Effects of Different Biological Therapies on S1/S2 Antibody Response to SARS-CoV-2 Vaccination in a Cohort of Patients with Inflammatory Bowel Disease
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Population
2.2. Clinical and Laboratory Assessment
2.3. Statistical Analysis
2.4. Results
3. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Watkins, J. Preventing a COVID-19 Pandemic. BMJ 2020, 368, m810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krammer, F. SARS-CoV-2 Vaccines in Development. Nature 2020, 586, 516–527. [Google Scholar] [CrossRef]
- Rolak, S.; Hayney, M.S.; Farraye, F.A.; Temte, J.L.; Caldera, F. What Gastroenterologists Should Know About COVID-19 Vaccines. Clin. Gastroenterol. Hepatol. 2021, 19, 657–661. [Google Scholar] [CrossRef] [PubMed]
- Office of the Commissioner U.S. Food and Drug Administration. Available online: https://www.fda.gov (accessed on 11 February 2022).
- Kuba, K.; Imai, Y.; Rao, S.; Gao, H.; Guo, F.; Guan, B.; Huan, Y.; Yang, P.; Zhang, Y.; Deng, W.; et al. A Crucial Role of Angiotensin Converting Enzyme 2 (ACE2) in SARS Coronavirus–induced Lung Injury. Nat. Med. 2005, 11, 875–879. [Google Scholar] [CrossRef] [PubMed]
- Walls, A.C.; Park, Y.-J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020, 183, 1735. [Google Scholar] [CrossRef]
- Fahlberg, M.D.; Blair, R.V.; Doyle-Meyers, L.A.; Midkiff, C.C.; Zenere, G.; Russell-Lodrigue, K.E.; Monjure, C.J.; Haupt, E.H.; Penney, T.P.; Lehmicke, G.; et al. Cellular Events of Acute, Resolving or Progressive COVID-19 in SARS-CoV-2 Infected Non-Human Primates. Nat. Commun. 2020, 11, 6078. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
- Rubin, D.T.; Abreu, M.T.; Rai, V.; Siegel, C.A.; Ahuja, V.; Allez, M.; Ananthakrishnan, A.N.; Bernstein, C.N.; Braun, J.G.; Chowers, Y.; et al. Management of Patients With Crohn’s Disease and Ulcerative Colitis During the Coronavirus Disease-2019 Pandemic: Results of an International Meeting. Gastroenterology 2020, 159, 6–13.e6. [Google Scholar] [CrossRef]
- Kirchgesner, J.; Lemaitre, M.; Carrat, F.; Zureik, M.; Carbonnel, F.; Dray-Spira, R. Risk of Serious and Opportunistic Infections Associated With Treatment of Inflammatory Bowel Diseases. Gastroenterology 2018, 155, 337–346.e10. [Google Scholar] [CrossRef] [Green Version]
- Al-Ani, A.H.; Prentice, R.E.; Rentsch, C.A.; Johnson, D.; Ardalan, Z.; Heerasing, N.; Garg, M.; Campbell, S.; Sasadeusz, J.; Macrae, F.A.; et al. Review Article: Prevention, Diagnosis and Management of COVID-19 in the IBD Patient. Aliment. Pharmacol. Ther. 2020, 52, 54–72. [Google Scholar] [CrossRef]
- Taxonera, C.; Sagastagoitia, I.; Alba, C.; Mañas, N.; Olivares, D.; Rey, E. 2019 Novel Coronavirus Disease (COVID-19) in Patients with Inflammatory Bowel Diseases. Aliment. Pharmacol. Ther. 2020, 52, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Lichtenstein, G.R.; Hanauer, S.B.; Sandborn, W.J. Practice Parameters Committee of American College of Gastroenterology Management of Crohn’s Disease in Adults. Am. J. Gastroenterol. 2009, 104, 465–483; quiz 464, 484. [Google Scholar] [CrossRef] [PubMed]
