Intensive Care during the COVID-19 Pandemic
1. Introduction
2. Medical Care for Special Populations with COVID-19
3. Antibiotic Use and Resistance in Patients with COVID-19
4. Progress on COVID-19 Vaccines
5. Summary and Conclusions
Author Contributions
Conflicts of Interest
References
- Ramesh, S.; Govindarajulu, M.; Parise, R.S.; Neel, L.; Shankar, T.; Patel, S.; Lowery, P.; Smith, F.; Dhanasekaran, M.; Moore, T. Emerging SARS-CoV-2 Variants: A Review of Its Mutations, Its Implications and Vaccine Efficacy. Vaccines 2021, 9, 1195. [Google Scholar] [CrossRef]
- Merad, M.; Blish, C.A.; Sallusto, F.; Iwasaki, A. The immunology and immunopathology of COVID-19. Science 2022, 375, 1122–1127. [Google Scholar] [CrossRef]
- Shang, J.; Wan, Y.; Luo, C.; Ye, G.; Geng, Q.; Auerbach, A.; Li, F. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA 2020, 117, 11727–11734. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef]
- Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA 2020, 324, 782–793. [Google Scholar] [CrossRef]
- Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020, 18, 844–847. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhou, W.; Yang, L.; You, R. Physiological and pathological regulation of ACE2, the SARS-CoV-2 receptor. Pharmacol. Res. 2020, 157, 104833. [Google Scholar] [CrossRef]
- Kuba, K.; Imai, Y.; Ohto-Nakanishi, T.; Penninger, J. Trilogy of ACE2: A peptidase in the renin-angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacol. Ther. 2010, 128, 119–128. [Google Scholar] [CrossRef]
- Wu, J.; Deng, W.; Li, S.; Yang, X. Advances in research on ACE2 as a receptor for 2019-nCoV. Cell. Mol. Life Sci. 2020, 78, 531–544. [Google Scholar] [CrossRef]
- Khandker, S.S.; Godman, B.; Jawad, I.; Meghla, B.A.; Tisha, T.A.; Khondoker, M.U.; Haq, A.; Charan, J.; Talukder, A.A.; Azmuda, N.; et al. A Systematic Review on COVID-19 Vaccine Strategies, Their Effectiveness, and Issues. Vaccines 2021, 9, 1387. [Google Scholar] [CrossRef]
- Robba, C.; Battaglini, D.; Pelosi, P.; Rocco, P.R.M. Multiple organ dysfunction in SARS-CoV-2: MODS-CoV-2. Expert Rev. Respir. Med. 2020, 14, 865–868. [Google Scholar] [CrossRef]
- WHO. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 26 December 2022).
- Phua, J.; Weng, L.; Ling, L.; Egi, M.; Lim, C.-M.; Divatia, J.V.; Shrestha, B.R.; Arabi, Y.M.; Ng, J.; Gomersall, C.D.; et al. Intensive care management of coronavirus disease 2019 (COVID-19): Challenges and recommendations. Lancet Respir. Med. 2020, 8, 506–517. [Google Scholar] [CrossRef]
- Pageaud, S.; Eyraud-Loisel, A.; Bertoglio, J.-P.; Bienvenüe, A.; Leboisne, N.; Pothier, C.; Rigotti, C.; Ponthus, N.; Gauchon, R.; Gueyffier, F.; et al. Predicted Impacts of Booster, Immunity Decline, Vaccination Strategies, and Non-Pharmaceutical Interventions on COVID-19 Outcomes in France. Vaccines 2022, 10, 2033. [Google Scholar] [CrossRef]
- Mendez-Brito, A.; El Bcheraoui, C.; Pozo-Martin, F. Systematic review of empirical studies comparing the effectiveness of non-pharmaceutical interventions against COVID-19. J. Infect. 2021, 83, 281–293. [Google Scholar] [CrossRef]
- Pormohammad, A.; Zarei, M.; Ghorbani, S.; Mohammadi, M.; Neshin, S.A.S.; Khatami, A.; Turner, D.L.; Djalalinia, S.; Mousavi, S.A.; Mardani-Fard, H.A.; et al. Effectiveness of COVID-19 Vaccines against Delta (B.1.617.2) Variant: A Systematic Review and Meta-Analysis of Clinical Studies. Vaccines 2021, 10, 23. [Google Scholar] [CrossRef]
