PLGA-Encapsulated Haemonchus contortus Antigen ES-15 Augments Immune Responses in a Murine Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Declaration
2.2. Animals
2.3. Optimization of the Working Concentration of Polyvinyl Alcohol (PVA)
2.4. PLGA Encapsulation of the rHcES15 Antigen
2.5. Characterization of the rHcES-15 Antigen-Loaded PLGA NPs
2.5.1. Encapsulation Efficiency (EE), Loading Capacity (LC), and In Vitro Cumulative Release (CR) of the rHcES-15 Antigen
2.5.2. SEM for the Determination of Shape, Size, and Measurement of the Zeta Potential of NPs
2.5.3. SDS-PAGE Analysis
2.6. Western Blotting
2.7. Mice Immunization
2.8. Antigen-Specific Serum Antibody Assays
2.9. In Vitro Measurement of Cytokines Using ELISA
2.10. Evaluation of Splenic Lymphocyte Proliferation Assay
2.11. Analysis of Lymphocyte Phenotypes via Flow Cytometry
2.12. Determination of DC Phenotypes via Flow Cytometry
2.13. Statistical Analysis
3. Results
3.1. Determination of Optimum PVA Concentration
3.2. The Characterization of Antigen-Loaded NPs
3.3. Immuno-Blot Analysis
3.4. Evaluation of Serum Antibody Levels Induced by the Nanaovaccine
3.5. Cytokines Secreted by the rHcES-15 Antigen and Nanovaccine
3.6. Nanovaccine-Induced Splenic Lymphocytes Proliferation
3.7. The Nanovaccine Elicited the Activation of CD4+ and CD8+ T Cells
3.8. The Nanovaccine Increased the Activation and Maturation of DC Phenotypes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Albuquerque, A.C.A.; Bassetto, C.C.; Almeida, F.A.; Hildersley, K.A.; McNeilly, T.N.; Britton, C.; Amarante, A.F.T. Differences in Immune Responses to Haemonchus contortus Infection in the Susceptible Ile de France and the Resistant Santa Ines Sheep under Different Anthelmintic Treatments Regimens. Vet. Res. 2019, 50, 104. [Google Scholar] [CrossRef] [PubMed]
- Brik, K.; Hassouni, T.; Elkharrim, K.; Belghyti, D. A Survey of Haemonchus Contortus Parasite of Sheep from Gharb Plain, Morocco. Parasite Epidemiol. Control 2019, 4, e00094. [Google Scholar] [CrossRef] [PubMed]
- Bakshi, M.; Tuo, W.; Aroian, R.V.; Zarlenga, D. Immune Reactivity and Host Modulatory Roles of Two Novel Haemonchus contortus Cathepsin B-like Proteases. Parasit. Vectors 2021, 14, 580. [Google Scholar] [CrossRef] [PubMed]
- Toscano, J.H.B.; Okino, C.H.; dos Santos, I.B.; Giraldelo, L.A.; von Haehling, M.B.; Esteves, S.N.; de Souza Chagas, A.C. Innate Immune Responses Associated with Resistance against Haemonchus contortus in Morada Nova Sheep. J. Immunol. Res. 2019, 2019, 3562672. [Google Scholar] [CrossRef] [PubMed]
- Bassetto, C.C.; Picharillo, M.É.; Newlands, G.F.J.; Smith, W.D.; Fernandes, S.; Siqueira, E.R.; Amarante, A.F.T. Attempts to Vaccinate Ewes and Their Lambs against Natural Infection with Haemonchus contortus in a Tropical Environment. Int. J. Parasitol. 2014, 44, 1049–1054. [Google Scholar] [CrossRef] [PubMed]
