Retrospective Cohort Study of COVID-19 in Patients of the Brazilian Public Health System with SARS-CoV-2 Omicron Variant Infection
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 9 September 2020).
- UNCTAD. Impact of the COVID-19 Pandemic on Trade and Development: Lessons Learned. Available online: https://unctad.org/webflyer/impact-COVID-19-pandemic-trade-and-development-lessons-learned (accessed on 31 August 2022).
- The Lancet Public Health COVID-19 pandemic: What’s next for public health? Lancet Public Health 2022, 7, e391. [CrossRef]
- Organização Pan-Americana da Saúde Serviços Essenciais de Saúde Enfrentam Interrupções Contínuas Durante Pandemia de COVID-19-OPAS/OMS|Organização Pan-Americana da Saúde. Available online: https://www.paho.org/pt/noticias/7-2-2022-servicos-essenciais-saude-enfrentam-interrupcoes-continuas-durante-pandemia-covid (accessed on 31 August 2022).
- Wang, W.C.; Fann, J.C.; Chang, R.E.; Jeng, Y.C.; Hsu, C.Y.; Chen, H.H.; Liu, J.T.; Yen, A.M. Economic evaluation for mass vaccination against COVID-19. J. Formos. Med. Assoc. 2021, 120, S95–S105. [Google Scholar] [CrossRef] [PubMed]
- Machado, B.A.S.; Hodel, K.V.S.; Fonseca, L.M.D.S.; Pires, V.C.; Mascarenhas, L.A.B.; da Silva Andrade, L.P.C.; Moret, M.A.; Badaró, R. The Importance of Vaccination in the Context of the COVID-19 Pandemic: A Brief Update Regarding the Use of Vaccines. Vaccines 2022, 10, 591. [Google Scholar] [CrossRef] [PubMed]
- Watson, O.J.; Barnsley, G.; Toor, J.; Hogan, A.B.; Winskill, P.; Ghani, A.C. Global impact of the first year of COVID-19 vaccination: A mathematical modelling study. Lancet Infect. Dis. 2022, 22, 1293–1302. [Google Scholar] [CrossRef]
- Tanriover, M.D.; Doğanay, H.L.; Akova, M.; Güner, H.R.; Azap, A.; Akhan, S.; Kose, S.; Erdinc, F.S.; Akalın, E.H.; Tabak, O.F.; et al. Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): Interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet 2021, 398, 213–222. [Google Scholar] [CrossRef]
- Voysey, M.; Clemens, S.A.C.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021, 397, 99–111. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Kitchin, J.; Kitchin, G.; Kitchin, S.; Kitchin, J.L.; Kitchin, G.P.; Kitchin, E.D.; Kitchin, C.; et al. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Sadoff, J.; Gray, G.; Vandebosch, A.; Cárdenas, V.; Shukarev, G.; Grinsztejn, B.; Goepfert, P.A.; Truyers, C.; Fennema, H.; Spiessens, B.; et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against COVID-19. N. Engl. J. Med. 2021, 384, 2187–2201. [Google Scholar] [CrossRef]
- Jackson, L.A.; Anderson, E.J.; Rouphael, N.G.; Roberts, P.C.; Makhene, M.; Coler, R.N.; McCullough, M.P.; Chappell, J.D.; Denison, M.R.; Stevens, L.J.; et al. An mRNA Vaccine against SARS-CoV-2–Preliminary Report. N. Engl. J. Med. 2020, 383, 1920–1931. [Google Scholar] [CrossRef]
- World Health Organization. WHO Issues Its First Emergency Use Validation for a COVID-19 Vaccine and Emphasizes Need for Equitable Global Access. 2020. Available online: https://www.who.int/news/item/31-12-2020-who-issues-its-first-emergency-use-validation-for-a-COVID-19-vaccine-and-emphasizes-need-for-equitable-global-access (accessed on 31 August 2022).
- Chan, J.F.-W.; Kok, K.-H.; Zhu, Z.; Chu, H.; To, K.K.-W.; Yuan, S.; Yuen, K.-Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect. 2020, 9, 221–236. [Google Scholar] [CrossRef] [Green Version]
- Heinz, F.X.; Stiasny, K. Distinguishing features of current COVID-19 vaccines: Knowns and unknowns of antigen presentation and modes of action. NPJ Vaccines 2021, 6, 104. [Google Scholar] [CrossRef] [PubMed]
- WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 10 March 2022).