- Ibrahim, D.; Kis, Z.; Tak, K.; Papathanasiou, M.M.; Kontoravdi, C.; Chachuat, B.; Shah, N. Model-Based Planning and Delivery of Mass Vaccination Campaigns against Infectious Disease: Application to the COVID-19 Pandemic in the UK. Vaccines 2021, 9, 1460. [Google Scholar] [CrossRef]
- Liu, Y.; Ye, Q. Safety and Efficacy of the Common Vaccines against COVID-19. Vaccines 2022, 10, 513. [Google Scholar] [CrossRef]
- Pratama, N.R.; Wafa, I.A.; Budi, D.S.; Sutanto, H.; Asmarawati, T.P.; Effendi, G.B.; Wungu, C.D.K. Effectiveness of COVID-19 Vaccines against SARS-CoV-2 Omicron Variant (B.1.1.529): A Systematic Review with Meta-Analysis and Meta-Regression. Vaccines 2022, 10, 2180. [Google Scholar] [CrossRef]
- Pormohammad, A.; Zarei, M.; Ghorbani, S.; Mohammadi, M.; Razizadeh, M.; Turner, D.; Turner, R. Efficacy and Safety of COVID-19 Vaccines: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Vaccines 2021, 9, 467. [Google Scholar] [CrossRef]
- Álvarez-Díaz, D.A.; Muñoz, A.L.; Herrera-Sepúlveda, M.T.; Tavera-Rodríguez, P.; Laiton-Donato, K.; Franco-Muñoz, C.; Ruiz-Moreno, H.A.; Galindo, M.; Catama, J.D.; Bermudez-Forero, A.; et al. Neutralizing Antibody Responses Elicited by Inactivated Whole Virus and Genetic Vaccines against Dominant SARS-CoV-2 Variants during the Four Epidemic Peaks of COVID-19 in Colombia. Vaccines 2022, 10, 2144. [Google Scholar] [CrossRef]
- Tanriover, M.D.; Aydin, O.A.; Guner, R.; Yildiz, O.; Celik, I.; Doganay, H.L.; Kose, S.; Akhan, S.; Akalin, E.H.; Sezer, Z.; et al. Efficacy, Immunogenicity, and Safety of the Two-Dose Schedules of TURKOVAC versus CoronaVac in Healthy Subjects: A Randomized, Observer-Blinded, Non-Inferiority Phase III Trial. Vaccines 2022, 10, 1865. [Google Scholar] [CrossRef]
- Lin, T.-W.; Huang, P.-H.; Liao, B.-H.; Chao, T.-L.; Tsai, Y.-M.; Chang, S.-C.; Chang, S.-Y.; Chen, H.-W. Tag-Free SARS-CoV-2 Receptor Binding Domain (RBD), but Not C-Terminal Tagged SARS-CoV-2 RBD, Induces a Rapid and Potent Neutralizing Antibody Response. Vaccines 2022, 10, 1839. [Google Scholar] [CrossRef]
- Grassi, T.; Lobreglio, G.; Panico, A.; Rosato, C.; Zizza, A.; Lazzari, R.; Chicone, M.; Indino, F.; Bagordo, F. Kinetics of Humoral Immunity against SARS-CoV-2 in Healthcare Workers after the Third Dose of BNT162b2 mRNA Vaccine. Vaccines 2022, 10, 1948. [Google Scholar] [CrossRef]
- Thotsiri, S.; Sittiudomsuk, R.; Sutharattanapong, N.; Kantachuvesiri, S.; Wiwattanathum, P. The Effect of a Booster Dose mRNA Vaccine on COVID-19 Infection in Kidney Transplant Recipients after Inactivated or Viral Vector Vaccine Immunization. Vaccines 2022, 10, 1690. [Google Scholar] [CrossRef]
- Resch, M.D.; Wen, K.; Mazboudi, R.; Maasz, H.M.; Persaud, M.; Garvey, K.; Gallardo, L.; Gottlieb, P.; Alimova, A.; Khayat, R.; et al. Immunogenicity and Efficacy of Monovalent and Bivalent Formulations of a Virus-Like Particle Vaccine against SARS-CoV-2. Vaccines 2022, 10, 1997. [Google Scholar] [CrossRef]
- Boix-Besora, A.; Lorenzo, E.; Lavado-García, J.; Gòdia, F.; Cervera, L. Optimization, Production, Purification and Characterization of HIV-1 GAG-Based Virus-like Particles Functionalized with SARS-CoV-2. Vaccines 2022, 10, 250. [Google Scholar] [CrossRef]
- Isakova-Sivak, I.; Stepanova, E.; Matyushenko, V.; Niskanen, S.; Mezhenskaya, D.; Bazhenova, E.; Krutikova, E.; Kotomina, T.; Prokopenko, P.; Neterebskii, B.; et al. Development of a T Cell-Based COVID-19 Vaccine Using a Live Attenuated Influenza Vaccine Viral Vector. Vaccines 2022, 10, 1142. [Google Scholar] [CrossRef]
