Pre-Existing Comorbidities Diminish the Likelihood of Seropositivity after SARS-CoV-2 Vaccination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Study Population
2.2. Vaccination Status
2.3. Health History
2.4. Human Samples and Serology
2.5. Statistical Analysis
3. Results
3.1. Cohort
3.2. CHCs and Serostatus
3.3. Medications and Serostatus
3.4. Adjusted Associations between Clinical Characteristics and Seronegative Status
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Who Coronavirus (COVID-19) Dashboard; World Health Organization (WHO): Geneva, Switzerland, 2021. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). COVID-19; Centers for Disease Control and Prevention (CDC): Atlanta, GA, USA, 2021. [Google Scholar]
- Andrews, N.; Stowe, J.; Kirsebom, F.; Toffa, S.; Sachdeva, R.; Gower, C.; Ramsay, M.; Lopez Bernal, J. Effectiveness of COVID-19 Booster Vaccines against Covid-19-Related Symptoms, Hospitalization and Death in England. Nat. Med. 2022, 28, 831–837. [Google Scholar] [CrossRef]
- Goldberg, Y.; Mandel, M.; Bar-On, Y.M.; Bodenheimer, O.; Freedman, L.; Haas, E.J.; Milo, R.; Alroy-Preis, S.; Ash, N.; Huppert, A. Waning Immunity after the Bnt162b2 Vaccine in Israel. N. Engl. J. Med. 2021, 385, e85. [Google Scholar] [CrossRef]
- Mahase, E. COVID-19: Booster Vaccine Gives “Significant Increased Protection” in over 50s. BMJ 2021, 375, n2814. [Google Scholar] [CrossRef]
- Self, W.H.; Tenforde, M.W.; Rhoads, J.P.; Gaglani, M.; Ginde, A.A.; Douin, D.J.; Olson, S.M.; Talbot, H.K.; Casey, J.D.; Mohr, N.M.; et al. Comparative Effectiveness of Moderna, Pfizer-Biontech, and Janssen (Johnson & Johnson) Vaccines in Preventing Covid-19 Hospitalizations among Adults without Immunocompromising Conditions—USA, March–August 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 1337–1343. [Google Scholar] [CrossRef]
- Cromer, D.; Steain, M.; Reynaldi, A.; Schlub, T.E.; Wheatley, A.K.; Juno, J.A.; Kent, S.J.; Triccas, J.A.; Khoury, D.S.; Davenport, M.P. Neutralising Antibody Titres as Predictors of Protection against Sars-Cov-2 Variants and the Impact of Boosting: A Meta-Analysis. Lancet Microbe. 2022, 3, e52–e61. [Google Scholar] [CrossRef]
- Khoury, D.S.; Cromer, D.; Reynaldi, A.; Schlub, T.E.; Wheatley, A.K.; Juno, J.A.; Subbarao, K.; Kent, S.J.; Triccas, J.A.; Davenport, M.P. Neutralizing Antibody Levels Are Highly Predictive of Immune Protection from Symptomatic Sars-Cov-2 Infection. Nat. Med. 2021, 27, 1205–1211. [Google Scholar] [CrossRef]
- Bewley, K.R.; Coombes, N.S.; Gagnon, L.; McInroy, L.; Baker, N.; Shaik, I.; St-Jean, J.R.; St-Amant, N.; Buttigieg, K.R.; Humphries, H.E.; et al. Quantification of Sars-Cov-2 Neutralizing Antibody by Wild-Type Plaque Reduction Neutralization, Microneutralization and Pseudotyped Virus Neutralization Assays. Nat. Protoc. 2021, 16, 3114–3140. [Google Scholar] [CrossRef]
