Long Term Follow-Up Study of a Randomized, Open-Label, Uncontrolled, Phase I/II Study to Assess the Safety and Immunogenicity of Intramuscular and Intradermal Doses of COVID-19 DNA Vaccine (AG0302-COVID19)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Trial Design and Patients
2.2. Vaccine and Medical Device
2.3. Procedure
2.4. Primary and Secondary Endpoints
- Adverse events, adverse reactions, serious adverse events, and specific adverse events (local reactions, systemic reactions) that occurred between the time of the first dose and 12 weeks after the first dose of the study drug and up to 2 weeks after each dose.
- Neutralizing activity against SARS-CoV-2 pseudovirus (50% inhibitory concentration [ID50]) and SARS-CoV-2 spike (S) glycoprotein-specific antibody fold increase in GMT (GMT rate of change).
- Seroconversion rate of neutralizing activity (ID50) against SARS-CoV-2 pseudovirus: number and percentage of subjects with a ≥4-fold increase in neutralizing activity (ID50) against the SARS-CoV-2 pseudovirus.
- Changes in the number of interferon (IFN)-γ-producing cells after stimulation of peripheral blood mononuclear cells with SARS-CoV-2 spike (S) glycoprotein.
- Protective effect against infection: the proportion of subjects infected with SARS-CoV-2 from the first dose of the study drug to 52 weeks after the first dose (vaccination, observation, and follow-up periods).
2.5. Laboratory Analysis
2.6. Statistical Analysis
3. Results
3.1. Composition and Baseline Characteristics of the Subjects
3.2. Safety and Tolerability
3.3. Immune Responses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Statement on the Second Meeting of the International Health Regulations (2005) Emergency Committee Regarding the Outbreak of Novel Coronavirus (2019-nCoV). Available online: https://www.who.int/news/item/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov) (accessed on 1 September 2023).
- Sadoff, J.; Le Gars, M.; Shukarev, G.; Heerwegh, D.; Truyers, C.; de Groot, A.M.; Stoop, J.; Tete, S.; Van Damme, W.; Leroux-Roels, I.; et al. Interim results of a phase 1-2a trial of Ad26.CoV2.S COVID-19 vaccine. N. Engl. J. Med. 2021, 384, 1824–1835. [Google Scholar] [CrossRef] [PubMed]
- Folegatti, P.M.; Ewer, K.J.; Aley, P.K.; Angus, B.; Becker, S.; Belij-Rammerstorfer, S.; Bellamy, D.; Bibi, S.; Bittaye, M.; Clutterbuck, E.A.; et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: A preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 2020, 396, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Walsh, E.E.; Frenck, R.W., Jr.; Falsey, A.R.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Neuzil, K.; Mulligan, M.J.; Bailey, R.; et al. Oxford COVID Vaccine Trial Group Safety and immunogenicity of two RNA-based COVID-19 vaccine candidates. N. Engl. J. Med. 2020, 383, 2439–2450. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zeng, G.; Pan, H.; Li, C.; Hu, Y.; Chu, K.; Han, W.; Chen, Z.; Tang, R.; Yin, W.; et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: A randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect. Dis. 2021, 21, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
- Hayashi, H.; Sun, J.; Yanagida, Y.; Otera, T.; Kubota-Koketsu, R.; Shioda, T.; Ono, C.; Matsuura, Y.; Arase, H.; Yoshida, S.; et al. Preclinical study of a DNA vaccine targeting SARS-CoV-2. Curr. Res. Transl. Med. 2022, 70, 103348. [Google Scholar] [CrossRef]
