Sinopharm’s BBIBP-CorV Vaccine and ChAdOx1 nCoV-19 Vaccine Are Associated with a Comparable Immune Response against SARS-CoV-2
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Subjects
2.2. Methods
2.2.1. Antibody Detection
2.2.2. Flow Cytometry
Monoclonal Antibodies
Flow Cytometric Analysis
- CD3 + cells were identified. Subsequent phenotypic analysis identified
- CD4 + and CD8 + T cell subsets based on CD4 and CD8 expression, respectively. Gated cells were also reanalyzed for expressions of CD19 and CD38 to identify B cells.
2.3. Statistical Analysis
3. Results
3.1. General Characteristics of the Participants
3.2. Humoral Immune Response to SARS-CoV-2 Vaccines
3.3. Cell-Mediated Immune Response after Vaccination and Factors Affecting its Activation
3.4. Side Effects of Vaccination
3.5. Short-Term Protective Effect of Vaccination and Factors Affecting Postvaccine Infection
4. Discussion
5. Conclusions and Recommendations
6. Limitations of the Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Mao, B.; Liang, S.; Yang, J.-W.; Lu, H.-W.; Chai, Y.-H.; Wang, L.; Zhang, L.; Li, Q.-H.; Zhao, L.; et al. Association between age and clinical characteristics and outcomes of COVID-19. Eur. Respir. J. 2020, 55, 2001112. [Google Scholar] [CrossRef]
- Walsh, E.E.; Frenck, R.W., Jr.; Falsey, A.R.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Neuzil, K.; Mulligan, M.J.; Bailey, R.; et al. Safety and immunogenicity of two RNA-based COVID-19 vaccine candidates. N. Engl. J. Med. 2020, 383, 2439–2450. [Google Scholar] [CrossRef]
- Amanat, F.; Krammer, F. SARS-CoV-2 vaccines: Status report. Immunity 2020, 52, 583–589. [Google Scholar] [CrossRef]
- Al Kaabi, N.; Zhang, Y.; Xia, S.; Yang, Y.; Al Qahtani, M.M.; Abdulrazzaq, N.; Al Nusair, M.; Hassany, M.; Jawad, J.S.; Abdalla, J.; et al. Effect of 2 inactivated SARS-CoV-2 vaccines on symptomatic COVID-19 infection in adults: A randomized clinical trial. JAMA 2021, 326, 35–45. [Google Scholar] [CrossRef]
- WHO. WHO Lists 9th COVID-19 Vaccine for Emergency Use with Aim to Increase Access to Vaccination in Lower-Income Countries. Available online: https://www.who.int/news/item/17-12-2021-who-lists-9th-covid-19-vaccine-for-emergency-use-with-aim-to-increase-access-to-vaccination-in-lower-income-countries (accessed on 18 May 2022).
- Müller, L.; Andrée, M.; Moskorz, W.; Drexler, I.; Walotka, L.; Grothmann, R.; Ptok, J.; Hillebrandt, J.; Ritchie, A.; Rabl, D.; et al. Age-dependent immune response to the Biontech/Pfizer BNT162b2 coronavirus disease 2019 vaccination. Clin. Infect. Dis. 2021, 73, 2065–2072. [Google Scholar] [CrossRef]
- Rawat, K.; Kumari, P.; Saha, L. COVID-19 vaccine: A recent update in pipeline vaccines, their design and development strategies. Eur. J. Pharmacol. 2021, 892, 173751. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, G.; Pan, H.; Li, C.; Hu, Y.; Chu, K.; Han, W.; Chen, Z.; Tang, R.; Yin, W.; et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: A randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect. Dis. 2021, 21, 181–192. [Google Scholar] [CrossRef]
- Folegatti, P.M.; Ewer, K.J.; Aley, P.K.; Angus, B.; Becker, S.; Belij-Rammerstorfer, S.; Bellamy, D.; Bibi, S.; Bittaye, M.; Clutterbuck, E.A.; et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: A preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 2020, 396, 467–478. [Google Scholar] [CrossRef]
- Sughayer, M.A.; Souan, L.; Abu Alhowr, M.M.; Al Rimawi, D.; Siag, M.; Albadr, S.; Owdeh, S.A.M.; Al Atrash, T. Comparison of the effectiveness and duration of anti-RBD SARS-CoV-2 IgG antibody response between different types of vaccines: Implications for vaccine strategies. Vaccine 2022, 40, 2841–2847. [Google Scholar] [CrossRef]
- Hu, J.; Chen, X.; Lu, X.; Wu, L.; Yin, L.; Zhu, L.; Liang, H.; Xu, F.; Zhou, Q. A spike protein S2 antibody efficiently neutralizes the Omicron variant. Cell. Mol. Immunol. 2022, 19, 644–646. [Google Scholar] [CrossRef]