- Bassetto, C.C.; Almeida, F.A.; Newlands, G.F.J.; Smith, W.D.; Castilhos, A.M.; Fernandes, S.; Siqueira, E.R.; Amarante, A.F.T. Trials with the Haemonchus Vaccine, Barbervax(®), in Ewes and Lambs in a Tropical Environment: Nutrient Supplementation Improves Protection in Periparturient Ewes. Vet. Parasitol. 2018, 264, 52–57. [Google Scholar] [CrossRef]
- Ehsan, M.; Hu, R.-S.; Liang, Q.-L.; Hou, J.-L.; Song, X.; Yan, R.; Zhu, X.-Q.; Li, X. Advances in the Development of Anti-Haemonchus contortus Vaccines: Challenges, Opportunities, and Perspectives. Vaccines 2020, 8, 555. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Muhammad, T.A.; Muhammad, W.H.; Muhammad, A.M.; Muhammad, H.; Yan, R.F.; Xu, L.X.; Song, X.K.; Li, X.R. Haemonchus contortus Hepatocellular Carcinoma-Associated Antigen 59 with Poly (Lactic-Co-Glycolic Acid): A Promising Nanovaccine Candidate against Haemonchus Contortus Infection. Vet. Parasitol. 2021, 292, 109398. [Google Scholar] [CrossRef]
- Marcilla, A.; Martin-Jaular, L.; Trelis, M.; de Menezes-Neto, A.; Osuna, A.; Bernal, D.; Fernandez-Becerra, C.; Almeida, I.C.; del Portillo, H.A. Extracellular Vesicles in Parasitic Diseases. J. Extracell. Vesicles 2014, 3, 25040. [Google Scholar] [CrossRef]
- Gahoi, S.; Singh, S.; Gautam, B. Genome-Wide Identification and Comprehensive Analysis of Excretory/Secretory Proteins in Nematodes Provide Potential Drug Targets for Parasite Control. Genomics 2019, 111, 297–309. [Google Scholar] [CrossRef]
- Yatsuda, A.P.; Krijgsveld, J.; Cornelissen, A.W.C.A.; Heck, A.J.R.; De Vries, E. Comprehensive Analysis of the Secreted Proteins of the Parasite Haemonchus Contortus Reveals Extensive Sequence Variation and Differential Immune Recognition. J. Biol. Chem. 2003, 278, 16941–16951. [Google Scholar] [CrossRef] [PubMed]
- Garg, G.; Ranganathan, S. Helminth Secretome Database (HSD): A Collection of Helminth Excretory/Secretory Proteins Predicted from Expressed Sequence Tags (ESTs). BMC Genom. 2012, 13 (Suppl. 7), S8. [Google Scholar] [CrossRef] [PubMed]
- Schallig, H.D.F.H.; Van Leeuwen, M.A.W.; Cornelissen, A.W.C.A. Protective Immunity Induced by Vaccination with Two Haemonchus Contortus Excretory Secretory Proteins in Sheep. Parasite Immunol. 1997, 19, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Gill, H.S.; Watson, D.L.; Brandon, M.R. Monoclonal Antibody to CD4+ T Cells Abrogates Genetic Resistance to Haemonchus Contortus in Sheep. Immunology 1993, 78, 43–49. [Google Scholar]
- Sher, A.; Coffman, R.L. Regulation of Immunity to Parasites by T Cells and T Cell-Derived Cytokines. Annu. Rev. Immunol. 1992, 10, 385–409. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.W.; Haseeb, M.; Ehsan, M.; Gadahi, J.A.; Wang, Q.; Memon, M.A.; Aleem, M.T.; Lakho, S.A.; Yan, R.F.; Xu, L.X.; et al. The Immunogenic Maturation of Goat Monocyte-Derived Dendritic Cells and Upregulation of Toll-like Receptors by Five Antigens of Haemonchus Contortus in-Vitro. Res. Vet. Sci. 2021, 136, 247–258. [Google Scholar] [CrossRef]