- Nakagami, H.; Hayashi, H.; Sun, J.; Yanagida, Y.; Otera, T.; Nakagami, F.; Hamaguchi, S.; Yoshida, H.; Okuno, H.; Yoshida, S.; et al. Phase I study to assess the safety and immunogenicity of an intradermal COVID-19 DNA vaccine administered using a pyro-drive jet injector in healthy adults. Vaccines 2022, 10, 1427. [Google Scholar] [CrossRef]
- Nakagami, H.; Hayashi, H.; Ishihama, T.; Daikyoji, Y.; Sasakura, C.; Mikami, T.; Komatsuno, T.; Saito, Y.; Suzuki, K.; Murakami, A.; et al. Study protocol for a randomized, open-label, non-controlled Phase I/II study to assess safety and immunogenicity of twice or three times dosing of intramuscular COVID-19 DNA vaccine in healthy adults. Translat. Regulat. Sci. 2021, 3, 115–117. [Google Scholar] [CrossRef]
- Miyazaki, H.; Atobe, S.; Suzuki, T.; Iga, H.; Terai, K. Development of pyro-drive jet injector with controllable jet pressure. J. Pharm. Sci. 2019, 108, 2415–2420. [Google Scholar] [CrossRef]
- Hengge, U.R.; Chan, E.F.; Foster, R.A.; Walker, P.S.; Vogel, J.C. Cytokine gene expression in epidermis with biological effects following injection of naked DNA. Nat. Genet. 1995, 10, 161–166. [Google Scholar] [CrossRef]
- Porgador, A.; Irvine, K.R.; Iwasaki, A.; Barber, B.H.; Restifo, N.P.; Germain, R.N. Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization. J. Exp. Med. 1998, 188, 1075–1082. [Google Scholar] [CrossRef] [PubMed]
- Stephan Sudowe, S.; Dominitzki, S.; Montermann, E.; Bros, M.; Grabbe, S.; Reske-Kunz, A.B. Uptake and presentation of exogenous antigen and presentation of endogenously produced antigen by skin dendritic cells represent equivalent pathways for the priming of cellular immune responses following biolistic DNA immunization. Immunology 2009, 128, e193–e205. [Google Scholar] [CrossRef] [PubMed]
- Graham, B.S.; Enama, M.E.; Nason, M.C.; Gordon, I.J.; Peel, S.A.; Ledgerwood, J.E.; Plummer, S.A.; Mascola, J.R.; Bailer, R.T.; Roederer, M.; et al. DNA vaccine delivered by a needle-free injection device improves potency of priming for antibody and CD8+ T-cell responses after rAd5 boost in a randomized clinical trial. PLoS ONE 2013, 8, e59340. [Google Scholar] [CrossRef] [PubMed]
- Felgner, P.L. Improvements in cationic liposomes for in vivo gene transfer. Hum. Gene Ther. 1996, 7, 1791–1793. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, S.M.; Doukas, J.; Hartikka, J.; Smith, L.; Rolland, A. Vaxfectin: A versatile adjuvant for plasmid DNA- and protein-based vaccines. Expert Opin. Drug Deliv. 2010, 7, 1433–1446. [Google Scholar] [CrossRef] [PubMed]
- Widera, G.; Austin, M.; Rabussay, D.; Goldbeck, C.; Barnett, S.W.; Chen, M.; Leung, L.; Otten, G.R.; Thudium, K.; Selby, M.J.; et al. Increased DNA vaccine delivery and immunogenicity by electroporation in vivo. J. Immunol. 2000, 164, 4635–4640. [Google Scholar] [CrossRef]
- Marichal, T.; Ohata, K.; Bedoret, D.; Mesnil, C.; Sabatel, C.; Kobiyama, K.; Lekeux, P.; Coban, C.; Akira, S.; Ishii, K.J.; et al. DNA released from dying host cells mediates aluminum adjuvant activity. Nat. Med. 2011, 17, 996–1002. [Google Scholar] [CrossRef]
- Bange, E.M.; Han, N.A.; Wileyto, P.; Kim, J.Y.; Gouma, S.; Robinson, J.; Greenplate, A.R.; Hwee, M.A.; Porterfield, F.; Owoyemi, O.; et al. CD8+ T cells contribute to survival in patients with COVID-19 and hematologic cancer. Nat. Med. 2021, 27, 1280–1289. [Google Scholar] [CrossRef]
- Haraguchi, T.; Koujin, T.; Shindo, T.; Bilir, Ş.; Osakada, H.; Nishimura, K.; Hirano, Y.; Asakawa, H.; Mori, C.; Kobayashi, S.; et al. Transfected plasmid DNA is incorporated into the nucleus via nuclear envelope reformation at telophase. Commun. Biol. 2022, 5, 78. [Google Scholar] [CrossRef]