- Seo, S.; Jang, Y. Cold-Adapted Live Attenuated SARS-CoV-2 Vaccine Completely Protects Human ACE2 Transgenic Mice from SARS-CoV-2 Infection. Vaccines 2020, 8, 584. [Google Scholar] [CrossRef]
- Guérin, C.; Reignier, J.; Richard, J.-C.; Beuret, P.; Gacouin, A.; Boulain, T.; Mercier, E.; Badet, M.; Mercat, A.; Baudin, O.; et al. Prone positioning in severe acute respiratory distress syndrome. N. Engl. J. Med. 2013, 368, 2159–2168. [Google Scholar] [CrossRef]
- Tolcher, M.C.; McKinney, J.R.; Eppes, C.S.; Muigai, D.; Shamshirsaz, A.; Guntupalli, K.K.; Nates, J.L. Prone Positioning for Pregnant Women with Hypoxemia Due to Coronavirus Disease 2019 (COVID-19). Obstet. Gynecol. 2020, 136, 259–261. [Google Scholar] [CrossRef]
- Osmundo, G.D.S.; Paganotti, C.D.F.; da Costa, R.A.; Silva, T.H.D.S.; Bombonati, P.C.; Malbouisson, L.M.S.; Francisco, R.P.V. Prone Positioning: A Safe and Effective Procedure in Pregnant Women Presenting with Severe Acute Respiratory Distress Syndrome. Vaccines 2022, 10, 2182. [Google Scholar] [CrossRef] [PubMed]
- Trikha, A.; Ray, B.R. Prone position ventilation in pregnancy: Concerns and evidence. J. Obstet. Anaesth. Crit. Care 2018, 8, 7–9. [Google Scholar] [CrossRef]
- Kakkar, A.K.; Shafiq, N.; Singh, G.; Ray, P.; Gautam, V.; Agarwal, R.; Muralidharan, J.; Arora, P. Antimicrobial Stewardship Programs in Resource Constrained Environments: Understanding and Addressing the Need of the Systems. Front. Public Health 2020, 8, 140. [Google Scholar] [CrossRef]
- Aurilio, C.; Sansone, P.; Paladini, A.; Barbarisi, M.; Coppolino, F.; Pota, V.; Pace, M. Multidrug Resistence Prevalence in COVID Area. Life 2021, 11, 601. [Google Scholar] [CrossRef] [PubMed]
- Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.M.; Wertheim, H.F.L.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; et al. Antibiotic resistance-the need for global solutions. Lancet Infect. Dis. 2013, 13, 1057–1098. [Google Scholar] [CrossRef] [Green Version]
- Kabrah, A.; Bahwerth, F.; Alghamdi, S.; Alkhotani, A.; Alahmadi, A.; Alhuzali, M.; Aljerary, I.; Alsulami, A. Antibiotics Usage and Resistance among Patients with Severe Acute Respiratory Syndrome Coronavirus 2 in the Intensive Care Unit in Makkah, Saudi Arabia. Vaccines 2022, 10, 2148. [Google Scholar] [CrossRef] [PubMed]
- Nieuwlaat, R.; Mbuagbaw, L.; Mertz, D.; Burrows, L.L.; Bowdish, E.D.M.; Moja, L.; Wright, G.D.; Schünemann, H.J. Coronavirus Disease 2019 and Antimicrobial Resistance: Parallel and Interacting Health Emergencies. Clin. Infect. Dis. 2020, 72, 1657–1659. [Google Scholar] [CrossRef]
- Rawson, T.M.; Moore, L.S.P.; Zhu, N.; Ranganathan, N.; Skolimowska, K.; Gilchrist, M.; Satta, G.; Cooke, G.; Holmes, A.H. Bacterial and Fungal Coinfection in Individuals with Coronavirus: A Rapid Review to Support COVID-19 Antimicrobial Prescribing. Clin. Infect. Dis. 2020, 71, 2459–2468. [Google Scholar] [CrossRef]
- Al-Maani, A.; Al Wahaibi, A.; Al-Zadjali, N.; Al-Sooti, J.; AlHinai, M.; Al Badawi, A.; Al Saidi, A.; AlZadjali, N.; Elshoubary, W.; Al-Harthi, K.; et al. The impact of the hand hygiene role model project on improving healthcare workers’ compliance: A quasi-experimental observational study. J. Infect. Public Health 2022, 15, 324–330. [Google Scholar] [CrossRef]
- Soraci, L.; Lattanzio, F.; Soraci, G.; Gambuzza, M.E.; Pulvirenti, C.; Cozza, A.; Corsonello, A.; Luciani, F.; Rezza, G. COVID-19 Vaccines: Current and Future Perspectives. Vaccines 2022, 10, 608. [Google Scholar] [CrossRef]