- Jongert, E.; Roberts, C.W.; Gargano, N.; Förster-Wald, E.; Petersen, E. Vaccines against Toxoplasma Gondii: Challenges and Opportunities. Mem. Inst. Oswaldo Cruz 2009, 104, 252–266. [Google Scholar] [CrossRef]
- Okwor, I.; Uzonna, J. Vaccines and Vaccination Strategies against Human Cutaneous Leishmaniasis. Hum. Vaccin. 2009, 5, 291–301. [Google Scholar] [CrossRef]
- Schijns, V.; Fernández-Tejada, A.; Barjaktarović, Ž.; Bouzalas, I.; Brimnes, J.; Chernysh, S.; Gizurarson, S.; Gursel, I.; Jakopin, Ž.; Lawrenz, M.; et al. Modulation of Immune Responses Using Adjuvants to Facilitate Therapeutic Vaccination. Immunol. Rev. 2020, 296, 169–190. [Google Scholar] [CrossRef]
- Danesh-Bahreini, M.A.; Shokri, J.; Samiei, A.; Kamali-Sarvestani, E.; Barzegar-Jalali, M.; Mohammadi-Samani, S. Nanovaccine for Leishmaniasis: Preparation of Chitosan Nanoparticles Containing Leishmania Superoxide Dismutase and Evaluation of Its Immunogenicity in BALB/c Mice. Int. J. Nanomed. 2011, 6, 835–842. [Google Scholar]
- Palatnik-de-Sousa, C.B. Vaccines for Leishmaniasis in the Fore Coming 25 Years. Vaccine 2008, 26, 1709–1724. [Google Scholar] [CrossRef] [PubMed]
- Handman, E. Leishmaniasis: Current Status of Vaccine Development. Clin. Microbiol. Rev. 2001, 14, 229–243. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Asokanathan, C.; Liu, F.; Khaing, K.K.; Kmiec, D.; Wei, X.; Song, B.; Xing, D.; Kong, D. PLGA Nano/Micro Particles Encapsulated with Pertussis Toxoid (PTd) Enhances Th1/Th17 Immune Response in a Murine Model. Int. J. Pharm. 2016, 513, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.Z.; Xu, Y.; Wang, M.; Chen, J.; Huang, S.Y.; Gao, Q.; Zhu, X.Q. Vaccination with Toxoplasma Gondii Calcium-Dependent Protein Kinase 6 and Rhoptry Protein 18 Encapsulated in Poly(Lactide-Co-Glycolide) Microspheres Induces Long-Term Protective Immunity in Mice. BMC Infect. Dis. 2016, 16, 168. [Google Scholar] [CrossRef]
- Salvador, A.; Sandgren, K.J.; Liang, F.; Thompson, E.A.; Koup, R.A.; Pedraz, J.L.; Hernandez, R.M.; Loré, K.; Igartua, M. Design and Evaluation of Surface and Adjuvant Modified PLGA Microspheres for Uptake by Dendritic Cells to Improve Vaccine Responses. Int. J. Pharm. 2015, 496, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.W.; Haseeb, M.; Ehsan, M.; Gadahi, J.A.; Naqvi, M.A.-H.; Wang, Q.Q.; Liu, X.; Lakho, S.A.; Yan, R.; Xu, L.; et al. Nanoparticles (PLGA and Chitosan)-Entrapped ADP-Ribosylation Factor 1 of Haemonchus Contortus Enhances the Immune Responses in ICR Mice. Vaccines 2020, 8, 726. [Google Scholar] [CrossRef] [PubMed]
- Pati, R.; Shevtsov, M.; Sonawane, A. Nanoparticle Vaccines Against Infectious Diseases. Front. Immunol. 2018, 9, 2224. [Google Scholar] [CrossRef]
- Ehsan, M.; Gadahi, J.A.; Hasan, M.W.; Haseeb, M.; Ali, H.; Yan, R.; Xu, L.; Song, X.; Zhu, X.-Q.; Li, X. Characterization of Haemonchus Contortus Excretory/Secretory Antigen (ES-15) and Its Modulatory Functions on Goat Immune Cells In Vitro. Pathogens 2020, 9, 162. [Google Scholar] [CrossRef]