- Barin, B.; Kasap, U.; Selçuk, F.; Volkan, E.; Uluçkan, Ö. Comparison of SARS-CoV-2 anti-spike receptor binding domain IgG antibody responses after CoronaVac, BNT162b2, ChAdOx1 COVID-19 vaccines, and a single booster dose: A prospective, longitudinal population-based study. Lancet Microbe 2022, 3, e274–e283. [Google Scholar] [CrossRef]
- Shah, P.; Canziani, G.A.; Carter, E.P.; Chaiken, I. The case for S2: The potential benefits of the S2 subunit of the SARS-CoV-2 spike protein as an immunogen in fighting the COVID-19 pandemic. Front. Immunol. 2021, 12, 637651. [Google Scholar] [CrossRef]
- Ng, K.W.; Faulkner, N.; Cornish, G.H.; Rosa, A.; Harvey, R.; Hussain, S.; Ulferts, R.; Earl, C.; Wrobel, A.G.; Benton, D.J.; et al. Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science 2020, 370, 1339–1343. [Google Scholar] [CrossRef]
- Zhong, X.; Yang, H.; Guo, Z.F.; Sin, W.-Y.F.; Chen, W.; Xu, J.; Fu, L.; Wu, J.; Mak, C.-K.G.; Cheng, C.-S.S.; et al. B-cell responses in patients who have recovered from severe acute respiratory syndrome target a dominant site in the S2 domain of the surface spike glycoprotein. J. Virol. 2005, 79, 3401–3408. [Google Scholar] [CrossRef]
- Elshabrawy, H.A.; Coughlin, M.M.; Baker, S.C.; Prabhakar, B.S. Human monoclonal antibodies against highly conserved HR1 and HR2 domains of the SARS-CoV spike protein are more broadly neutralizing. PLoS ONE 2012, 7, e50366. [Google Scholar] [CrossRef]
- Rose, R.; Neumann, F.; Grobe, O.; Lorentz, T.; Fickenscher, H.; Krumbholz, A. Humoral immune response after different SARS-CoV-2 vaccination regimens. BMC Med. 2022, 20, 31. [Google Scholar] [CrossRef]
- Hollstein, M.M.; Münsterkötter, L.; Schön, M.P.; Bergmann, A.; Husar, T.M.; Abratis, A.; Eidizadeh, A.; Schaffrinski, M.; Zachmann, K.; Schmitz, A.; et al. Interdependencies of cellular and humoral immune responses in heterologous and homologous SARS-CoV-2 vaccination. Allergy 2022, 77, 2381–2392. [Google Scholar] [CrossRef]
- Kittikraisak, W.; Hunsawong, T.; Punjasamanvong, S.; Wongrapee, T.; Suttha, P.; Piyaraj, P.; Leepiyasakulchai, C.; Tanathitikorn, C.; Yoocharoen, P.; Jones, A.R.; et al. Anti-SARS-CoV-2 IgG antibody levels among Thai healthcare providers receiving homologous and heterologous COVID-19 vaccination regimens. Influenza Other Respir. Viruses 2022, 16, 662–672. [Google Scholar] [CrossRef]
- Ewer, K.J.; Barrett, J.R.; Belij-Rammerstorfer, S.; Sharpe, H.; Makinson, R.; Morter, R.; Flaxman, A.; Wright, D.; Bellamy, D.; Bittaye, M.; et al. T cell and antibody responses induced by a single dose of ChAdOx1 nCoV-19 (AZD1222) vaccine in a phase 1/2 clinical trial. Nat. Med. 2021, 27, 270–278. [Google Scholar] [CrossRef]
- Deng, Y.; Li, Y.; Yang, R.; Tan, W. SARS-CoV-2-specific T cell immunity to structural proteins in inactivated COVID-19 vaccine recipients. Cell. Mol. Immunol. 2021, 18, 2040–2041. [Google Scholar] [CrossRef]
- Liu, Y.; Zeng, Q.; Deng, C.; Li, M.; Li, L.; Liu, D.; Liu, M.; Ruan, X.; Mei, J.; Mo, R.; et al. Robust induction of B cell and T cell responses by a third dose of inactivated SARS-CoV-2 vaccine. Cell Discov. 2022, 8, 10. [Google Scholar] [CrossRef] [PubMed]
- Hyams, C.; Marlow, R.; Maseko, Z.; King, J.; Ward, L.; Fox, K.; Heath, R.; Turner, A.; Friedrich, Z.; Morrison, L.; et al. Effectiveness of BNT162b2 and ChAdOx1 nCoV-19 COVID-19 vaccination at preventing hospitalisations in people aged at least 80 years: A test-negative, case-control study. Lancet Infect. Dis. 2021, 21, 1539–1548. [Google Scholar] [CrossRef]
- Vasileiou, E.; Simpson, C.R.; Shi, T.; Kerr, S.; Agrawal, U.; Akbari, A.; Bedston, S.; Beggs, J.; Bradley, D.; Chuter, A.; et al. Interim findings from first-dose mass COVID-19 vaccination roll-out and COVID-19 hospital admissions in Scotland: A national prospective cohort study. Lancet 2021, 397, 1646–1657. [Google Scholar] [CrossRef]
- WHO. Evidence Assessment: Sinopharm/BBIBP COVID-19 Vaccine. Available online: https://cdn.who.int/media/docs/default-source/immunization/sage/2021/april/2_sage29apr2021_critical-evidence_sinopharm.pdf (accessed on 18 May 2022).
