New Insights on Respiratory Syncytial Virus Prevention
Abstract
:1. Introduction
2. General Overview of RSV Structure
The Main Virus Antigens
3. Epidemiology of RSV Virus after COVID-19 Pandemic
4. Immunoprophylaxis
4.1. Passive Immunisation Using Monoclonal Antibodies
4.2. Active Immunisation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BCG | Bacillus Calmette–Guérin |
CDC | Centers for Disease Control and Prevention |
CHO | Chinese hamster ovary |
COVID-19 | Coronavirus disease 2019 |
EMA | European Medicines Agency |
FDA | Food and Drug Administration |
hMPV | human metapneumovirus |
IgG1 | Immunoglobulin G subclass 1 |
kbp | Kilo-base pairs |
LNP | lipid nanoparticle |
LRT | Lower respiratory tract |
mAb | Monoclonal antibody |
MA-LRTI | Medically attended LRT illness |
mRNA | Messenger ribonucleic acid |
ORF | Open reading frame |
RSV | Respiratory syncytial virus |
RNA | Ribonucleic acid |
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
SVLP | Synthetic virus-like particle |
Tdap | Diphtheria, tetanus, pertussis vaccine with lower concentration of diphtheria and pertussis toxoids |
URT | Upper respiratory tract |
VLP | Virus-like particle. |
References
- Resch, B. Burden of respiratory syncytial virus infection in young children. World J. Clin. Pediatr. 2012, 1, 8–12. [Google Scholar] [CrossRef]
- Ambrosch, A.; Luber, D.; Klawonn, F.; Kabesch, M. Focusing on severe infections with the respiratory syncytial virus (RSV) in adults: Risk factors, symptomatology and clinical course compared to influenza A/B and the original SARS-CoV-2. J. Clin. Virol. 2023, 161, 105399, corrected in J. Clin. Virol. 2023, 12, 105443. [Google Scholar] [CrossRef] [PubMed]
- Prasad, N.; Walker, T.A.; Waite, B.; Wood, T.; Trenholme, A.A.; Baker, M.G.; McArthur, C.; Wong, C.A.; Grant, C.C.; Huang, Q.S.; et al. Respiratory Syncytial Virus-Associated Hospitalizations Among Adults with Chronic Medical Conditions. Clin. Infect. Dis. 2021, 73, e158–e163. [Google Scholar] [CrossRef] [PubMed]
- Ke, Z.; Dillard, R.S.; Chirkova, T.; Leon, F.; Stobart, C.C.; Hampton, C.M.; Strauss, J.D.; Rajan, D.; Rostad, C.A.; Taylor, J.V.; et al. The Morphology and Assembly of Respiratory Syncytial Virus Revealed by Cryo-Electron Tomography. Viruses 2018, 10, 446. [Google Scholar] [CrossRef] [PubMed]
- Liljeroos, L.; Krzyzaniak, M.A.; Helenius, A.; Butcher, S.J. Architecture of respiratory syncytial virus revealed by electron cryotomography. Proc. Natl. Acad. Sci. USA 2013, 110, 11133–11138. [Google Scholar] [CrossRef]
- Fearns, R.; Collins, P.L. Role of the M2-1 transcription antitermination protein of respiratory syncytial virus in sequential transcription. J. Virol. 1999, 73, 5852–5864. [Google Scholar] [CrossRef] [PubMed]
- Bermingham, A.; Collins, P.L. The M2-2 protein of human respiratory syncytial virus is a regulatory factor involved in the balance between RNA replication and transcription. Proc. Natl. Acad. Sci. USA 1999, 96, 11259–11264. [Google Scholar] [CrossRef] [PubMed]
- Collins, P.L.; Fearns, R.; Graham, B.S. Respiratory Syncytial Virus: Virology, Reverse Genetics, and Pathogenesis of Disease. Curr. Top. Microbiol. Immunol. 2013, 372, 3–38. [Google Scholar] [CrossRef]