- Hamorsky, K.T.; Bushau-Sprinkle, A.M.; Kitterman, K.; Corman, J.M.; DeMarco, J.; Keith, R.J.; Bhatnagar, A.; Fuqua, J.L.; Lasnik, A.; Joh, J.; et al. Serological Assessment of Sars-Cov-2 Infection During the First Wave of the Pandemic in Louisville Kentucky. Sci. Rep. 2021, 11, 18285. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Fully Vaccinated; Centers for Disease Control and Prevention (CDC): Atlanta, GA, USA, 2021. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). Cdc Diagnostic Tests for COVID-19; Centers for Disease Control and Prevention (CDC): Atlanta, GA, USA, 2020. [Google Scholar]
- Fast, H.E.; Zell, E.; Murthy, B.P.; Murthy, N.; Meng, L.; Scharf, L.G.; Black, C.L.; Shaw, L.; Chorba, T.; Harris, L.Q. Booster and Additional Primary Dose COVID-19 Vaccinations among Adults Aged >/=65 Years—USA, 13 August 2021–19 November 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 1735–1739. [Google Scholar] [CrossRef]
- Kompaniyets, L.; Pennington, A.F.; Goodman, A.B.; Rosenblum, H.G.; Belay, B.; Ko, J.Y.; Chevinsky, J.R.; Schieber, L.Z.; Summers, A.D.; Lavery, A.M.; et al. Underlying Medical Conditions and Severe Illness among 540,667 Adults Hospitalized with COVID-19, March 2020–March 2021. Prev. Chronic. Dis. 2021, 18, E66. [Google Scholar] [CrossRef]
- Aziz, N.A.; Corman, V.M.; Echterhoff, A.K.C.; Muller, M.A.; Richter, A.; Schmandke, A.; Schmidt, M.L.; Schmidt, T.H.; de Vries, F.M.; Drosten, C.; et al. Seroprevalence and Correlates of Sars-Cov-2 Neutralizing Antibodies from a Population-Based Study in Bonn, Germany. Nat. Commun. 2021, 12, 2117. [Google Scholar] [CrossRef]
- Boersma, P.; Black, L.I.; Ward, B.W. Prevalence of Multiple Chronic Conditions among Us Adults, 2018. Prev. Chronic. Dis. 2020, 17, E106. [Google Scholar] [CrossRef]
- Webster, A.C.; Nagler, E.V.; Morton, R.L.; Masson, P. Chronic Kidney Disease. Lancet 2017, 389, 1238–1252. [Google Scholar] [CrossRef]
- Li, J.; He, X.; Yuan, Y.; Zhang, W.; Li, X.; Zhang, Y.; Li, S.; Guan, C.; Gao, Z.; Dong, G. Meta-Analysis Investigating the Relationship between Clinical Features, Outcomes, and Severity of Severe Acute Respiratory Syndrome Coronavirus 2 (Sars-Cov-2) Pneumonia. Am. J. Infect. Control. 2021, 49, 82–89. [Google Scholar] [CrossRef]
- Clark, A.; Jit, M.; Warren-Gash, C.; Guthrie, B.; Wang, H.H.X.; Mercer, S.W.; Sanderson, C.; McKee, M.; Troeger, C.; Ong, K.L.; et al. Global, Regional, and National Estimates of the Population at Increased Risk of Severe COVID-19 Due to Underlying Health Conditions in 2020: A Modelling Study. Lancet Glob. Health 2020, 8, e1003–e1017. [Google Scholar] [CrossRef]
- Council, E.-E.; Group, E.W. Chronic Kidney Disease Is a Key Risk Factor for Severe Covid-19: A Call to Action by the Era-Edta. Nephrol. Dial. Transpl. 2021, 36, 87–94. [Google Scholar] [CrossRef]
- Hou, Y.C.; Lu, K.C.; Kuo, K.L. The Efficacy of COVID-19 Vaccines in Chronic Kidney Disease and Kidney Transplantation Patients: A Narrative Review. Vaccines 2021, 9, 885. [Google Scholar] [CrossRef]