- Xia, S.; Zhang, Y.; Wang, Y.; Wang, H.; Yang, Y.; Gao, G.F.; Tan, W.; Wu, G.; Xu, M.; Lou, Z.; et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: A randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect. Dis. 2021, 21, 39–51. [Google Scholar] [CrossRef]
- Greinacher, A.; Thiele, T.; Warkentin, T.E.; Weisser, K.; Kyrle, P.A.; Eichinger, S. Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. N. Engl. J. Med. 2021, 384, 2092–2101. [Google Scholar] [CrossRef]
- France 24. Egypt Plans to Make 1 Billion Sinovac Vaccines a Year. Available online: https://www.france24.com/en/live-news/20210901-egypt-plans-to-make-1-billion-sinovac-vaccines-a-year (accessed on 14 August 2022).
Factors | ChAdOx1 nCoV-19 (n = 60) | BBIBP-CorV (n = 49) | p | ||
---|---|---|---|---|---|
Sex (F), n (%) | 38 | 63.33 | 32 | 65.31 | 0.83 † |
Age, mean (SD) | 37.46 | 8.72 | 45.42 | 9.09 | <0.001 § |
Comorbidity (Yes), n (%) | 2 | 3.33 | 15 | 30.61 | <0.001 † |
Smoking (Yes), n (%) | 2 | 3.33 | 2 | 4.08 | 0.81 † |
History of COVID-19 (Yes), n (%) | 28 | 46.67 | 14 | 28.57 | 0.05 † |
History of Contact (Yes), n (%) | 26 | 43.33 | 31 | 63.27 | 0.03† |
Vaccine Type | Anti-Spike | Anti-S1 | Anti-S2 | Anti-RBD | Anti-Nucleocapsid |
---|---|---|---|---|---|
n (%) | n (%) | n (%) | n (%) | n (%) | |
ChAdOx1 nCoV-19-1st (n = 60) | 35 (58.3) | 28 (46.6) | 26 (43.3) | 31 (51.6) | 4 (6.6) |
ChAdOx1 nCoV-19-2nd (n = 60) | 51 (85) | 49 (81.6) | 51 (85) | 51 (85) | 12 (20) |
BBIBP-CorV-2nd (n = 49) | 46 (93.8) | 44 (89.8) | 32 (65.3) | 46 (93.8) | 17 (34.6) |
p * | <0.001 | <0.001 | <0.001 | <0.001 | 0.001 |
Factors | ChAdOx1 nCoV-19 (n = 60) | BBIBP-CorV (n = 49) | p § | ||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
T cells (CD3+) | 54.8 | 15.8 | 59.5 | 12 | 0.15 |
B cells (CD19+) | 8.55 | 3.21 | 8.11 | 2.96 | 0.51 |
CD4+ cells | 70.1 | 19.3 | 73.82 | 9.57 | 0.28 |
CD8+ cells | 31.7 | 14.6 | 25.08 | 9.31 | 0.02 |
Factors | T Cells (%) | B Cells (%) | CD4+ (%) | CD8+ (%) | ||||
---|---|---|---|---|---|---|---|---|
Coef | p-Value | Coef | p-Value | Coef | p-Value | Coef | p-Value | |
Total number of positive antibodies | −6.35 | 0.018 | −2.116 | 0.016 | 13.32 | 0.002 | ||
Vaccine (BBIBP-CorV) | Reference | |||||||
Vaccine (ChAdOx1 nCoV-1) | −5.09 | 0.026 | - | - | 6.77 | 0 | ||
Contact to COVID-19 cases (Yes) | Reference | |||||||
Contact to COVID-19 cases (No) | 5.13 | 0.012 | - | - | 5.84 | 0.011 | −3.66 | 0.035 |
Anti-Spike (+ve) | Reference | |||||||
Anti-Spike (−ve) | −10.99 | 0.005 | - | - | - | - | - | - |
Anti-S1 (+ve) | Reference | |||||||
Anti-S1 (−ve) | - | - | −2.66 | 0.024 | 12.07 | 0.034 | - | - |