- Teng, M.N.; Collins, P.L. Altered growth characteristics of recombinant respiratory syncytial viruses which do not produce NS2 protein. J. Virol. 1999, 73, 466–473. [Google Scholar] [CrossRef]
- Yang, P.; Zheng, J.; Wang, S.; Liu, P.; Xie, M.; Zhao, D. Respiratory syncytial virus nonstructural proteins 1 and 2 are crucial pathogenic factors that modulate interferon signaling and Treg cell distribution in mice. Virology 2015, 485, 223–232. [Google Scholar] [CrossRef]
- Roberts, S.R.; Lichtenstein, D.; Ball, L.A.; Wertz, G.W. The membrane-associated and secreted forms of the respiratory syncytial virus attachment glycoprotein G are synthesized from alternative initiation codons. J. Virol. 1994, 68, 4538–4546. [Google Scholar] [CrossRef] [PubMed]
- Bukreyev, A.; Yang, L.; Fricke, J.; Cheng, L.; Ward, J.M.; Murphy, B.R.; Collins, P.L. The secreted form of respiratory syncytial virus G glycoprotein helps the virus evade antibody-mediated restriction of replication by acting as an antigen decoy and through effects on Fc receptor-bearing leukocytes. J. Virol. 2008, 82, 12191–12204. [Google Scholar] [CrossRef] [PubMed]
- Collins, P.L.; Mottet, G. Oligomerization and post-translational processing of glycoprotein G of human respiratory syncytial virus: Altered O-glycosylation in the presence of brefeldin A. J. Gen. Virol. 1992, 73, 849–863. [Google Scholar] [CrossRef] [PubMed]
- Wertz, G.W.; Collins, P.L.; Huang, Y.; Gruber, C.; Levine, S.; Ball, L.A. Nucleotide sequence of the G protein gene of human respiratory syncytial virus reveals an unusual type of viral membrane protein. Proc. Natl. Acad. Sci. USA 1985, 82, 4075–4079. [Google Scholar] [CrossRef] [PubMed]
- Ball, L.A.; Young, K.K.; Anderson, K.; Collins, P.L.; Wertz, G.W. Expression of the major glycoprotein G of human respiratory syncytial virus from recombinant vaccinia virus vectors. Proc. Natl. Acad. Sci. USA 1986, 83, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Anderson, L.J.; Hierholzer, J.C.; Tsou, C.; Hendry, R.M.; Fernie, B.F.; Stone, Y.; McIntosh, K. Antigenic characterization of respiratory syncytial virus strains with monoclonal antibodies. J. Infect. Dis. 1985, 151, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Cane, P.A. Molecular epidemiology of respiratory syncytial virus. Rev. Med. Virol. 2001, 11, 103–116. [Google Scholar] [CrossRef]
- Mufson, M.A.; Orvell, C.; Rafnar, B.; Norrby, E. Two distinct subtypes of human respiratory syncytial virus. J. Gen. Virol. 1985, 66, 2111–2124. [Google Scholar] [CrossRef]
- Yu, J.M.; Fu, Y.-H.; Peng, X.-L.; Zheng, Y.-P.; He, J.-S. Genetic diversity and molecular evolution of human respiratory syncytial virus A and B. Sci. Rep. 2021, 11, 12941–12951. [Google Scholar] [CrossRef]
- Tabatabai, J.; Prifert, C.; Pfeil, J.; Grulich-Henn, J.; Schnitzler, P. Novel respiratory syncytial virus (RSV) genotype ON1 predominates in Germany during winter season 2012-13. PLoS ONE 2014, 9, e109191-10. [Google Scholar] [CrossRef]