- Syed-Ahmed, M.; Narayanan, M. Immune Dysfunction and Risk of Infection in Chronic Kidney Disease. Adv. Chronic Kidney Dis. 2019, 26, 8–15. [Google Scholar] [CrossRef]
- Girndt, M.; Sester, M.; Sester, U.; Kaul, H.; Kohler, H. Defective Expression of B7-2 (Cd86) on Monocytes of Dialysis Patients Correlates to the Uremia-Associated Immune Defect. Kidney Int. 2001, 59, 1382–1389. [Google Scholar] [CrossRef] [Green Version]
- Eleftheriadis, T.; Antoniadi, G.; Liakopoulos, V.; Kartsios, C.; Stefanidis, I. Disturbances of Acquired Immunity in Hemodialysis Patients. Semin. Dial. 2007, 20, 440–451. [Google Scholar] [CrossRef]
- Simon, D.; Tascilar, K.; Fagni, F.; Kronke, G.; Kleyer, A.; Meder, C.; Atreya, R.; Leppkes, M.; Kremer, A.E.; Ramming, A.; et al. Sars-Cov-2 Vaccination Responses in Untreated, Conventionally Treated and Anticytokine-Treated Patients with Immune-Mediated Inflammatory Diseases. Ann. Rheum. Dis. 2021, 80, 1312–1316. [Google Scholar] [CrossRef] [PubMed]
- Mohammad Hosseini, A.; Majidi, J.; Baradaran, B.; Yousefi, M. Toll-Like Receptors in the Pathogenesis of Autoimmune Diseases. Adv. Pharm. Bull. 2015, 5, 605–614. [Google Scholar] [CrossRef] [PubMed]
- Abdollahi-Roodsaz, S.; Joosten, L.A.; Roelofs, M.F.; Radstake, T.R.; Matera, G.; Popa, C.; van der Meer, J.W.; Netea, M.G.; van den Berg, W.B. Inhibition of Toll-Like Receptor 4 Breaks the Inflammatory Loop in Autoimmune Destructive Arthritis. Arthritis Rheum. 2007, 56, 2957–2967. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.; Ehlers, M. Toll-Like Receptors in Autoimmunity. Ann. N. Y. Acad. Sci. 2008, 1143, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Ando, M.; Shibuya, A.; Tsuchiya, K.; Akiba, T.; Nitta, K. Reduced Expression of Toll-Like Receptor 4 Contributes to Impaired Cytokine Response of Monocytes in Uremic Patients. Kidney Int. 2006, 70, 358–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diseases, G.B.D.; Injuries, C. Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- Armstrong, K.; Soltoff, A.; Rieu-Werden, M.; Metlay, J.; Haas, J. Use of Angiotensin Converting Enzyme Inhibitors and Angiotensin Receptor Blockers Associated with Lower Risk of COVID-19 in Household Contacts. PLoS ONE 2021, 16, e0247548. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Vasbinder, A.; Anderson, E.; Catalan, T.; Shadid, H.R.; Berlin, H.; Padalia, K.; O’Hayer, P.; Meloche, C.; Azam, T.U.; et al. Angiotensin-Converting Enzyme Inhibitors, Angiotensin Ii Receptor Blockers, and Outcomes in Patients Hospitalized for COVID-19. J. Am. Heart Assoc. 2021, 10, e023535. [Google Scholar] [CrossRef]
Characteristics | Antibody Negative * (n = 51) | Antibody Positive * (n = 5127) | Odds Ratio (95% CI) | p-Value |
---|---|---|---|---|
Age, Median ± IQR | 69 ± 25 | 62 ± 23 | 0.024 | |
Sex, Female N (%) | 37 (72.6) | 3393 (66.2) | 0.34 | |
Race, White N (%) | 48 (94.1) | 4457 (86.9) | 2.41 (0.75–7.74) | 0.13 |
