google Scholar]
- Sahin, U.; Muik, A.; Derhovanessian, E.; Vogler, I.; Kranz, L.M.; Vormehr, M.; Baum, A.; Pascal, K.; Quandt, J.; Maurus, D.; et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature 2020, 586, 594–599. [Google Scholar] [CrossRef]
- Roche. Elecsys® Anti-SARS-CoV2 S Quantitativer Assay—Abgeglichen am WHO Standard 12. May. 2021. Available online: https://a.storyblok.com/f/94122/x/f2860942d8/who-standard.pdf (accessed on 6 June 2022).
- Narayanan, K.; Chen, C.J.; Maeda, J.; Makino, S. Nucleocapsid-independent specific viral RNA packaging via viral envelope protein and viral RNA signal. J. Virol. 2003, 77, 2922–2927. [Google Scholar] [CrossRef] [Green Version]
- Bradley, T.; Grundberg, E.; Selvarangan, R.; LeMaster, C.; Fraley, E.; Banerjee, D.; Belden, B.; Louiselle, D.; Nolte, N.; Biswell, R.; et al. Antibody Responses after a Single Dose of SARS-CoV-2 mRNA Vaccine. N. Engl. J. Med. 2021, 384, 1959–1961. [Google Scholar] [CrossRef]
- Hofmann, N.; Grossegesse, M.; Neumann, M.; Schaade, L.; Nitsche, A. Detection of neutralizing antibodies against SARS-CoV-2 by using a commercial surrogate virus neutralization ELISA: Can it substitute the classical neutralization test? medRxiv 2021. [Google Scholar] [CrossRef]
- CDC; CfDCaP. 2021. Available online: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines.html (accessed on 6 June 2022).
- Paul-Ehrlich-Institute. 2021. Available online: https://www.pei.de/EN/newsroom/dossier/coronavirus/coronavirus-content.html?cms_pos=2 (accessed on 6 June 2022).
- Koch-Institut Ständige Impfkommission (STIKO) beim Robert Koch-InstitutSISbR. Available online: https://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2022/Ausgaben/02_22.pdf?__blob=publicationFile (accessed on 13 January 2022).
- Germany BfG. 2021. Available online: https://www.bundesgesundheitsministerium.de/fileadmin/Dateien/3_Downloads/C/Coronavirus/Impfstoff/National_COVID-19_Vaccination_Strategy_June_2021.pdf (accessed on 6 June 2022).
- Chia, P.Y.; Ong, S.W.X.; Chiew, C.J.; Ang, L.W.; Chavatte, J.-M.; Mak, T.-M.; Cui, L.; Kalimuddin, S.; Chia, W.N.; Tan, C.W.; et al. Virological and serological kinetics of SARS-CoV-2 Delta variant vaccine-breakthrough infections: A multi-center cohort study. Clin. Microbiol. Infect. 2021, 28, 612.e1–612.e7. [Google Scholar] [PubMed]
- Hacisuleyman, E.; Hale, C.; Saito, Y.; Blachere, N.E.; Bergh, M.; Conlon, E.G.; Schaefer-Babajew, D.J.; DaSilva, J.; Muecksch, F.; Gaebler, C.; et al. Vaccine Breakthrough Infections with SARS-CoV-2 Variants. N. Engl. J. Med. 2021, 384, 2212–2218. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Chen, J.; Hozumi, Y.; Yin, C.; Wei, G.-W. Emerging vaccine-breakthrough SARS-CoV-2 variants. arXiv 2021, arXiv:2204.0947. [Google Scholar] [CrossRef] [PubMed]
- Monto, A.S. The Future of SARS-CoV-2 Vaccination—Lessons from Influenza. N. Engl. J. Med. 2021, 385, 1825–1827. [Google Scholar] [CrossRef]
- Bar-On, Y.M.; Goldberg, Y.; Mandel, M.; Bodenheimer, O.; Freedman, L.; Kalkstein, N.; Mizrahi, B.; Alroy-Preis, S.; Ash, N.; Milo, R.; et al. Protection of BNT162b2 Vaccine Booster against COVID-19 in Israel. N. Engl. J. Med. 2021, 385, 1393–1400. [Google Scholar] [CrossRef]