- Hu, B.; Guo, H.; Zhou, P.; Shi, Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021, 19, 141. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wu, J.; Nie, J.; Zhang, L.; Hao, H.; Liu, S.; Zhao, C.; Zhang, Q.; Liu, H.; Nie, L.; et al. The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity. Cell 2020, 182, 1284–1294.e9. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Garcia-Knight, M.A.; Khalid, M.M.; Servellita, V.; Wang, C.; Morris, M.K.; Sotomayor-González, A.; Glasner, D.R.; Reyes, K.R.; Gliwa, A.S.; et al. Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant. Cell 2021, 184, 3426–3437.e8. [Google Scholar] [CrossRef]
- Tracking SARS-CoV-2 Variants. Available online: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/ (accessed on 10 March 2022).
- Li, B.; Deng, A.; Li, K.; Hu, Y.; Li, Z.; Shi, Y.; Xiong, Q.; Liu, Z.; Guo, Q.; Zou, L.; et al. Viral infection and transmission in a large, well-traced outbreak caused by the SARS-CoV-2 Delta variant. Nat. Commun. 2022, 13, 460. [Google Scholar] [CrossRef] [PubMed]
- Allen, H.; Tessier, E.; Turner, C.; Anderson, C.; Blomquist, P.; Simons, D.; Lochen, A.; Jarvis, C.I.; Groves, N.; Capelastegui, F.; et al. Comparative transmission of SARS-CoV-2 Omicron (B. 1.1. 529) and Delta (B. 1.617. 2) variants and the impact of vaccination: National cohort study, England. medRxiv 2022, preprint. [Google Scholar] [CrossRef]
- McCrone, J.T.; Hill, V.; Bajaj, S.; Pena, R.E.; Lambert, B.C.; Inward, R.; Bhatt, S.; Volz, E.; Ruis, C.; Dellicour, S.; et al. Context-specific emergence and growth of the SARS-CoV-2 Delta variant. Nature 2022, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Willett, B.J.; Grove, J.; MacLean, O.A.; Wilkie, C.; De Lorenzo, G.; Furnon, W.; Cantoni, D.; Scott, S.; Logan, N.; Ashraf, S.; et al. SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway. Nat. Microbiol. 2022, 7, 1161–1179. [Google Scholar] [CrossRef]
- Murray, C.J.L. COVID-19 will continue but the end of the pandemic is near. Lancet 2022, 399, 417–419. [Google Scholar] [CrossRef]
- Filho, T.M.R.; Moret, M.A.; Mendes, J.F.F. A Transnational and Transregional Study of the Impact and Effectiveness of Social Distancing for COVID-19 Mitigation. Entropy 2021, 23, 1530. [Google Scholar] [CrossRef]
- Wang, L.; Berger, N.A.; Kaelber, D.C.; Davis, P.B.; Volkow, N.D.; Xu, R. Comparison of outcomes from COVID infection in pediatric and adult patients before and after the emergence of Omicron. medRxiv 2022, preprint. [Google Scholar] [CrossRef]
- Report 50—Hospitalisation Risk for Omicron Cases in England. 2022. Available online: https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/COVID-19/report-50-severity-omicron/ (accessed on 1 September 2022).
- Feikin, D.R.; Higdon, M.M.; Abu-Raddad, L.J.; Andrews, N.; Araos, R.; Goldberg, Y.; Groome, M.J.; Huppert, A.; O’Brien, K.L.; Smith, P.G.; et al. Duration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: Results of a systematic review and meta-regression. Lancet 2022, 399, 924–944. [Google Scholar] [CrossRef]
- Rocha Filho, T.M.; Mendes, J.F.; Murari, T.B.; Nascimento Filho, A.S.; Cordeiro, A.J.; Ramalho, W.M.; Moret, M.A. Optimization of COVID-19 vaccination and the role of individuals with a high number of contacts: A model based approach. PLoS ONE 2022, 17, e0262433. [Google Scholar] [CrossRef]
- Rocha Filho, T.M.; Moret, M.A.; Chow, C.C.; Phillips, J.C.; Cordeiro, A.J.A.; Scorza, F.A.; Almeida, A.C.G.; Mendes, J.F.F. A data-driven model for COVID-19 pandemic—Evolution of the attack rate and prognosis for Brazil. Chaos Solitons Fractals 2021, 152, 111359. [Google Scholar] [CrossRef]
- Silveira, M.F.; Barros, A.J.D.; Horta, B.L.; Pellanda, L.C.; Victora, G.D.; Dellagostin, O.A. Population-based surveys of antibodies against SARS-CoV-2 in southern Brazil. Nat. Med. 2020, 26, 1196–1199. [Google Scholar] [CrossRef] [PubMed]
- Soroepi MSP: Serial Soroepidemiological Survey to Monitor the Prevalence of SARS-CoV-2 Infection in the Municipality of São Paulo, SP, Brazil. 2020. Available online: https://www.monitoramentocovid19.org/ (accessed on 28 April 2021).