- Best, W.R.; Becktel, J.M.; Singleton, J.W.; Kern, F., Jr. Development of a Crohn’s Disease Activity Index. National Cooperative Crohn’s Disease Study. Gastroenterology 1976, 70, 439–444. [Google Scholar] [CrossRef]
- Fabiani, M.; Ramigni, M.; Gobbetto, V.; Mateo-Urdiales, A.; Pezzotti, P.; Piovesan, C. Effectiveness of the Comirnaty (BNT162b2, BioNTech/Pfizer) Vaccine in Preventing SARS-CoV-2 Infection among Healthcare Workers, Treviso Province, Veneto Region, Italy, 27 December 2020 to 24 March 2021. Eurosurveillance 2021, 26, 2100420. [Google Scholar] [CrossRef]
- Rutgeerts, P.; Sandborn, W.J.; Feagan, B.G.; Reinisch, W.; Olson, A.; Johanns, J.; Travers, S.; Rachmilewitz, D.; Hanauer, S.B.; Lichtenstein, G.R.; et al. Infliximab for Induction and Maintenance Therapy for Ulcerative Colitis. N. Engl. J. Med. 2005, 353, 2462–2476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narula, N.; Peerani, F.; Meserve, J.; Kochhar, G.; Chaudrey, K.; Hartke, J.; Chilukuri, P.; Koliani-Pace, J.; Winters, A.; Katta, L.; et al. Vedolizumab for Ulcerative Colitis: Treatment Outcomes from the VICTORY Consortium. Am. J. Gastroenterol. 2018, 113, 1345. [Google Scholar] [CrossRef]
- Battat, R.; Ma, C.; Jairath, V.; Khanna, R.; Feagan, B.G. Benefit—Risk Assessment of Vedolizumab in the Treatment of Crohn’s Disease and Ulcerative Colitis. Drug Saf. 2019, 42, 617–632. [Google Scholar] [CrossRef]
- Bressler, B.; Yarur, A.; Silverberg, M.S.; Bassel, M.; Bellaguarda, E.; Fourment, C.; Gatopoulou, A.; Karatzas, P.; Kopylov, U.; Michalopoulos, G.; et al. Vedolizumab and Anti-Tumour Necrosis Factor α Real-World Outcomes in Biologic-Naïve Inflammatory Bowel Disease Patients: Results from the EVOLVE Study. J. Crohns Colitis 2021, 15, 1694–1706. [Google Scholar] [CrossRef]
- Feagan, B.G.; Lasch, K.; Lissoos, T.; Cao, C.; Wojtowicz, A.M.; Khalid, J.M.; Colombel, J.-F. Rapid Response to Vedolizumab Therapy in Biologic-Naive Patients With Inflammatory Bowel Diseases. Clin. Gastroenterol. Hepatol. 2019, 17, 130–138.e7. [Google Scholar] [CrossRef] [Green Version]
- Fiorino, G.; Peyrin-Biroulet, L.; Naccarato, P.; Szabò, H.; Sociale, O.R.; Vetrano, S.; Fries, W.; Montanelli, A.; Repici, A.; Malesci, A.; et al. Effects of Immunosuppression on Immune Response to Pneumococcal Vaccine in Inflammatory Bowel Disease: A Prospective Study. Inflamm. Bowel Dis. 2012, 18, 1042–1047. [Google Scholar] [CrossRef]
- Cullen, G.; Bader, C.; Korzenik, J.R.; Sands, B.E. Serological Response to the 2009 H1N1 Influenza Vaccination in Patients with Inflammatory Bowel Disease. Gut 2012, 61, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Yang, S.-K.; Park, S.-K.; Kim, J.W.; Yang, D.-H.; Jung, K.W.; Kim, K.-J.; Ye, B.D.; Byeon, J.-S.; Myung, S.-J.; et al. Efficacy of Hepatitis A Vaccination and Factors Impacting on Seroconversion in Patients with Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2014, 20, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Pratt, P.K., Jr.; David, N.; Weber, H.C.; Little, F.F.; Kourkoumpetis, T.; Patts, G.J.; Weinberg, J.; Farraye, F.A. Antibody Response to Hepatitis B Virus Vaccine Is Impaired in Patients With Inflammatory Bowel Disease on Infliximab Therapy. Inflamm. Bowel Dis. 2018, 24, 380–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, S.