Autogenous Escherichia coli Vaccine Application as an Innovative Antimicrobial Therapy in Poultry Farming—A Case Report
Abstract
:1. Introduction
2. Material and Methods
2.1. Case History
2.2. Sampling and Laboratory Testing
2.3. Antimicrobial Susceptibility Testing
2.4. DNA Extraction and Phylogenetic Group Analysis
2.5. Vaccine Preparation and Vaccination
2.6. Enzyme-Linked Immunosorbent Assay
2.7. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Nolan, L.K.; Vaillancourt, J.-P.; Barbieri, N.L.; Logue, C.M. Colibacillosis. In Diseases of Poultry, 14th ed.; Swayne, D.E., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2020; pp. 770–860. [Google Scholar]
- Mageiros, L.; Méric, G.; Bayliss, S.C.; Pensar, J.; Pascoe, B.; Mourkas, E.; Calland, J.K.; Yahara, K.; Murray, S.; Wilkinson, T.S.; et al. Genome evaluation and the emergence of pathogenicity in avian Escherichia coli. Nat. Commun. 2021, 12, 765–767. [Google Scholar] [CrossRef] [PubMed]
- Pires Dos Santos, T.; Bisgaard, M.; Christensen, H. Genetic diversity and virulence profiles of Escherichia coli causing salpingitis and peritonitis in broiler breeders. Vet. Microbiol. 2013, 162, 876–880. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Thøfner, I.; Christensen, J.P.; Ronco, T.; Pedersen, K.; Olsen, R.H. Evaluation of the efficacy of an autogenous Escherichia coli vaccine in broiler breeders. Avian Pathol. 2017, 46, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Koutsianos, D.; Gantelet, H.; Franzo, G.; Lecoupeur, M.; Thibault, E.; Cecchinato, M.; Koutoulis, K.C. An assessment of the level of protection against colibacillosis conferred by several autogenous and/or commercial vaccination programs in conventional pullets upon experimental challenge. Vet. Sci. 2020, 7, 80. [Google Scholar] [CrossRef] [PubMed]
- Ievy, S.; Islam, M.S.; Sobur, M.A.; Talukder, M.; Rahman, M.B.; Khan, M.F.R.; Rahman, M.T. Molecular detection of avian pathogenic Escherichia coli (APEC) for the first time in layer farms in Bangladesh and their antibiotic resistance patterns. Microorganisms 2020, 8, 1021. [Google Scholar] [CrossRef]
- Christensen, H.; Bachmeier, J.; Bisgaard, M. New strategies to prevent and control avian pathogenic Escherichia coli (APEC). Avian Pathol. 2021, 50, 370–381. [Google Scholar] [CrossRef]
- Kairmi, S.H.; Taha-Abdelaziz, K.; Yitbarek, A.; Sargolzaei, M.; Spahany, H.; Astill, J.; Shojadoost, B.; Alizadeh, M.; Kulkarni, R.R.; Parkinson, J.; et al. Effects of therapeutic levels of dietary antibiotics on the cecal microbiome composition of broiler chickens. Poul. Sci. 2022, 101, 101864. [Google Scholar] [CrossRef]
- Oliveira, A.; Sereno, R.; Azaredo, J. In vivo efficiency evaluation of a phage cocktail in controlling severe colibacillosis in confined conditions and experimental poultry houses. Vet. Microbiol. 2010, 146, 303–308. [Google Scholar] [CrossRef]
- Abd-El-Ghany, W.A.; Ismail, M. Tackling experimental colisepticaemia in broiler chickens using phytobiotic essential oils and antibiotic alone or in combination. Iran. J. Vet. Res. 2014, 15, 110–115. [Google Scholar]
- Ceccarelli, D.; Van-Essen-Zandbergen, A.; Smid, B.; Veldman, K.T.; Boender, G.J.; Fischer, E.A.J.; Mevius, D.J.; Van Der Goot, J.A. Competitive exclusion reduces transmission and excretion of extended-spectrum-β-lactamase-producing Escherichia coli in broilers. Appl. Environ. Microbiol. 2017, 83, e03439-16. [Google Scholar] [CrossRef]