- Pietrobon, A.J.; Teixeira, F.M.E.; Sato, M.N. Immunosenescence and Inflammaging: Risk Factors of Severe COVID-19 in Older People. Front. Immunol. 2020, 11, 579220. [Google Scholar] [CrossRef]
- Victora, C.G.; Castro, M.C.; Gurzenda, S.; Medeiros, A.C.; França, G.V.A.; Barros, A.J.D. Estimating the early impact of vaccination against COVID-19 on deaths among elderly people in Brazil: Analyses of routinely-collected data on vaccine coverage and mortality. EClinicalMedicine 2021, 38, 101036. [Google Scholar] [CrossRef]
- WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/region/amro/country/br (accessed on 10 March 2022).
- Available online: https://www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.529)-SARS-CoV-2-variant-of-concern (accessed on 10 March 2022).
- WHO. COVID19 Vaccine Tracker. Available online: https://covid19.trackvaccines.org/agency/who/ (accessed on 1 September 2022).
- Sadarangani, M.; Marchant, A.; Kollmann, T.R. Immunological mechanisms of vaccine-induced protection against COVID-19 in humans. Nat. Rev. Immunol. 2021, 21, 475–484. [Google Scholar] [CrossRef]
- Willyard, C. The omicron wave’s surprising lessons for long-term immunity. Immunologists have raced to work out how to protect against new variants of SARS-CoV-2. Their research has yielded a wealth of insights. Nature 2022, 602, 22–25. [Google Scholar] [CrossRef]
- Pérez-Then, E.; Lucas, C.; Monteiro, V.S.; Miric, M.; Brache, V.; Cochon, L.; Vogels, C.B.F.; Malik, A.A.; De la Cruz, E.; Jorge, A.; et al. Neutralizing antibodies against the SARS-CoV-2 Delta and Omicron variants following heterologous CoronaVac plus BNT162b2 booster vaccination. Nat. Med. 2022, 28, 481–485. [Google Scholar] [CrossRef]
- Belik, M.; Jalkanen, P.; Lundberg, R.; Reinholm, A.; Laine, L.; Väisänen, E.; Skön, M.; Tähtinen, P.A.; Ivaska, L.; Pakkanen, S.H.; et al. Comparative analysis of COVID-19 vaccine responses and third booster dose-induced neutralizing antibodies against Delta and Omicron variants. Nat. Commun. 2022, 13, 2476. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.M.S.; Mok, C.K.P.; Leung, Y.W.Y.; Ng, S.S.; Chan, K.C.K.; Ko, F.W.; Chen, C.; Yiu, K.; Lam, B.H.S.; Lau, E.H.Y.; et al. Neutralizing antibodies against the SARS-CoV-2 Omicron variant BA.1 following homologous and heterologous CoronaVac or BNT162b2 vaccination. Nat. Med. 2022, 28, 486–489. [Google Scholar] [CrossRef] [PubMed]
- Gruell, H.; Vanshylla, K.; Tober-Lau, P.; Hillus, D.; Schommers, P.; Lehmann, C.; Kurth, F.; Sander, L.E.; Klein, F. mRNA booster immunization elicits potent neutralizing serum activity against the SARS-CoV-2 Omicron variant. Nat. Med. 2022, 28, 477–480. [Google Scholar] [CrossRef]
- Pajon, R.; Doria-Rose, N.A.; Shen, X.; Schmidt, S.D.; O’Dell, S.; McDanal, C.; Montefiori, D.C. SARS-CoV-2 Omicron Variant Neutralization after mRNA-1273 Booster Vaccination. N. Engl. J. Med. 2022, 386, 1088–1091. [Google Scholar] [CrossRef] [PubMed]
- Dejnirattisai, W.; Huo, J.; Zhou, D.; Zahradník, J.; Supasa, P.; Liu, C.; Duyvesteyn, H.M.E.; Ginn, H.M.; Mentzer, A.J.; Tuekprakhon, A.; et al. Omicron-B. 1.1. 529 leads to widespread escape from neutralizing antibody responses. bioRxiv 2021, preprint. [Google Scholar] [CrossRef]
- Sheikh, A.; McMenamin, J.; Taylor, B.; Robertson, C. SARS-CoV-2 Delta VOC in Scotland: Demographics, risk of hospital admission, and vaccine effectiveness. Lancet 2021, 397, 2461–2462. [Google Scholar] [CrossRef]
- Zhao, H.; Lu, L.; Peng, Z.; Chen, L.L.; Meng, X.; Zhang, C.; Ip, J.D.; Chan, W.M.; Chu, A.W.H.; Chan, K.H.; et al. SARS-CoV-2 Omicron variant shows less efficient replication and fusion activity when compared with Delta variant in TMPRSS2-expressed cells. Emerg. Microbes Infect. 2022, 11, 277–283. [Google Scholar] [CrossRef]
- Available online: https://www.nhs.uk/conditions/coronavirus-COVID-19/self-care-and-treatments-for-coronavirus/treatments-for-coronavirus/ (accessed on 29 August 2022).