- Rahombanjanahary, N.H.R.; Rybkina, K.; Randriambolamanantsoa, T.H.; Helisoa Razafimanjato, H.; Heraud, J.-M. Genetic diversity and molecular epidemiology of respiratory syncytial virus circulated in Antananarivo, Madagascar, from 2011 to 2017: Predominance of ON1 and BA9 genotypes. J. Clin. Virol. 2020, 129, 104506. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Reyes, L.; Ruiz-Arguello, M.B.; Garcia-Barreno, B. Cleavage of the human respiratory syncytial virus fusion protein at two distinct sites is required for activation of membrane fusion. Proc. Natl. Acad. Sci. USA 2001, 98, 9859–9864. [Google Scholar] [CrossRef] [PubMed]
- McLellan, J.S.; Chen, M.; Leung, S.; Graepel, K.W.; Du, X.; Yang, Y.; Zhou, T.; Baxa, U.; Yasuda, E.; Beaumont, T.; et al. Structure of RSV fusion glycoprotein trimer bound to a prefusion-specific neutralizing antibody. Science 2013, 340, 1113–1117. [Google Scholar] [CrossRef] [PubMed]
- Gilman, M.S.A.; Furmanova-Hollenstein, P.; Pascual, G.; van ‘t Wout, A.B.; Langedijk, J.P.M. Transient opening of trimeric prefusion RSV F proteins. Nat. Commun. 2019, 10, 2105–2117. [Google Scholar] [CrossRef] [PubMed]
- McLellan, J.S.; Yang, Y.; Graham, B.S.; Kwong, P.D. Structure of the respiratory syncytial virus fusion glycoprotein in the post-fusion conformation reveals preservation of neutralizing epitopes. J. Virol. 2011, 85, 7788–7796. [Google Scholar] [CrossRef] [PubMed]
- McLellan, J.S.; Chen, M.; Joyce, M.G.; Sastry, M.; Stewart-Jones, G.B.E.; Yang, Y.; Zhang, B.; Chen, L.; Srivatsan, S.; Zheng, A.; et al. Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus. Science 2013, 342, 592–598. [Google Scholar] [CrossRef] [PubMed]
- McLellan, J.S.; Chen, M.; Chang, J.-S.; Yang, Y.; Kim, A.; Graham, B.S.; Kwong, P. Structure of a major antigenic site on the respiratory syncytial virus fusion glycoprotein in complex with neutralizing antibody 101F. J. Virol. 2010, 84, 12236–12244. [Google Scholar] [CrossRef]
- Melero, J.A.; Mas, V.; McLellan, J.S. Structural, antigenic and immunogenic features of respiratory syncytial virus glycoproteins relevant for vaccine development. Vaccine 2017, 35, 461–468. [Google Scholar] [CrossRef]
- Liang, B.; Ngwuta, J.O.; Surman, S.; Kabatova, B.; Liu, X.; Lingemann, M.; Liu, X.; Yang, L.; Herbert, R.; Swerczek, J.; et al. Improved Prefusion Stability, Optimized Codon Usage, and Augmented Virion Packaging Enhance the Immunogenicity of Respiratory Syncytial Virus Fusion Protein in a Vectored-Vaccine Candidate. J. Virol. 2017, 91, e00189-17. [Google Scholar] [CrossRef]
- Liang, B.; Matsuoka, Y.; Nouën, C.L.; Liu, X.; Herbert, R.; Swerczek, J.; Santos, C.; Paneru, M.; Collins, P.L.; Buchholz, U.J.; et al. A Parainfluenza Virus Vector Expressing the Respiratory Syncytial Virus (RSV) Prefusion F Protein Is More Effective than RSV for Boosting a Primary Immunization with RSV. J. Virol. 2020, 95, e01512-20. [Google Scholar] [CrossRef]
- Zhang, L.; Durr, E.; Galli, J.D.; Cosmi, S.; Cejas, P.J.; Luo, B.; Touch, S.; Parmet, P.; Fridman, A.; Espeseth, A.S.; et al. Design and characterization of a fusion glycoprotein vaccine for Respiratory Syncytial Virus with improved stability. Vaccine 2018, 36, 8119–8130. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.; Massare, M.J.; Tian, J.H.; Guebre-Xabier, M.; Lu, H.; Zhou, H.; Maynard, E.; Scott, D.; Ellingsworth, L.; Glenn, G.; et al. Respiratory syncytial virus prefusogenic fusion (F) protein nanoparticle vaccine: Structure, antigenic profile, immunogenicity, and protection. Vaccine 2019, 37, 6112–6124. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, X.; Blau, D.M.; Caballero, M.T.; Feikin, D.R.; Gill, C.J.; Madhi, S.A.; Omer, S.B.; Simões, E.A.F.; Campbell, H.; et al. Respiratory Virus Global Epidemiology Network; Harish Nair; RESCEU investigators. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in children younger than 5 years in 2019: A systematic analysis. Lancet 2022, 399, 2047–2064. [Google Scholar] [CrossRef] [PubMed]
- Meert, K.; Heidemann, S.; Lieh-Lai, M.; Sarnaik, A.P. Clinical characteristics of respiratory syncytial virus infections in healthy versus previously compromised host. Pediatr. Pulmonol. 1989, 7, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Binns, E.; Tuckerman, J.; Licciardi, P.V.; Wurzel, D. Respiratory syncytial virus, recurrent wheeze and asthma: A narrative review of pathophysiology, prevention and future directions. J. Paediat. Child Health 2022, 58, 1741–1746. [Google Scholar] [CrossRef] [PubMed]
- Falsey, A.R.; Walsh, E.E. Respiratory Syncytial Virus Infection in Elderly Adults. Drugs Aging 2005, 22, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Kachikis, A.B.; Cho, H.; Englund, J.A. Respiratory Syncytial Virus-An Update for Prenatal and Primary Health Providers. Obstet. Gynecol. Clin. N. Am. 2023, 50, 421–437. [Google Scholar] [CrossRef]
- Chuang, Y.-C.; Lin, K.-P.; Wang, L.-A.; Yeh, T.-K.; Liu, P.-Y. The Impact of the COVID-19 Pandemic on Respiratory Syncytial Virus Infection: A Narrative Review. Infect. Drug Resist. 2023, 16, 661–675. [Google Scholar] [CrossRef]
- Gastaldi, A.; Donà, D.; Barbieri, E.; Giaquinto, C.; Bont, J.; Baraldi, E. COVID-19 Lesson for Respiratory Syncytial Virus (RSV): Hygiene Works. Children 2021, 8, 1144. [Google Scholar] [CrossRef]
- Torres-Fernandez, D.; Casellas, A.; Mellado, M.J.; Calvo, C.; Bassat, Q. Acute bronchiolitis and respiratory syncytial virus seasonal transmission during the COVID-19 pandemic in Spain: A national perspective from the pediatric Spanish Society (AEP). J. Clin. Virol. 2021, 145, 105027. [Google Scholar] [CrossRef]
- Bardsley, M.; Morbey, R.A.; Hughes, H.E.; Beck, C.R.; Watson, C.H.; Zhao, H.; Ellis, J.; Smith, G.E.; Elliot, A.J. Epidemiology of respiratory syncytial virus in children younger than 5 years in England during the COVID-19 pandemic, measured by laboratory, clinical, and syndromic surveillance: A retrospective observational study. Lancet Infect. Dis. 2023, 23, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.; Armistead, I.; Messacar, K.; Alden, N.B.; Schmoll, E.; Austin, E.; Dominguez, S.R. Shifting Epidemiology and Severity of Respiratory Syncytial Virus in Children During the COVID-19 Pandemic. JAMA Pediatr. 2023, 15, e231088. [Google Scholar] [CrossRef] [PubMed]