- Liang, X.; Duan, J.; Li, X.; Zhu, X.; Chen, Y.; Wang, X.; Sun, H.; Kong, D.; Li, C.; Yang, J. Improved Vaccine-Induced Immune Responses: Via a ROS-Triggered Nanoparticle-Based Antigen Delivery System. Nanoscale 2018, 10, 9489–9503. [Google Scholar] [CrossRef]
- Zhao, K.; Zhang, Y.; Zhang, X.; Li, W.; Shi, C.; Guo, C.; Dai, C.; Chen, Q.; Jin, Z.; Zhao, Y.; et al. Preparation and Efficacy of Newcastle Disease Virus DNA Vaccine Encapsulated in Chitosan Nanoparticles. Int. J. Nanomed. 2014, 9, 389–402. [Google Scholar] [CrossRef]
- Derman, S.; Mustafaeva, Z.A.; Abamor, E.S.; Bagirova, M.; Allahverdiyev, A. Preparation, Characterization and Immunological Evaluation: Canine Parvovirus Synthetic Peptide Loaded PLGA Nanoparticles. J. Biomed. Sci. 2015, 22, 89. [Google Scholar] [CrossRef] [PubMed]
- Gilavand, F.; Marzban, A.; Ebrahimipour, G.; Soleimani, N.; Goudarzi, M. Designation of Chitosan Nano-Vaccine Based on MxiH Antigen of Shigella Flexneri with Increased Immunization Capacity. Carbohydr. Polym. 2020, 232, 115813. [Google Scholar] [CrossRef] [PubMed]
- Zupančič, E.; Curato, C.; Paisana, M.; Rodrigues, C.; Porat, Z.; Viana, A.S.; Afonso, C.A.M.; Pinto, J.; Gaspar, R.; Moreira, J.N.; et al. Rational Design of Nanoparticles towards Targeting Antigen-Presenting Cells and Improved T Cell Priming. J. Control Release 2017, 258, 182–195. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.G.; Wang, Z.Q.; Liu, C.Y.; Jiang, P.; Liu, R.D.; Wen, H.; Qi, X.; Wang, L.; Cui, J. Early Serodiagnosis of Trichinellosis by ELISA Using Excretory-Secretory Antigens of Trichinella Spiralis Adult Worms. Parasites Vectors 2015, 8, 484. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Qin, T.; Huang, Y.; Zheng, S.; Bo, R.; Liu, Z.; Xing, J.; Hu, Y.; Liu, J.; Wang, D. Exploring the Immunopotentiation of Chinese Yam Polysaccharide Poly(Lactic-Co-Glycolic Acid) Nanoparticles in an Ovalbumin Vaccine Formulation In Vivo. Drug Deliv. 2017, 24, 1099–1111. [Google Scholar] [CrossRef] [PubMed]
- Heegaard, P.M.H.; Dedieu, L.; Johnson, N.; Le Potier, M.F.; Mockey, M.; Mutinelli, F.; Vahlenkamp, T.; Vascellari, M.; Sørensen, N.S. Adjuvants and Delivery Systems in Veterinary Vaccinology: Current State and Future Developments. Arch. Virol. 2011, 156, 183–202. [Google Scholar] [CrossRef] [PubMed]
- Danhier, F.; Ansorena, E.; Silva, J.M.; Coco, R.; Le Breton, A.; Préat, V. PLGA-Based Nanoparticles: An Overview of Biomedical Applications. J. Control Release 2012, 161, 505–522. [Google Scholar] [CrossRef]
- Foged, C.; Brodin, B.; Frokjaer, S.; Sundblad, A. Particle Size and Surface Charge Affect Particle Uptake by Human Dendritic Cells in an in Vitro Model. Int. J. Pharm. 2005, 298, 315–322. [Google Scholar] [CrossRef]
- Joshi, V.B.; Geary, S.M.; Salem, A.K. Biodegradable Particles as Vaccine Delivery Systems: Size Matters. AAPS J. 2013, 15, 85–94. [Google Scholar] [CrossRef]