- Dispinseri, S.; Secchi, M.; Pirillo, M.F.; Tolazzi, M.; Borghi, M.; Brigatti, C.; De Angelis, M.L.; Baratella, M.; Bazzigaluppi, E.; Venturi, G.; et al. Neutralizing antibody responses to SARS-CoV-2 in symptomatic COVID-19 is persistent and critical for survival. Nat. Commun. 2021, 12, 2670. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Pan, W.; Chen, G.; Huang, E.; Lu, Q.; Chen, Y.; Chen, Y.; Yang, Z.; Wen, L.; Zhang, S.; et al. Preclinical Toxicity and Immunogenicity of a COVID-19 Vaccine (ZF2001) in Cynomolgus Monkeys. Vaccines 2022, 10, 2080. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, Y.; Wu, L.; Niu, S.; Song, C.; Zhang, Z.; Lu, G.; Qiao, C.; Hu, Y.; Yuen, K.Y.; et al. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell 2020, 181, 894–904.e9. [Google Scholar] [CrossRef]
- Premkumar, L.; Segovia-Chumbez, B.; Jadi, R.; Martinez, D.R.; Raut, R.; Markmann, A.; Cornaby, C.; Bartelt, L.; Weiss, S.; Park, Y.; et al. The receptor binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients. Sci. Immunol. 2020, 5, eabc8413. [Google Scholar] [CrossRef] [PubMed]
- Keech, C.; Albert, G.; Cho, I.; Robertson, A.; Reed, P.; Neal, S.; Plested, J.S.; Zhu, M.; Cloney-Clark, S.; Zhou, H.; et al. Phase 1-2 Trial of a SARS-CoV-2 Recombinant Spike Protein Nanoparticle Vaccine. N. Engl. J. Med. 2020, 383, 2320–2332. [Google Scholar] [CrossRef]
- Xu, X.; Hong, Y.; Chen, E.; Wang, Y.; Ma, B.; Li, J.; Su, W.; Zhou, Y.; Zhang, M. Antibodies Induced by Homologous or Heterologous Inactivated (CoronaVac/BBIBP-CorV) and Recombinant Protein Subunit Vaccines (ZF2001) Dramatically Enhanced Inhibitory Abilities against B.1.351, B.1.617.2, and B.1.1.529 Variants. Vaccines 2022, 10, 2110. [Google Scholar] [CrossRef]
- Yang, S.; Li, Y.; Dai, L.; Wang, J.; He, P.; Li, C.; Fang, X.; Wang, C.; Zhao, X.; Huang, E.; et al. Safety and immunogenicity of a recombinant tandem-repeat dimeric RBD-based protein subunit vaccine (ZF2001) against COVID-19 in adults: Two randomised, double-blind, placebo-controlled, phase 1 and 2 trials. Lancet Infect. Dis. 2021, 21, 1107–1119. [Google Scholar] [CrossRef]
- An, Y.; Li, S.; Jin, X.; Han, J.-B.; Xu, K.; Xu, S.; Han, Y.; Liu, C.; Zheng, T.; Liu, M.; et al. A tandem-repeat dimeric RBD protein-based covid-19 vaccine zf2001 protects mice and nonhuman primates. Emerg. Microbes Infect. 2022, 11, 1058–1071. [Google Scholar] [CrossRef]
- Wen, J.; Cheng, Y.; Ling, R.; Dai, Y.; Huang, B.; Huang, W.; Zhang, S.; Jiang, Y. Antibody-dependent enhancement of coronavirus. Int. J. Infect. Dis. 2020, 100, 483–489. [Google Scholar] [CrossRef]
- Tunjungputri, R.N.; Tetrasiwi, E.N.; Veronica, M.; Pandelaki, J.; Ibrahim, F.; Nelwan, E.J. Vaccine-Associated Disease Enhancement (VADE): Considerations in Postvaccination COVID-19. Case Rep. Med. 2021, 2021, 9673453. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Jin, Y.; Yang, H. Intensive Care during the COVID-19 Pandemic. Vaccines 2023, 11, 125. https://doi.org/10.3390/vaccines11010125
Wang Y, Jin Y, Yang H. Intensive Care during the COVID-19 Pandemic. Vaccines. 2023; 11(1):125. https://doi.org/10.3390/vaccines11010125
Chicago/Turabian StyleWang, Ying, Yuefei Jin, and Haiyan Yang. 2023. "Intensive Care during the COVID-19 Pandemic" Vaccines 11, no. 1: 125. https://doi.org/10.3390/vaccines11010125
APA StyleWang, Y., Jin, Y., & Yang, H. (2023). Intensive Care during the COVID-19 Pandemic. Vaccines, 11(1), 125. https://doi.org/10.3390/vaccines11010125