- Kraynyak, K.A.; Blackwood, E.; Agnes, J.; Tebas, P.; Giffear, M.; Amante, D.; Reuschel, E.L.; Purwar, M.; Christensen-Quick, A.; Liu, N.; et al. SARS-CoV-2 DNA vaccine INO-4800 induces durable immune responses capable of being boosted in a Phase 1 open-label trial. J. Infect. Dis. 2022, 225, 1923–1932. [Google Scholar] [CrossRef]
- Ahn, J.Y.; Lee, J.; Suh, Y.S.; Song, Y.G.; Choi, Y.J.; Lee, K.H.; Seo, S.H.; Song, M.; Oh, J.W.; Kim, M.; et al. Safety and immunogenicity of two recombinant DNA COVID-19 vaccines containing the coding regions of the spike or spike and nucleocapsid proteins: An interim analysis of two open-label, non-randomised, phase 1 trials in healthy adults. Lancet Microbe 2022, 3, e173–e183. [Google Scholar] [CrossRef] [PubMed]
- Aurisicchio, L.; Brambilla, N.; Cazzaniga, M.E.; Bonfanti, P.; Milleri, S.; Ascierto, P.A.; Capici, S.; Vitalini, C.; Girolami, F.; Giacovelli, G.; et al. A first-in-human trial on the safety and immunogenicity of COVID-eVax, a cellular response-skewed DNA vaccine against COVID-19. Mol. Ther. 2023, 31, 788–800. [Google Scholar] [CrossRef] [PubMed]
- Momin, T.; Kansagra, K.; Patel, H.; Sharma, S.; Sharma, B.; Patel, J.; Mittal, R.; Sanmukhani, J.; Maithal, K.; Dey, A.; et al. Safety and immunogenicity of a DNA SARS-CoV-2 vaccine (ZyCoV-D): Results of an open-label, non-randomized phase I part of phase I/II clinical study by intradermal route in healthy subjects in India. EClinicalmedicine 2021, 38, 101020. [Google Scholar] [CrossRef] [PubMed]
- Khoury, D.S.; Cromer, D.; Reynaldi, A.; Schlub, T.E.; Wheatley, A.K.; Juno, J.A.; Subbarao, K.; Kent, S.J.; Triccas, J.A.; Davenport, M.P. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 2021, 27, 1205–1211. [Google Scholar] [CrossRef] [PubMed]
A | B | C | D | E | ||
---|---|---|---|---|---|---|
Demographics | (2 mg, Three Times at 2-Week Intervals) n = 83 | (4 mg, Twice at 4-Week Intervals) n = 83 | (8 mg, Twice at 4-Week Intervals) n = 83 | (1 mg, Three Times at 2-Week Intervals) n = 82 | (1 mg, Twice at 4-Week Intervals) n = 85 | |
Sex | male | 43 | 44 | 43 | 40 | 42 |
Female | 40 | 39 | 40 | 42 | 43 | |
Age | Mean ± SD | 49 ± 14 | 48 ± 15 | 49 ± 14 | 46 ± 13 | 47 ± 15 |
Range | (21–77) | (20–75) | (22–79) | (21–80) | (20–79) | |
Height | Mean ± SD | 165 ± 9 | 165 ± 9 | 164 ± 9 | 165 ± 9 | 164 ± 8 |
Range | (146–185) | (148–183) | (145–179) | (142–188) | (149–181) | |
Weight | Mean ± SD | 60 ± 11 | 62 ± 10 | 60 ± 12 | 61 ± 13 | 63 ± 13 |
Range | (32–92) | (46–99) | (35–95) | (42–106) | (38–105) | |
Medical history | Yes | 1 | 3 | 3 | 6 | 2 |
Underlying diseases | yes | 52 | 60 | 53 | 63 | 70 |
Smoking history | past/current | 16/8 | 10/12 | 16/7 | 15/8 | 16/11 |
Antibody titer | log titer | 1.45 ± 0.27 | 1.45 ± 0.28 | 1.46 ± 0.24 | 1.45 ± 0.21 | 1.41 ± 0.07 |
GMT (95% CI) | 28 (25, 32) | 28 (25, 33) | 29 (25. 32) | 28 (25, 31) | 26 (25, 27) | |
Number of subjects with titer < 50.3 | 80 | 80 | 77 | 77 | 84 | |
Neutralizing activity | log titer | 0.72 ± 0.15 | 0.76 ± 0.23 | 0.73 ± 0.14 | 0.73 ± 0.19 | 0.73 ± 0.13 |
GMT (95% CI) | 5.3 (4.9, 5.7) | 5.8 (5.1, 6.5) | 5.3 (4.9, 5.7) | 5.4 (4.9, 5.9) | 5.3 (5.0, 5.7) |
AG0302-COVID19 Intramuscular | ||||||||
---|---|---|---|---|---|---|---|---|
A (2 mg, Three Times at 2-Week Intervals) N = 85 | B (4 mg, Twice at 4-Week Intervals) N = 84 | C (8 mg, Twice at 4-Week Intervals) N = 83 | Intramuscular N = 252 | |||||
n (%) | 95% CI | n (%) | 95% CI | n (%) | 95% CI | n (%) | 95% CI | |