- Pruccoli, G.; Castagno, E.; Raffaldi, I.; Denina, M.; Barisone, E.; Baroero, L.; Timeus, F.; Rabbone, I.; Monzani, A.; Terragni, G.A.; et al. The Importance of RSV Epidemiological Surveillance: A Multicenter Observational Study of RSV Infection during the COVID-19 Pandemic. Viruses 2023, 15, 280. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Fernández, R.; González-Martínez, F.; Perez-Moreno, J.; González-Sánchez, M.I.; de la Mata Navazo, S.; Toledo Del Castillo, B.; Lozano, J.S.; Espinosa, L.V.; Manso Perez, S.; Berlanga, M.M.; et al. Clinical Phenotype of Respiratory Syncytial Virus Bronchiolitis before and during the Coronavirus Disease 2019 Pandemic. Am. J. Perinatol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Rząd, M.; Kanecki, K.; Lewtak, K.; Tyszko, P.; Szwejkowska, M.; Goryński, P.; Nitsch-Osuch, A. Human Respiratory Syncytial Virus Infections among Hospitalized Children in Poland during 2010-2020: Study Based on the National Hospital Registry. J. Clin. Med. 2022, 11, 6451. [Google Scholar] [CrossRef]
- Miyama, T.; Kakimoto, K.; Iritani, N.; Nishio, T.; Ukai, T.; Satsuki, Y.; Yamanaka, Y.; Nishida, Y.; Shintani, A.; Motomura, K. Exploring the threshold for the start of respiratory syncytial virus infection epidemic season using sentinel surveillance data in Japan. Front. Public Health 2023, 11, 1062726. [Google Scholar] [CrossRef]
- Hamid, S.; Winn, A.; Parikh, R.; Jones, J.M.; McMorrow, M.; Prill, M.M.; Silk, B.J.; Scobie, H.M.; Hall, A.J. Seasonality of Respiratory Syncytial Virus—United States, 2017–2023. Morb. Mortal. Wkly. Rep. 2023, 72, 355–361. [Google Scholar] [CrossRef]
- Langel, S.N.; Blasi, M.; Permar, S.R. Maternal immune protection against infectious diseases. Cell Host Microbe 2022, 30, 660–674. [Google Scholar] [CrossRef]
- European Medicines Agency. Available online: https://www.ema.europa.eu/en/documents/product-information/synagis-epar-product-information_en.pdf (accessed on 28 October 2023).
- Caserta, M.T.; O’Leary, S.T.; Munoz, F.M.; Ralston, S.L. Palivizumab Prophylaxis in Infants and Young Children at Increased Risk of Hospitalization for Respiratory Syncytial Virus Infection. Pediatrics 2023, 152, e2023061803. [Google Scholar] [CrossRef]
- Simões, E.A.; Forleo-Neto, E.; Geba, G.P.; Kamal, M.; Yang, F.; Cicirello, H.; Houghton, M.R.; Rideman, R.; Zhao, Q.; Benvin, S.L.; et al. Suptavumab for the prevention of medically attended respiratory syncytial virus infection in preterm infants. Clin. Infect. Dis. 2021, 73, e4400–e4408. [Google Scholar] [CrossRef]
- Carbonell-Estrany, X.; Simões, E.A.; Dagan, R.; Hall, C.B.; Harris, B.; Hultquist, M.; Connor, E.M.; Losonsky, G.A.; Motavizumab Study Group. Motavizumab for prophylaxis of respiratory syncytial virus in high-risk children: A noninferiority trial. Pediatrics 2010, 125, e35–e51. [Google Scholar] [CrossRef]
- Hammitt, L.L.; Dagan, R.; Yuan, Y.; Baca Cots, M.; Bosheva, M.; Madhi, S.A.; Muller, W.J.; Zar, H.J.; Brooks, D.; Grenham, A.; et al. Nirsevimab for Prevention of RSV in Healthy Late-Preterm and Term Infants. N. Engl. J. Med. 2022, 386, 837–846. [Google Scholar] [CrossRef]
- Domachowske, J.; Madhi, S.A.; Simões, E.A.F.; Atanasova, V.; Cabañas, F.; Furuno, K.; Garcia-Garcia, M.L.; Grantina, I.; Nguyen, K.A.; Brooks, D.; et al. Safety of Nirsevimab for RSV in Infants with Heart or Lung Disease or Prematurity. N. Engl. J. Med. 2022, 386, 892–894. [Google Scholar] [CrossRef] [PubMed]