- Wernicki, A.; Nowaczek, A.; Urban-Chmiel, R. Bacteriphage therapy to combat bacterial infections in poultry. Virol. J. 2017, 14, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chantziaras, I.; Smet, A.; Filippitzi, M.E.; Damiaans, B.; Haesebrouck, F.; Boyen, F.; Dewulf, J. The effect of a commercial competitive exclusion product on the selection of enrofloxacin resistance in commensal E. coli in broilers. Avian Pathol. 2018, 47, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Methner, U.; Rösler, U. Efficacy of a competitive exclusion culture against extended-spectrum ß-lactamase-producing Escherichia coli strains in broiler using a seeder bird model. BMC Vet. Res. 2020, 16, 1–7. [Google Scholar] [CrossRef]
- Guabiraba, R.; Schouler, C. Avian colibacillosis: Still many black holes. FEMS Microbiol. Lett. 2015, 362, fnv118. [Google Scholar] [CrossRef] [PubMed]
- Landman, W.J.M.; Van Eck, J.H.H. The efficacy of inactivated Escherichia coli autogenous vaccines against the E. coli peritonitis syndrome in layers. Avian Pathol. 2017, 46, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Kromann, S.; Olsen, R.H.; Bojesen, A.M.; Jensen, H.E.; Thøfner, I. Protective potential o fan autogenous vaccine in an aerogenous model of Escherichia coli infection in broiler breeders. Vaccines 2021, 9, 1233. [Google Scholar] [CrossRef]
- Gottstein, Ž.; Lozica, L.; Lukač, M.; Horvatek Tomić, D. Production parameters after ad hoc application of autogenous vaccine during production following clinical colibacillosis in layer flocks. In Proceedings of the XIV Symposium Poultry Days 2022, Poreč, Croatia, 11–14 May 2022; pp. 45–50. [Google Scholar]
- Clermont, O.; Christenson, J.K.; Denamur, E.; Gordon, D.M. The Clermont Escherichia coli phylo-typing method revisited: Improvement of specificity and detection of new phylo-groups. Environ. Microbiol. Rep. 2013, 5, 58–65. [Google Scholar] [CrossRef]
- Lozica, L.; Ekert Kabalin, A.; Dolenčić, N.; Vlahek, M.; Gottstein, Ž. Phylogenetic characterization of avian pathogenic Escherichia coli strains longitudinally isolated from broiler breeder flocks vaccinated with autogenous vaccine. Poult. Sci. 2021, 100, 101079. [Google Scholar] [CrossRef]
- Leitner, G.; Melamed, D.; Drabkin, N.; Heller, E.D. An enzyme-linked immunosorbent assay for detection of antibodies against Escherichia coli: Association between indirect hemagglutination test and survival. Avian Dis. 1990, 34, 58–62. [Google Scholar] [CrossRef]
- Zanella, A.; Alborali, G.L.; Bardotti, M.; Candotti, P.; Guadagnini, P.F.; Martino, P.A.; Stonfer, M. Severe Escherichia coli O111 septicaemia and polyserositis in hens at the star of lay. Avian Pathol. 2000, 29, 311–317. [Google Scholar] [CrossRef]
- Clermont, O.; Dixit, O.V.A.; Vangchhia, B.; Condamine, B.; Dion, S.; Bridier-Nahmias, A.; Denamur, E.; Gordon, D. Characterization and rapid identification of phylogroup G in Escherichia coli, a lineage with high viurlence and antibiotic resistance potential. Environ. Microbiol. 2019, 21, 3107–3117. [Google Scholar] [CrossRef] [PubMed]
- Logue, C.M.; Wannemuehler, Y.; Nicholson, B.A.; Doetkott, C.; Barbieri, N.L.; Nolan, L.K. Comparative analysis of phylogenetic assignment of human and avian ExPEC and fecal commensal Escherichia coli using the (previous and revised) Clermont phylogenetic typing methods and its impact on avian pathogenic Escherichia coli (APEC) classification. Front. Microbiol. 2017, 8, 283. [Google Scholar] [CrossRef] [PubMed]
- Starčič Erjavec, M.; Predojević, L.; Žgur-Bertok, D. Commentary: Comparative analysis of phylogenetic assignment of human and avian ExPEC and fecal commensal Escherichia coli using the (previous and revised) Clermont phylogenetic typing methods and its impact on avian pathogenic Escherichia coli (APEC) classification. Front. Microbiol. 2017, 8, 1904. [Google Scholar] [CrossRef]
- Lozica, L.; Repar, J.; Gottstein, Ž. Longitudinal study on the effect of autogenous vaccine application on the sequence type and virulence profiles of Escherichia coli in broiler breeder flocks. Vet. Microbiol. 2021, 259, 109159. [Google Scholar] [CrossRef] [PubMed]