Any Tobacco Use | 2 (3.9) | 201 (3.9) | 1 (0.24–4.14) | 1.00 |
Chronic Health Conditions (CHCs) | ||||
None, N (%) | 11 (21.6) | 2176 (42.4) | 0.37 (0.19–0.73) | 0.003 |
Diabetes, N (%) | 9 (17.7) | 544 (10.6) | 3.27 (1.35–7.94) | 0.010 |
Hypertension, N (%) | 23 (45.1) | 1723 (33.6) | 2.9 (1.38–6.11) | 0.003 |
Heart Disease, N (%) | 7 (13.7) | 389 (7.6) | 3.56 (1.37–9.23) | 0.013 |
Autoimmune Disease, N (%) | 16 (31.4) | 279 (5.4) | 11.34 (5.21–24.69) | <0.0001 |
Cancer, N (%) | 5 (9.8) | 347 (6.8) | 2.85 (0.98–8.25) | 0.06 |
Thyroid Disease, N (%) | 6 (11.8) | 547 (10.7) | 2.17 (0.8–5.89) | 0.13 |
Chronic Kidney Disease, N (%) | 6 (11.8) | 88 (1.7) | 13.49 (4.88–37.3) | <0.0001 |
Composite CHCs | ||||
Cardiovascular Disease, N (%) | 25 (49.0) | 1856 (36.2) | 2.93 (1.4–6.11) | 0.003 |
Any CHC, N (%) | 40 (78.4) | 2951 (57.6) | 2.68 (1.37–5.24) | 0.003 |
Medications | ||||
None, N (%) | 27 (52.94) | 3852 (75.1) | 0.37 (0.21–0.65) | 0.0003 |
All Medications, N (%) | 24 (47.06) | 1275 (24.9) | 2.69 (1.54–4.67) | 0.0003 |
ACEI or ARB, N (%) | 6 (11.76) | 1041 (20.3) | 0.82 (0.34–1.99) | 0.66 |
Immunosuppressants, N (%) | 17 (33.33) | 106 (2.1) | 22.88 (12.1–43.25) | <0.0001 |
Cancer Treatments, N (%) | 4 (7.84) | 46 (0.9) | 12.41 (4.17–36.88) | 0.001 |
Characteristics | Referent Group | Odds Ratio | 95% CI |
---|---|---|---|
Age ≥ 65 years | <65 Years | 1.13 | 0.64–1.98 |
Sex, Female (%) | Male | 1.4 | 0.77–2.54 |
Composite Chronic Health Conditions (CHCs) | |||
1 CHC | No CHC | 2.69 | 1.25–5.79 |
2 CHCs | No CHC | 2.82 | 1.14–7.0 |
≥3 CHCs | No CHC | 4.52 | 1.68–12.14 |
Composite Medications | |||
1 medication | No Medications | 1.43 | 0.76–2.71 |
≥2 medications | No Medications | 6.08 | 2.01–18.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amraotkar, A.R.; Bushau-Sprinkle, A.M.; Keith, R.J.; Hamorsky, K.T.; Palmer, K.E.; Gao, H.; Rai, S.N.; Bhatnagar, A. Pre-Existing Comorbidities Diminish the Likelihood of Seropositivity after SARS-CoV-2 Vaccination. Vaccines 2022, 10, 1363. https://doi.org/10.3390/vaccines10081363
Amraotkar AR, Bushau-Sprinkle AM, Keith RJ, Hamorsky KT, Palmer KE, Gao H, Rai SN, Bhatnagar A. Pre-Existing Comorbidities Diminish the Likelihood of Seropositivity after SARS-CoV-2 Vaccination. Vaccines. 2022; 10(8):1363. https://doi.org/10.3390/vaccines10081363
Chicago/Turabian StyleAmraotkar, Alok R., Adrienne M. Bushau-Sprinkle, Rachel J. Keith, Krystal T. Hamorsky, Kenneth E. Palmer, Hong Gao, Shesh N. Rai, and Aruni Bhatnagar. 2022. "Pre-Existing Comorbidities Diminish the Likelihood of Seropositivity after SARS-CoV-2 Vaccination" Vaccines 10, no. 8: 1363. https://doi.org/10.3390/vaccines10081363
APA StyleAmraotkar, A. R., Bushau-Sprinkle, A. M., Keith, R. J., Hamorsky, K. T., Palmer, K. E., Gao, H., Rai, S. N., & Bhatnagar, A. (2022). Pre-Existing Comorbidities Diminish the Likelihood of Seropositivity after SARS-CoV-2 Vaccination. Vaccines, 10(8), 1363. https://doi.org/10.3390/vaccines10081363