-Y.; Dixon, R.; Martinez Pazos, V.; Gnjatic, S.; Colombel, J.-F.; Cadwell, K. ICARUS-IBD Working Group Serologic Response to Messenger RNA Coronavirus Disease 2019 Vaccines in Inflammatory Bowel Disease Patients Receiving Biologic Therapies. Gastroenterology 2021, 161, 715–718.e4. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, N.A.; Goodhand, J.R.; Bewshea, C.; Nice, R.; Chee, D.; Lin, S.; Chanchlani, N.; Butterworth, J.; Cooney, R.; Croft, N.M.; et al. Anti-SARS-CoV-2 Antibody Responses Are Attenuated in Patients with IBD Treated with Infliximab. Gut 2021, 70, 865–875. [Google Scholar] [CrossRef]
- Kennedy, N.A.; Lin, S.; Goodhand, J.R.; Chanchlani, N.; Hamilton, B.; Bewshea, C.; Nice, R.; Chee, D.; Cummings, J.F.; Fraser, A.; et al. Contributors to the CLARITY IBD Study. Infliximab is Associated with Attenuated Immunogenicity to BNT162b2 and ChAdOx1 nCoV-19 SARS-CoV-2 vaccines in patients with IBD. Gut 2021, 70, 1884–1893, PMCID:PMC8076631. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.L.; Kennedy, N.A.; Ibraheim, H.; Anandabaskaran, S.; Saifuddin, A.; Castro Seoane, R.; Liu, Z.; Nice, R.; Bewshea, C.; D’Mello, A.; et al. COVID-19 Vaccine-Induced Antibody Responses in Immunosuppressed Patients with Inflammatory Bowel Disease (VIP): A Multicentre, Prospective, Case-Control Study. Lancet Gastroenterol. Hepatol. 2022, 7, 342–352. [Google Scholar] [CrossRef]
Median (Min to Max) | IQR | |
---|---|---|
Age (years) | 45 (19 to 76) | 22.75 |
Age quartiles | 2 (1 to 4) | 1.75 |
Sex | ||
Female | 162 (41.50) | |
Male | 228 (58.50) | |
Disease Activity score | 5 (2 to 17) | 4.00 |
Normalized Disease Activity score | 0.20 (0 to 1) | 0.26 |
Type of disease | ||
CD | 256 (65.50) | |
UC | 134 (34.50) | |
Type of treatment | ||
Conventional therapy | 58 (14.90) | |
Anti-TNF alpha | 217 (55.60) | |
Ustekinumab | 48 (12.30) | |
Vedolizumab | 67 (17.20) | |
Cortisone (yes) | 57 (14.60) | |
IgG SARS-CoV-2 (T0) | 3 (3 to 403) | 1.60 |
IgG SARS-CoV-2 (T1) | 40.7 (3 to 2190) | 48.52 |
IgG SARS-CoV-2 (T2) | 208 (16.5 to 2350) | 156.75 |
Without CS Treatment | With CS Treatment | ||
---|---|---|---|
Median (IQR) | Median (IQR) | p Value * | |
Proportions (%) | 333 (85.40) | 57 (14.60) | |
Age (years) | 46 (21) | 44 (25) | 0.89 |
Age quartiles | 3 (1) | 2 (3) | |
Sex | |||
Female | 137 (41.10) | 25 (43.90) | 0.81 |
Male | 196 (58.90) | 32 (56.10) | |
Disease Activity score | 5 (3) | 6 (5) | <0.01 |
Normalized Disease Activity score | 0.2 (0.2) | 0.27 (0.33) | <0.01 |
Type of disease | |||
CD | 224 (67.30) | 32 (56.10) | 0.10 |
UC | 109 (32.70) | 25 (43.90) | |
Type of treatment | |||
Conventional therapy | 45 (13.50) | 13 (22.80) | 0.18 |
Anti-TNF alpha | 192 (57.70) | 25 (43.90) | |
Ustekinumab | 40 (12.00) | 8 (14.00) | |
Vedolizumab | 56 (16.80) | 11 (19.30) | |