- Nordström, P.; Ballin, M.; Nordström, A. Effectiveness of COVID-19 vaccination against risk of symptomatic infection, hospitalization, and death up to 9 months: A Swedish total-population cohort study. SSRN Pap. 2021, 9. [Google Scholar] [CrossRef]
- Mabrouk, M.T.; Huang, W.C.; Martinez-Sobrido Lu Lovell, J.F. Advanced Materials for SARS-CoV-2 Vaccines. Adv. Mater. 2022, 34, 2107781. [Google Scholar] [CrossRef]
- Kosiorek, P.; Kazberuk, D.; Hryniewicz, A.; Milewski, R.; Stróż, S.; Stasiak-Barmuta, A. Systemic COVID-19 vaccination also enhances the humoral immune response after SARS CoV-2 infection. An approach to criteria for COVID-19 re-immunization is needed. Do we need a third dose? Vaccines 2022, 10, 334. [Google Scholar] [CrossRef]
- Ivanova, E.; Devlin, J.; Buus, T.; Koide, A.; Cornelius, A.; Samanovic, M.; Herrera, A.; Zhang, C.; Desvignes, L.; Odum, N.; et al. Discrete immune response signature to SARS-CoV-2 mRNA vaccination versus infection. medRxiv 2021. [Google Scholar] [CrossRef]
- Kissler, S.M.; Tedijanto, C.; Goldstein, E.; Grad, Y.H.; Lipsitch, M. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science 2020, 368, 860–868. [Google Scholar] [CrossRef]
- Phillips, N. The coronavirus is here to stay—Here’s what that means. Nature 2021, 590, 382–384. [Google Scholar] [CrossRef] [PubMed]
- Criscuolo, E.; Diotti, R.A.; Strollo, M.; Rolla, S.; Ambrosi, A.; Locatelli, M.; Burioni, R.; Mancini, N.; Clementi, M.; Clementi, N. Weak correlation between antibody titers and neutralizing activity in sera from SARS-CoV-2 infected subjects. J. Med. Virol. 2021, 93, 2160–2167. [Google Scholar] [CrossRef] [PubMed]
- Lumley, S.F.; O’Donnell, D.; Stoesser, N.E.; Matthews, P.C.; Howarth, A.; Hatch, S.B.; Marsden, B.D.; Cox, S.; James, T.; Warren, F.; et al. Antibody status and incidence of SARS-CoV-2 infection in health care workers. N. Engl. J. Med. 2021, 384, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Buonfrate, D.; Piubelli, C.; Gobbi, F.; Martini, D.; Bertoli, G.; Ursini, T.; Moro, L.; Ronzoni, N.; Angheben, A.; Rodari, P.; et al. Antibody response induced by the BNT162b2 mRNA COVID-19 vaccine in a cohort of health-care workers, with or without prior SARS-CoV-2 infection: A prospective study. Clin. Microbiol. Infect. 2021, 27, 1845–1850. [Google Scholar] [CrossRef]
- Lustig, Y.; Sapir, E.; Regev-Yochay, G.; Cohen, C.; Fluss, R.; Olmer, L.; Indenbaum, V.; Mandelboim, M.; Doolman, R.; Amit, S.; et al. BNT162b2 COVID-19 vaccine and correlates of humoral immune responses and dynamics: A prospective, single-centre, longitudinal cohort study in health-care workers. Lancet Respir. Med. 2021, 9, 999–1009. [Google Scholar] [CrossRef]
- Khoury, D.S.; Cromer, D.; Reynaldi, A.; Schlub, T.E.; Wheatley, A.K.; Juno, J.A.; Subbarao, K.; Kent, S.J.; Triccas, S.J.; Davenport, M.P. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 2021, 27, 1205–1211. [Google Scholar] [CrossRef]
- Matusali, G.; Colavita, F.; Lapa, D.; Meschi, S.; Bordi, L.; Piselli, P.; Gagliardini, R.; Corpolongo, A.; Nicastri, E.; Antinori, A.; et al. SARS-CoV-2 Serum Neutralization Assay: A Traditional Tool for a Brand-New Virus. Viruses 2021, 13, 655. [Google Scholar] [CrossRef]