- Simões, E.A.F.; Madhi, S.A.; Muller, W.J.; Atanasova, V.; Bosheva, M.; Cabañas, F.; Cots, M.B.; Domachowske, J.; Garcia-Garcia, M.L.; Grantina, I.; et al. Efficacy of nirsevimab against respiratory syncytial virus lower respiratory tract infections in preterm and term infants, and pharmacokinetic extrapolation to infants with congenital heart disease and chronic lung disease: A pooled analysis of randomised controlled trials. Lancet Child Adolesc. Health 2023, 7, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Drysdale, S. Efficacy of nirsevimab against RSV lower respiratory tract infection hospitalization in infants: Preliminary data from the HARMONIE phase 3b trial. In Proceedings of the 41st Annual Meeting of the European Society for Paediatric Infectious Diseases in Lisbon, Online, 8–12 May 2023. [Google Scholar]
- Aliprantis, A.O.; Wolford, D.; Caro, L.; Maas, B.M.; Ma, H.; Montgomery, D.L.; Sterling, L.M.; Hunt, A.; Cox, K.S.; Vora, K.A.; et al. A Phase 1 Randomized, Double-Blind, Placebo-Controlled Trial to Assess the Safety, Tolerability, and Pharmacokinetics of a Respiratory Syncytial Virus Neutralizing Monoclonal Antibody MK-1654 in Healthy Adults. Clin. Pharmacol. Drug Dev. 2021, 10, 556–566. [Google Scholar] [CrossRef] [PubMed]
- Murphy, B.R.; Walsh, E.E. Formalin-inactivated respiratory syncytial virus vaccine induces antibodies to the fusion glycoprotein that are deficient in fusion-inhibiting activity. J. Clin. Microbiol. 1988, 26, 1595–1597. [Google Scholar] [CrossRef] [PubMed]
- Leroux-Roels, I.; Davis, M.G.; Steenackers, K.; Essink, B.; Vandermeulen, C.; Fogarty, C.; Andrews, C.P.; Kerwin, E.; David, M.-P.; Fissette, L.; et al. Safety and Immunogenicity of a Respiratory Syncytial Virus Prefusion F (RSVPreF3) Candidate Vaccine in Older Adults: Phase 1/2 Randomized Clinical Trial. J. Infect. Dis. 2023, 227, 761–772. [Google Scholar] [CrossRef]
- Papi, A.; Ison, M.G.; Langley, J.M.; Lee, D.-G.; Leroux-Roels, I.; Martinon-Torres, F.; Schwarz, T.F.; van Zyl-Smit, R.N.; Campora, L.; Dezutter, N.; et al. Respiratory Syncytial Virus Prefusion F Protein Vaccine in Older Adults. N. Engl. J. Med. 2023, 16, 595–608. [Google Scholar] [CrossRef]
- Schmoele-Thoma, B.; Zareba, A.M.; Jiang, Q.; Maddur, M.S.; Danaf, R.; Mann, A.; Eze, K.; Fok-Seang, J.; Kabir, G.; Catchpole, A.; et al. Vaccine Efficacy in Adults in a Respiratory Syncytial Virus Challenge Study. N. Engl. J. Med. 2022, 386, 2377–2386. [Google Scholar] [CrossRef]
- Walsh, E.E.; Pérez Marc, G.; Zareba, A.M.; Falsey, A.R.; Jiang, Q.; Patton, M.; Polack, F.P.; Llapur, C.; Doreski, P.A.; Ilangovan, K.; et al. Efficacy and Safety of a Bivalent RSV Prefusion F Vaccine in Older Adults. N. Engl. J. Med. 2023, 388, 1465–1477. [Google Scholar] [CrossRef]
- Kampmann, B.; Madhi, S.A.; Munjal, I.; Simões, E.A.F.; Pahud, B.A.; Llapur, C.; Baker, J.; Pérez Marc, G.; Radley, D.; Shittu, E.; et al. Bivalent Prefusion F Vaccine in Pregnancy to Prevent RSV Illness in Infants. N. Engl. J. Med. 2023, 388, 1451–1464. [Google Scholar] [CrossRef] [PubMed]
- Simões, E.A.F.; Center, K.J.; Tita, A.T.N.; Swanson, K.A.; Radley, D.; Houghton, J.; McGrory, S.B.; Gomme, E.; Anderson, M.; Roberts, J.P.; et al. Prefusion F Protein-Based Respiratory Syncytial Virus Immunization in Pregnancy. N. Engl. J. Med. 2022, 386, 1615–1626. [Google Scholar] [CrossRef] [PubMed]