- Yan, R.; Sun, W.; Song, X.; Xu, L.; Li, X. Vaccination of Goats with DNA Vaccine Encoding Dim-1 Induced Partial Protection against Haemonchus Contortus: A Preliminary Experimental Study. Res. Vet. Sci. 2013, 95, 189–199. [Google Scholar] [CrossRef]
- Tsuji, N.; Kasuga-aoki, H.; Isobe, T. Cloning and Characterisation of a Highly Immunoreactive 37 KDa Antigen with Multi-Immunoglobulin Domains from the Swine Roundworm Ascaris Suum. Int. J. Parasitol. 2002, 32, 1739–1746. [Google Scholar] [CrossRef] [PubMed]
- Kiel, M.; Hunt, P.; Kongsuwan, K.; Josh, P.; Jones, A.; Windon, R. Identification of Immuno-Reactive Proteins from a Sheep Gastrointestinal Nematode, Trichostrongylus Colubriformis, Using Two-Dimensional Electrophoresis and Mass Spectrometry. Int. J. Parasitol. 2007, 37, 1419–1429. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, A.P.; Campos, D.M.B.; Semerene, A.R.; Teixeira, A.R.L.; Santana, J.M. Lagochilascaris Minor Third-Stage Larvae Secrete Metalloproteases with Specificity for Fibrinogen and Native Collagen. Microbes Infect. 2006, 8, 2725–2732. [Google Scholar] [CrossRef] [PubMed]
- Benjathummarak, S.; Kumsiri, R.; Nuamtanong, S.; Kalambaheti, T.; Waikagul, J.; Viseshakul, N.; Maneerat, Y. Third-Stage Gnathostoma Spinigerum Larva Excretory Secretory Antigens Modulate Function of Fc Gamma Receptor I-Mediated Monocytes in Peripheral Blood Mononuclear Cell Culture. Trop. Med. Health 2016, 44, 5. [Google Scholar] [CrossRef] [PubMed]
- Couper, K.N.; Phillips, R.S.; Brombacher, F.; Alexander, J. Parasite-Specific IgM Plays a Significant Role in the Protective Immune Response to Asexual Erythrocytic Stage Plasmodium Chabaudi AS Infection. Parasite Immunol. 2005, 27, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Matzinger, P. The Danger Model: A Renewed Sense of Self. Science 2002, 296, 301–305. [Google Scholar] [CrossRef]
- Uchikawa, R.; Matsuda, S.; Arizono, N. Suppression of Gamma Interferon Transcription and Production by Nematode Excretory-Secretory Antigen during Polyclonal Stimulation of Rat Lymph Node T Cells. Infect. Immun. 2000, 68, 6233–6239. [Google Scholar] [CrossRef]
- Shakya, K.P.; Miller, J.E.; Horohov, D.W. A Th2 Type of Immune Response Is Associated with Increased Resistance to Haemonchus contortus in Naturally Infected Gulf Coast Native Lambs. Vet. Parasitol. 2009, 163, 57–66. [Google Scholar] [CrossRef]
- Iyer, S.S.; Cheng, G. Role of Interleukin 10 Transcriptional Regulation in Inflammation and Autoimmune Disease. Crit. Rev. Immunol. 2012, 32, 23–63. [Google Scholar] [CrossRef]
- Dong, C. Differentiation and Function of Pro-Inflammatory Th17 Cells. Microbes Infect. 2009, 11, 584–588. [Google Scholar] [CrossRef]
- Li, M.O.; Wan, Y.Y.; Sanjabi, S.; Robertson, A.-K.L.; Flavell, R.A. Transforming Growth Factor-Β Regulation of Immune Responses. Annu. Rev. Immunol. 2005, 24, 99–146. [Google Scholar] [CrossRef] [PubMed]