- Available online: https://portal.fiocruz.br/noticia/pesquisadores-analisam-o-impacto-da-COVID-19-entre-criancas-de-6-meses-3-anos (accessed on 29 August 2022).
Vaccine | Period | Hospitalizations | Hospitalizations | VE (95% CI) |
---|---|---|---|---|
Fully Vaccinated | Booster | Booster | ||
CoronaVac | Oct–Dec 21 | 19.29 | 0.59 | 96.93% (96.35–97.51) |
Jan–Mar 22 | 87.64 | 16.11 | 81.62% (80.99–82.23) | |
AZD1222 | Oct–Dec 21 | 38.92 | 1.33 | 96.56% (96.13–97.12) |
Jan–Mar 22 | 128.03 | 34.83 | 72.79% (72.20–73.37) | |
BNT162b2 | Oct–Dec 21 | 5.35 | 0.08 | 98.35% (97.52–99.18) |
Jan–Mar 22 | 24.18 | 2.21 | 90.84% (89.92–91.75) | |
Ad26.COV2.S | Oct–Dec 21 | 1.33 | 0.16 | 87.73% (83.65–91.80) |
Jan–Mar 22 | 2.16 | 0.90 | 58.44% (53.43–63.46) | |
Missing manufacturer information | Oct–Dec 21 | 0.89 | 0.15 | 83.19% (77.03–89.34) |
Jan–Mar 22 | 6.87 | 1.67 | 75.57% (72.90–78.24) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murari, T.B.; Fonseca, L.M.d.S.; Pereira, H.B.d.B.; Nascimento Filho, A.S.; Saba, H.; Scorza, F.A.; G. de Almeida, A.-C.; Maciel, E.L.N.; Mendes, J.F.F.; Rocha Filho, T.M.; et al. Retrospective Cohort Study of COVID-19 in Patients of the Brazilian Public Health System with SARS-CoV-2 Omicron Variant Infection. Vaccines 2022, 10, 1504. https://doi.org/10.3390/vaccines10091504
Murari TB, Fonseca LMdS, Pereira HBdB, Nascimento Filho AS, Saba H, Scorza FA, G. de Almeida A-C, Maciel ELN, Mendes JFF, Rocha Filho TM, et al. Retrospective Cohort Study of COVID-19 in Patients of the Brazilian Public Health System with SARS-CoV-2 Omicron Variant Infection. Vaccines. 2022; 10(9):1504. https://doi.org/10.3390/vaccines10091504
Chicago/Turabian StyleMurari, Thiago B., Larissa Moraes dos Santos Fonseca, Hernane B. de B. Pereira, Aloísio S. Nascimento Filho, Hugo Saba, Fulvio A. Scorza, Antônio-Carlos G. de Almeida, Ethel L. N. Maciel, José F. F. Mendes, Tarcísio M. Rocha Filho, and et al. 2022. "Retrospective Cohort Study of COVID-19 in Patients of the Brazilian Public Health System with SARS-CoV-2 Omicron Variant Infection" Vaccines 10, no. 9: 1504. https://doi.org/10.3390/vaccines10091504
APA StyleMurari, T. B., Fonseca, L. M. d. S., Pereira, H. B. d. B., Nascimento Filho, A. S., Saba, H., Scorza, F. A., G. de Almeida, A. -C., Maciel, E. L. N., Mendes, J. F. F., Rocha Filho, T. M., David, J. R., Badaró, R., Machado, B. A. S., & Moret, M. A. (2022). Retrospective Cohort Study of COVID-19 in Patients of the Brazilian Public Health System with SARS-CoV-2 Omicron Variant Infection. Vaccines, 10(9), 1504. https://doi.org/10.3390/vaccines10091504