IgG SARS-CoV-2 (T0) | 3 (1.6) | 3 (1.5) | 0.84 |
IgG SARS-CoV-2 (T1) | 42 (48.1) | 35.3 (54.3) | 0.10 |
IgG SARS-CoV-2 (T2) | 210 (163) | 185 (162) | 0.12 |
Conventional Therapy | Anti-TNF Alpha | Ustekinumab | Vedolizumab | p | |||||
---|---|---|---|---|---|---|---|---|---|
Proportions (%) | 58 (14.90) | 217 (55.60) | 48 (12.30) | 67 (17.20) | |||||
Age (years) | 45 (24 to 76) | 19 | 46 (19 to 76) | 21 | 41 (19 to 70) | 20.25 | 48 (22 to 75) | 27.50 | 0.03 |
Age quartiles | 2 (1 to 4) | 2 | 3 (1 to 4) | 1 | 2 (1 to 4) | 2 | 3 (1 to 4) | 2 | 0.13 |
Sex | |||||||||
Female | 30 (51.70) | 86 (39.60) | 19 (39.60) | 27 (40.30) | 0.40 χ2 | ||||
Male | 28 (48.30) | 131 (60.40) | 29 (60.40) | 40 (59.70) | |||||
Disease Activity score | 6 (2 to 13) | 3 | 5 (2 to 15) | 3 | 5 (2 to 15) | 2 | 5 (2 to 17) | 3 | 0.24 |
Normalized Disease Activity score | 0.26 (0 to 0.73) | 0.20 | 0.20 (0 to 0.87) | 0.20 | 0.20 (0 to 0.86) | 0.13 | 0.20 (0 to 1) | 0.20 | 0.20 ** |
Type of disease | |||||||||
CD | 30 (51.70) | 165 (76.00) | 37 (77.10) | 24 (35.80) | <0.01 χ2 | ||||
UC | 28 (48.30) | 52 (24.00) | 11 (22.90) | 43 (64.20) | |||||
Cortisone (yes) | 13 (22.40) | 25 (11.50) | 8 (16.70) | 11 (16.40) | 0.18 | ||||
IgG SARS-CoV-2 (T0) | 3 (3 to 10.7) | 1.77 | 3 (3 to 403) | 1.60 | 3 (3 to 31.5) | 1.35 | 3 (3 to 33.7) | 1.65 | 0.55 |
IgG SARS-CoV-2 (T1) | 39.9 (3 to 113) | 62.08 | 39 (3 to 2190) | 48.10 | 38.95 (4.5 to 981) | 50.60 | 46 (3 to 155) | 36.85 | 0.34 |
IgG SARS-CoV-2 (T2) | 211 (18.7 to 1180) | 178.80 | 180 (39.4 to 1530) | 135.00 | 210.5 (72.4 to 1280) | 139 | 260 (16.5 to 2350) | 125.50 | <0.01 |
Coef. | Std. Err. | CI 95% | Coef. | Std. Err. | CI 95% | Coef. | Std. Err. | CI 95% | |
---|---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | |||||||
(Intercept) | 3.00 | 0.03 | 2.94 to 3.06 | 3.00 | 7.04 | −10.81 to 16.81 | 3.00 | 0.04 | 2.90 to 3.09 |
Anti-TNF alpha | 0.00 | 0.03 | −0.07 to 0.07 | −0.01 | 5.36 | −10.50 to 10.50 | −0.01 | 0.03 | −0.06 to 0.06 |
Ustekinumab | 0.00 | 0.05 | −0.09 to 0.09 | 0.01 | 6.98 | −13.68 to 13.68 | 0.01 | 0.04 | −0.09 to 0.09 |
Vedolizumab | 0.00 | 0.04 | 0.08 to 0.08 | −0.01 | 6.27 | −12.30 to 12.30 | −0.01 | 0.04 | −0.0.8 to 0.08 |
Age quartile | −0.01 | 1.55 | −3.04 to 3.04 | −0.01 | 0.01 | −0.02 to 0.02 | |||
Sex (male) | 0.01 | 3.53 | −6.91 to 6.91 | 0.01 | 0.02 | −0.04 to 0.04 | |||
Type of disease (UC) | 0.01 | 3.91 | −7.66 to 7.66 | 0.01 | 0.02 | −0.05 to 0.05 | |||
Normalized Disease activity score | −0.01 | 10.56 | −20.70 to 20.70 | −0.01 | 0.07 | −0.14 to 0.14 | |||
Cortisone (yes) | 0.01 | 0.03 | −0.06 to 0.06 |
Coef. | Std. Err. | CI 95% | Coef. | Std. Err. | CI 95% | Coef. | Std. Err. | CI 95% | |
---|---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | |||||||
(Intercept) | 35.75 | 4.43 | 27.06 to 44.44 | 55.97 | 6.68 | 42.87 to 69.07 | 55.93 | 6.72 | 42.76 to 69.09 |
Anti-TNF alpha | 3.70 | 4.54 | −5.19 to 12.59 | 4.68 | 4.84 | −4.08 to 14.17 | 4.27 | 4.79 | −5.11 to 13.64 |
Ustekinumab | 6.40 | 5.99 | −5.33 to 18.13 | 4.84 | 6.30 | −7.51 to 17.20 | 7.67 | 6.23 | −7.54 to 16.89 |