Treatment-emergent adverse events | 69 (81.2) | [71.2, 88.8] | 74 (88.1) | [79.2, 94.1] | 73 (88.0) | [79.0, 94.1] | 216 (85.7) | [80.8, 89.8] |
Preferred Term | ||||||||
Diarrhea | 5 (5.9) | [1.9, 13.2] | 8 (9.5) | [4.2, 17.9] | 5 (6.0) | [2.0, 13.5] | 18 (7.1) | [4.3, 11.1] |
Malaise | 20 (23.5) | [15.0, 34.0] | 17 (20.2) | [12.3, 30.4] | 16 (19.3) | [11.4, 29.4] | 53 (21.0) | [16.2, 26.6] |
Vaccination site induration | 3 (3.5) | [0.7, 10.0] | 14 (16.7) | [9.4, 26.4] | 12 (14.5) | [7.7, 23.9] | 29 (11.5) | [7.8, 16.1] |
Vaccination site pain | 62 (72.9) | [62.2, 82.0] | 71 (84.5) | [75.0, 91.5] | 64 (77.1) | [66.6, 85.6] | 197 (78.2) | [72.6, 83.1] |
Headache | 18 (21.2) | [13.1, 31.4] | 19 (22.6) | [14.2, 33.0] | 15 (18.1) | [10.5, 28.0] | 52 (20.6) | [15.8, 26.2] |
AG0302-COVID19 Intradermal | ||||||||
D (1 mg, Three Times at 2-Week Intervals) N= 84 | E (1 mg, Twice at 4-Week Intervals) N = 86 | Intradermal N = 170 | ||||||
n(%) | 95% CI | n(%) | 95% CI | n(%) | 95% CI | |||
Treatment-emergent adverse events | 71 (84.5) | [75.0, 91.5] | 73 (84.9) | [75.5, 91.7] | 144 (84.7) | [78.4, 89.8] | ||
Preferred Term | ||||||||
Diarrhea | 11 (13.1) | [6.7, 22.2] | 20 (23.3) | [14.8, 33.6] | 31 (18.2) | [12.7, 24.9] | ||
Malaise | 26 (31.0) | [21.3, 42.0] | 26 (30.2) | [20.8, 41.1] | 52 (30.6) | [23.8, 38.1] | ||
Vaccination site erythema | 32 (38.1) | [27.7, 49.3] | 23 (26.7) | [17.8, 37.4] | 55 (32.4) | [25.4, 39.9] | ||
Vaccination site induration | 24 (28.6) | [19.2, 39.5] | 30 (34.9) | [24.9, 45.9] | 54 (31.8) | [24.8, 39.3] | ||
Vaccination site pain | 34 (40.5) | [29.9, 51.7] | 35 (40.7) | [30.2, 51.8] | 69 (40.6) | [33.1, 48.4] | ||
Vaccination site pruritus | 13 (15.5) | [8.5, 25.0] | 22 (25.6) | [16.8, 36.1] | 35 (20.6) | [14.8, 27.5] | ||
Vaccination site swelling | 19 (22.6) | [14.2, 33.0] | 16 (18.6) | [11.0, 28.4] | 35 (20.6) | [14.8, 27.5] | ||
Headache | 21 (25.0) | [16.2, 35.6] | 24 (27.9) | [18.8, 38.6] | 45 (26.5) | [20.0, 33.8] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakagami, H.; Matsumoto, T.; Takazawa, K.; Sekino, H.; Matsuoka, O.; Inoue, S.; Furuie, H.; Morishita, R. Long Term Follow-Up Study of a Randomized, Open-Label, Uncontrolled, Phase I/II Study to Assess the Safety and Immunogenicity of Intramuscular and Intradermal Doses of COVID-19 DNA Vaccine (AG0302-COVID19). Vaccines 2023, 11, 1535. https://doi.org/10.3390/vaccines11101535
Nakagami H, Matsumoto T, Takazawa K, Sekino H, Matsuoka O, Inoue S, Furuie H, Morishita R. Long Term Follow-Up Study of a Randomized, Open-Label, Uncontrolled, Phase I/II Study to Assess the Safety and Immunogenicity of Intramuscular and Intradermal Doses of COVID-19 DNA Vaccine (AG0302-COVID19). Vaccines. 2023; 11(10):1535. https://doi.org/10.3390/vaccines11101535
Chicago/Turabian StyleNakagami, Hironori, Tetsuya Matsumoto, Kenji Takazawa, Hisakuni Sekino, Osamu Matsuoka, Satoshi Inoue, Hidetoshi Furuie, and Ryuichi Morishita. 2023. "Long Term Follow-Up Study of a Randomized, Open-Label, Uncontrolled, Phase I/II Study to Assess the Safety and Immunogenicity of Intramuscular and Intradermal Doses of COVID-19 DNA Vaccine (AG0302-COVID19)" Vaccines 11, no. 10: 1535. https://doi.org/10.3390/vaccines11101535
APA StyleNakagami, H., Matsumoto, T., Takazawa, K., Sekino, H., Matsuoka, O., Inoue, S., Furuie, H., & Morishita, R. (2023). Long Term Follow-Up Study of a Randomized, Open-Label, Uncontrolled, Phase I/II Study to Assess the Safety and Immunogenicity of Intramuscular and Intradermal Doses of COVID-19 DNA Vaccine (AG0302-COVID19). Vaccines, 11(10), 1535. https://doi.org/10.3390/vaccines11101535