- Ibarrondo, F.J.; Hofmann, C.; Fulcher, J.A.; Goodman-Meza, D.; Mu, W.; Hausner, M.A.; Ali, A.; Balamurugan, A.; Taus, E.; Elliott, J.; et al. Primary, Recall, and Decay Kinetics of SARS-CoV-2 Vaccine Antibody Responses. ACS Nano 2021, 15, 11180–11191. [Google Scholar] [CrossRef]
- Goldberg, Y.; Mandel, M.; Bar-On, Y.M.; Bodenheimer, O.; Freedman, L.; Haas, E.J.; Milo, R.; Alroy-Preis, S.; Ash, N.; Huppert, A. Waning immunity of the BNT162b2 vaccine: A nationwide study from Israel. medRxiv 2021. [Google Scholar] [CrossRef]
- Dittadi, R.; Seguso, M.; Bertoli, I.; Afshar, H.; Carraro, P. Antibodies against SARS-CoV-2 Time Course in Patients and Vaccinated Subjects: An Evaluation of the Harmonization of Two Different Methods. Diagnostics 2021, 11, 1709. [Google Scholar] [CrossRef]
- De la Monte, S.M.; Long, C.; Szczepanski, N.; Griffin, C.; Fitzgerald, A.; Chapin, K. Heterogeneous Longitudinal Antibody Responses to COVID-19 mRNA Vaccination. Clin. Pathol. 2021, 14, 2632010X211049255. [Google Scholar] [CrossRef] [PubMed]
- Collier, D.A.; Ferreira, I.A.T.M.; Kotagiri, P.; Datir, R.P.; Lim, E.Y.; Touizer, E.; Meng, B.; Abdullahi, A.; Elmer, A.; Kingston, N.; et al. Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2. Nature 2021, 596, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Efrati, S.; Catalogna, M.; Abu Hamad, R.; Hadanny, A.; Bar-Chaim, A.; Benveniste-Levkovitz, P.; Levtzion-Korach, O. Safety and humoral responses to BNT162b2 mRNA vaccination of SARS-CoV-2 previously infected and naive populations. Sci. Rep. 2021, 11, 16543. [Google Scholar] [CrossRef] [PubMed]
- Valcourt, E.J.; Manguiat, K.; Robinson, A.; Chen, J.C.-Y.; Dimitrova, K.; Philipson, C.; Lamoureux, L.; McLachlan, E.; Schiffman, Z.; Drebot, M.A.; et al. Evaluation of a commercially-available surrogate virus neutralization test for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Diagn. Microbiol. Infect. Dis. 2021, 99, 115294. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuechler, A.S.; Weinhold, S.; Boege, F.; Adams, O.; Müller, L.; Babor, F.; Bennstein, S.B.; Pham, T.-X.U.; Hejazi, M.; Reusing, S.B.; et al. A Diagnostic Strategy for Gauging Individual Humoral Ex Vivo Immune Responsiveness Following COVID-19 Vaccination. Vaccines 2022, 10, 1044. https://doi.org/10.3390/vaccines10071044
Kuechler AS, Weinhold S, Boege F, Adams O, Müller L, Babor F, Bennstein SB, Pham T-XU, Hejazi M, Reusing SB, et al. A Diagnostic Strategy for Gauging Individual Humoral Ex Vivo Immune Responsiveness Following COVID-19 Vaccination. Vaccines. 2022; 10(7):1044. https://doi.org/10.3390/vaccines10071044
Chicago/Turabian StyleKuechler, Anna Sabrina, Sandra Weinhold, Fritz Boege, Ortwin Adams, Lisa Müller, Florian Babor, Sabrina B. Bennstein, T.-X. Uyen Pham, Maryam Hejazi, Sarah B. Reusing, and et al. 2022. "A Diagnostic Strategy for Gauging Individual Humoral Ex Vivo Immune Responsiveness Following COVID-19 Vaccination" Vaccines 10, no. 7: 1044. https://doi.org/10.3390/vaccines10071044
APA StyleKuechler, A. S., Weinhold, S., Boege, F., Adams, O., Müller, L., Babor, F., Bennstein, S. B., Pham, T. -X. U., Hejazi, M., Reusing, S. B., Hermsen, D., Uhrberg, M., & Schulze-Bosse, K. (2022). A Diagnostic Strategy for Gauging Individual Humoral Ex Vivo Immune Responsiveness Following COVID-19 Vaccination. Vaccines, 10(7), 1044. https://doi.org/10.3390/vaccines10071044