Vedolizumab | 9.80 | 5.50 | −0.98 to 20.58 | 10.93 | 5.67 | −0.17 to 17.20 | 10.71 | 5.60 | −0.26 to 21.69 |
Age quartile | −7.75 | 1.40 | −0.17 to 22.04 | −7.69 | 1.39 | −10.38 to −4.95 | |||
Sex (male) | −1.65 | 3.18 | −10.49 to −5.00 | −1.58 | 3.15 | −7.75 to 4.58 | |||
Type of disease (UC) | 3.25 | 3.53 | −7.89 to 4.59 | 3.98 | 3.50 | −2.87 to 10.84 | |||
Normalized Disease activity score | −4.55 | 9.57 | −3.66 to 10.17 | 0.57 | 9.74 | −18.51 to −4.59 | |||
Cortisone (yes) | −23.24 to 14.14 | −8.48 | 4.60 | −17.50 to 0.53 |
Coef. | Std. Err. | CI 95% | Coef. | Std. Err. | CI 95% | Coef. | Std. Err. | CI 95% | |
---|---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | |||||||
(Intercept) | 200.58 | 14.38 | 172.40 to 228.77 | 233.22 | 23.41 | 187.30 to 279.10 | 233.39 | 23.67 | 187.00 to 279.77 |
Anti-TNF alpha | −16.01 | 15.54 | −46.46 to 14.45 | −10.25 | 16.77 | −43.10 to 22.63 | −9.63 | 16.77 | −42.50 to 23.24 |
Ustekinumab | 14.84 | 20.51 | −27.37 to 55.05 | 16.31 | 21.85 | −26.50 to 59.13 | 15.18 | 21.83 | −27.60 to 57.98 |
Vedolizumab | 53.99 | 18.86 | 17.04 to 90.95 | 58.25 | 19.64 | 19.80 to 96.74 | 57.45 | 19.62 | 19.00 to 95.91 |
Age quartile | −11.72 | 4.86 | −21.20 to −2.20 | −11.94 | 4.85 | −24.40 to −2.43 | |||
Sex (male) | −14.56 | 11.04 | −36.20 to 7.07 | −15.83 | 11.03 | −37.40 to 5.78 | |||
Type of disease (UC) | 9.53 | 12.23 | −14.40 to 33.51 | 11.96 | 12.25 | −12.10 to 35.98 | |||
Normalized Disease activity score | −21.57 | 33.05 | −86.30 to 43.21− | −5.52 | 34.12 | −72.40 to 61.34 | |||
Cortisone (yes) | −29.55 | 16.12 | −61.10 to 2.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Labarile, N.; Castellana, F.; Sila, A.; Pesole, P.L.; Coletta, S.; Curlo, M.; Sardone, R.; Giannelli, G.; Mastronardi, M. Effects of Different Biological Therapies on S1/S2 Antibody Response to SARS-CoV-2 Vaccination in a Cohort of Patients with Inflammatory Bowel Disease. Vaccines 2022, 10, 1077. https://doi.org/10.3390/vaccines10071077
Labarile N, Castellana F, Sila A, Pesole PL, Coletta S, Curlo M, Sardone R, Giannelli G, Mastronardi M. Effects of Different Biological Therapies on S1/S2 Antibody Response to SARS-CoV-2 Vaccination in a Cohort of Patients with Inflammatory Bowel Disease. Vaccines. 2022; 10(7):1077. https://doi.org/10.3390/vaccines10071077
Chicago/Turabian StyleLabarile, Nunzia, Fabio Castellana, Annamaria Sila, Pasqua Letizia Pesole, Sergio Coletta, Margherita Curlo, Rodolfo Sardone, Gianluigi Giannelli, and Mauro Mastronardi. 2022. "Effects of Different Biological Therapies on S1/S2 Antibody Response to SARS-CoV-2 Vaccination in a Cohort of Patients with Inflammatory Bowel Disease" Vaccines 10, no. 7: 1077. https://doi.org/10.3390/vaccines10071077
APA StyleLabarile, N., Castellana, F., Sila, A., Pesole, P. L., Coletta, S., Curlo, M., Sardone, R., Giannelli, G., & Mastronardi, M. (2022). Effects of Different Biological Therapies on S1/S2 Antibody Response to SARS-CoV-2 Vaccination in a Cohort of Patients with Inflammatory Bowel Disease. Vaccines, 10(7), 1077. https://doi.org/10.3390/vaccines10071077