- Hess, C.; Troxler, S.; Jandreski-Cvetkovic, D.; Zloch, A.; Hess, M. Escherichia coli isolated form organic laying hens reveal a high level of antimicrobial resistance despite no antimicrobial treatments. Antibiotics 2022, 11, 467. [Google Scholar] [CrossRef] [PubMed]
- Turner, S.P. Breeding against harmful social behaviours in pigs and chickens: State of the art and the way forward. Appl. Anim. Behav. Sci. 2011, 134, 1–9. [Google Scholar] [CrossRef]
- Crespo, R. Developmental, metabolic, and other noninfectious disorders. In Diseases of Poultry, 14th ed.; Swayne, D.E., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2020; pp. 1307–1329. [Google Scholar]
- El-Lethey, H.; Aerni, V.; Jungi, T.W.; Wechsler, B. Stress and feather pecking in laying hens in relation to housing conditions. Br. Poult. Sci. 2000, 41, 22–28. [Google Scholar] [CrossRef]
- Gray, P.; Jenner, R.; Norris, J.; Page, S.; Browning, G.; Australian Veterinary Association Ltd.; Animal Medicines Australia. Antimicrobial prescribing guidelines for poultry. Aust. Vet. J. 2021, 99, 181–235. [Google Scholar] [CrossRef]
- Giersberg, M.F.; Spindler, B.; Rodenburg, B.; Kemper, N. The dual purpose hen as a chance: Avoiding injurious pecking in modern laying hen husbandry. Animals 2020, 10, 16. [Google Scholar] [CrossRef]
- Lozica, L.; Villumsen, K.R.; Li, G.; Hu, X.; Maurić Maljković, M.; Gottstein, Ž. Genomic analysis of Escherichia coli longitudinally isolated from broiler breeder flocks after application of an autogenous vaccine. Microorganisms 2022, 10, 377. [Google Scholar] [CrossRef]
Isolate | Origin | Phylogenetic Group | |
---|---|---|---|
Bird | Organ | ||
2112 | 1 | liver | C |
2113 | 1 | subcutaneous tissue a | C |
2114 | 1 | peritoneum | C |
2115 | 1 | spleen | C |
2116 b | 1 | bone marrow | C |
2117 | 2 | subcutaneous tissue | C |
2118 | 2 | spleen | C |
2119 | 2 | peritoneum | C |
2120 | 2 | air sacs | C |
2121 b | 2 | bone marrow | C |
2122 | 3 | liver | C |
2123 b | 3 | bone marrow | C |
2124 | 3 | spleen | C |
2125 | 3 | peritoneum | C |
2126 | 4 | subcutaneous tissue | C |
2127 | 4 | spleen | C |
2128 | 4 | oviduct | C |
2129 | 4 | liver | C |
2130 b | 4 | bone marrow | C |
2131 | 5 | peritoneum | C |
2132 | 5 | subcutaneous tissue | C |
Antimicrobial Agent | |||||||
---|---|---|---|---|---|---|---|
AML a (10 μg) | DO (30 μg) | ENR (5 μg) | FFC (30 μg) | LS (109 μg) | NOR (10 μg) | SXT (25 μg) | |
S | 9 (42.86) | - | 21 (100) | 21 (100) | 17 (80.95) | 21 (100) | 21 (100) |
I | - | - | - | - | 4 (19.05) | - | - |
R | 12 (57.14) | 21 (100) | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lozica, L.; Morteza Gholi, C.S.; Kela, A.; Lošić, I.; Horvatek Tomić, D.; Gottstein, Ž. Autogenous Escherichia coli Vaccine Application as an Innovative Antimicrobial Therapy in Poultry Farming—A Case Report. Vaccines 2022, 10, 1567. https://doi.org/10.3390/vaccines10091567
Lozica L, Morteza Gholi CS, Kela A, Lošić I, Horvatek Tomić D, Gottstein Ž. Autogenous Escherichia coli Vaccine Application as an Innovative Antimicrobial Therapy in Poultry Farming—A Case Report. Vaccines. 2022; 10(9):1567. https://doi.org/10.3390/vaccines10091567
Chicago/Turabian StyleLozica, Liča, Céline Sadaf Morteza Gholi, Adaya Kela, Ivan Lošić, Danijela Horvatek Tomić, and Željko Gottstein. 2022. "Autogenous Escherichia coli Vaccine Application as an Innovative Antimicrobial Therapy in Poultry Farming—A Case Report" Vaccines 10, no. 9: 1567. https://doi.org/10.3390/vaccines10091567
APA StyleLozica, L., Morteza Gholi, C. S., Kela, A., Lošić, I., Horvatek Tomić, D., & Gottstein, Ž. (2022). Autogenous Escherichia coli Vaccine Application as an Innovative Antimicrobial Therapy in Poultry Farming—A Case Report. Vaccines, 10(9), 1567. https://doi.org/10.3390/vaccines10091567