Anti-S2 (+ve) | Reference | |||||||
Anti-S2 (−ve) | −7.09 | 0.074 | −2.063 | 0.014 | 12.65 | 0.003 | - | - |
Anti-RBD (+ve) | Reference | |||||||
Anti-RBD (−ve) | 8.17 | 0.019 | - | - | 5.98 | 0.058 | −6.18 | 0.001 |
Anti-nucleocapsid (+ve) | Reference | |||||||
Anti-nucleocapsid (−ve) | −5.78 | 0.031 | −1.547 | 0.012 | - | - | - | - |
Factor | ChAdOx1 nCoV-1 (n = 60) | BBIBP-CorV (n = 49) | p | ||
---|---|---|---|---|---|
Mean | Range | Mean | Range | ||
Total number of side effects | 1.35 | (0–4) | 0.78 | (0–3) | 0.01 § |
Degree of side effects | |||||
N | % | N | % | ||
No | 22 | 36.67 | 24 | 48.98 | <0.001 † |
Mild | 10 | 16.67 | 19 | 38.78 | |
Moderate | 28 | 46.67 | 6 | 12.24 | |
Fever (Yes) | 23 | 38.33 | 1 | 2.04 | <0.001 † |
Fatigue (Yes) | 26 | 43.33 | 13 | 26.53 | 0.06 † |
Body pain (Yes) | 17 | 28.33 | 5 | 10.2 | 0.01 † |
Headache (Yes) | 10 | 16.67 | 7 | 14.29 | 0.73 † |
Pain at injection site (Yes) | 5 | 8.33 | 12 | 24.49 | 0.02 † |
Factors | ChAdOx1 nCoV-1 (n = 60) | BBIBP-CorV (n = 49) | p | ||
---|---|---|---|---|---|
N | % | N | % | ||
Post-vaccine infection | 25 | 41.6 | 22 | 44.9 | 0.26 † |
Degree of severity | N | % | N | % | |
No | 41 | 68.4 | 27 | 55.1 | 0.3 † |
Mild | 13 | 21.6 | 14 | 28.57 | |
Moderate | 6 | 10 | 8 | 16.33 | |
Median | IQR | Median | IQR | ||
Duration after vaccination (Month) | 1 | (1–2) | 2 | (1–3.5) | 0.01§§ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelhafiz, A.S.; Ali, A.; Kamel, M.M.; Ahmed, E.H.; Sayed, D.M.; Bakry, R.M. Sinopharm’s BBIBP-CorV Vaccine and ChAdOx1 nCoV-19 Vaccine Are Associated with a Comparable Immune Response against SARS-CoV-2. Vaccines 2022, 10, 1462. https://doi.org/10.3390/vaccines10091462
Abdelhafiz AS, Ali A, Kamel MM, Ahmed EH, Sayed DM, Bakry RM. Sinopharm’s BBIBP-CorV Vaccine and ChAdOx1 nCoV-19 Vaccine Are Associated with a Comparable Immune Response against SARS-CoV-2. Vaccines. 2022; 10(9):1462. https://doi.org/10.3390/vaccines10091462
Chicago/Turabian StyleAbdelhafiz, Ahmed Samir, Asmaa Ali, Mahmoud M. Kamel, Eman Hasan Ahmed, Douaa M. Sayed, and Rania M. Bakry. 2022. "Sinopharm’s BBIBP-CorV Vaccine and ChAdOx1 nCoV-19 Vaccine Are Associated with a Comparable Immune Response against SARS-CoV-2" Vaccines 10, no. 9: 1462. https://doi.org/10.3390/vaccines10091462
APA StyleAbdelhafiz, A. S., Ali, A., Kamel, M. M., Ahmed, E. H., Sayed, D. M., & Bakry, R. M. (2022). Sinopharm’s BBIBP-CorV Vaccine and ChAdOx1 nCoV-19 Vaccine Are Associated with a Comparable Immune Response against SARS-CoV-2. Vaccines, 10(9), 1462. https://doi.org/10.3390/vaccines10091462