- Morissette, R.; Schoenhoff, F.; Xu, Z.; Shilane, D.A.; Griswold, B.F.; Chen, W.; Yang, J.; Zhu, J.; Fert-Bober, J.; Sloper, L.; et al. Transforming Growth Factor-ß and Inflammation in Vascular (Type IV) Ehlers-Danlos Syndrome. Circ. Cardiovasc. Genet. 2014, 7, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Grencis, R.K.; Humphreys, N.E.; Bancroft, A.J. Immunity to Gastrointestinal Nematodes: Mechanisms and Myths. Immunol. Rev. 2014, 260, 183–205. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, L.B. The Immune System. Essays Biochem. 2016, 60, 275–301. [Google Scholar] [CrossRef] [PubMed]
- Varypataki, E.M.; Silva, A.L.; Barnier-Quer, C.; Collin, N.; Ossendorp, F.; Jiskoot, W. Synthetic Long Peptide-Based Vaccine Formulations for Induction of Cell Mediated Immunity: A Comparative Study of Cationic Liposomes and PLGA Nanoparticles. J. Control. Release 2016, 226, 98–106. [Google Scholar] [CrossRef]
- Palucka, K.; Banchereau, J. Dendritic-Cell-Based Therapeutic Cancer Vaccines. Immunity 2013, 39, 38–48. [Google Scholar] [CrossRef]
- Hervas-stubbs, S.; Olivier, A.; Boisgerault, F.; Thieblemont, N.; Dc, W.; Leclerc, C. Absence of CD4+ T-Cell Help TLR3 Ligand Stimulates Fully Functional Memory CD8+ T Cells in the Absence of CD4+ T-Cell Help. Blood 2013, 109, 5318–5326. [Google Scholar] [CrossRef]
- Banchereau, J.; Steinman, R.M. Dendritic Cells and the Control of Immunity. Nature 1998, 392, 245–252. [Google Scholar] [CrossRef]
- Silva, J.M.; Videira, M.; Gaspar, R.; Préat, V.; Florindo, H.F. Immune System Targeting by Biodegradable Nanoparticles for Cancer Vaccines. J. Control. Release 2013, 168, 179–199. [Google Scholar] [CrossRef]
Antigen + NPs | Size (nm) | LCa (%) | EEb (%) | Zeta Potential (mV) |
---|---|---|---|---|
rHcES-15+PLGA NPs | 350 ± 40 | 25 ± 1.1 | 72.37 ± 3.51 | 35 ± 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, M.W.; Ehsan, M.; Wang, Q.; Haseeb, M.; Lakho, S.A.; Haider, A.; Lu, M.; Xu, L.; Song, X.; Yan, R.; et al. PLGA-Encapsulated Haemonchus contortus Antigen ES-15 Augments Immune Responses in a Murine Model. Vaccines 2023, 11, 1794. https://doi.org/10.3390/vaccines11121794
Hasan MW, Ehsan M, Wang Q, Haseeb M, Lakho SA, Haider A, Lu M, Xu L, Song X, Yan R, et al. PLGA-Encapsulated Haemonchus contortus Antigen ES-15 Augments Immune Responses in a Murine Model. Vaccines. 2023; 11(12):1794. https://doi.org/10.3390/vaccines11121794
Chicago/Turabian StyleHasan, Muhammad Waqqas, Muhammad Ehsan, Qiangqiang Wang, Muhammad Haseeb, Shakeel Ahmed Lakho, Ali Haider, Mingmin Lu, Lixin Xu, Xiaokai Song, Ruofeng Yan, and et al. 2023. "PLGA-Encapsulated Haemonchus contortus Antigen ES-15 Augments Immune Responses in a Murine Model" Vaccines 11, no. 12: 1794. https://doi.org/10.3390/vaccines11121794
APA StyleHasan, M. W., Ehsan, M., Wang, Q., Haseeb, M., Lakho, S. A., Haider, A., Lu, M., Xu, L., Song, X., Yan, R., & Li, X. (2023). PLGA-Encapsulated Haemonchus contortus Antigen ES-15 Augments Immune Responses in a Murine Model. Vaccines, 11(12), 1794. https://doi.org/10.3390/vaccines11121794