Site Name | RSV F Conformation | Characteristic | Product |
---|---|---|---|
θ | pre-F | α-helix from F1 (aa 196–210) and a strand from F2 (aa 62–69), D25-specific antibody, AM22-specific antibody | Nirsevimab, RSM01 (under clinical development) |
I | post-F | located at F2 subunit, Pro389, 131-2a | - |
II | pre-F and post-F | helix-turn-helix motif from F1 (aa 253–278), conserved epitope, Mota-specific antibody | Palivizumab, Motavizumab (discontinued) |
III | pre-F and post-F | two anti-parallel β-strands, MPE8-specific antibody | - |
IV | pre-F and post-F | linear epitope (aa 422–436), 101F-specific antibody, does not blocking virus attachment. | Clesrovimab (under clinical development) |
V | pre-F | α2-α3 and β3-β4, located between site Ø and III on the RSV pre-F, AM14-specific antibody | Suptavumab (discontinued) |
Population | Phase I | Phase II | Phase III | Market Approved |
---|---|---|---|---|
Children | - | - | Clesrovimab (MK-1654) fully human mAb (IgG1) binding RSV F protein site IV, half-life: 73–88 days, single injection | Palivizumab Humanized mAb (IgG1) binding RSV F protein site II, half-life: 20 days, monthly intramuscular injection |
TNM001 human anti-RSV mAb injection | - | - | Nirsevimab fully human mAb (IgG1) binding RSV F protein site Ø, YTE mutation of the Fc, half-life: 65–70 days, single intramuscular injection | |
Adults | RSM01 Humanized mAb (IgG1) binding RSV F protein site Ø, half-life: 65–70 days, single injection | - | - | - |
Population | Phase I | Phase II | Phase III | Market Approved |
---|---|---|---|---|
Children | PIV5-vectored RSV Vaccine (BLB-201) (NCT05655182) live attenuated chimeric, antigen: RSV fusion F, intranasal route MV-012-968 (NCT04909021, NCT04444284), live, attenuated target organism, antigen: all viral proteins, intranasal route LID/ΔM2-2/1030s (NCT04520659), live, attenuated target organism, antigen: all viral proteins except M2-2, intranasal route RSV NS2/Δ1313/I1314L, RSV 6120/ΔNS2/1030s, RSV 276 (NCT03916185), live attenuated, antigen: all viral proteins except NS2, intranasal route RSV6120/∆NS1, RSV6120/F1/G2/∆NS1 (NCT03596801), live attenuated, antigen: all viral proteins except NS2, intranasal route mRNA-1345 (NCT04528719), antigen: RSVF mRNA-1365 mRNA-1345 (NCT05743881) human metapneumovirus (hMPV antigen: RSVF | VAD00001 (NCT04491877), live, attenuated, antigen: all viral proteins, intranasal route | - | ABRYSVO® recombinant subunit, antigen: RSV preF A and RSV preF B |
Pregnant | - | RSV (NCT04032093), recombinant subunit, antigen: RSV F, with aluminium salt RSV vaccine given together with Tdap (NCT04071158), recombinant subunit, antigen: RSV F, with aluminium salt | RSVpreF (NCT04424316), recombinant subunit, antigen: RSV preF | ABRYSVO® recombinant subunit, antigen: RSV preF A and RSV preF B |
Adults and Elderly | CPI-RSV-F Vaccine (NCT05281263) live attenuated chimeric, antigen: RSV fusion F, intranasal route CodaVaxRSV (NCT04295070), live attenuated, antigen: codon deoptimized RSV, intranasal route IVX-A12 (RSV/hMPV) (NCT05664334), bivalent combination respiratory syncytial virus (RSV)/human metapneumovirus (hMPV) virus-like particle (VLP) vaccine, with MF59 adjuvant V-306 (NCT04519073), synthetic virus-like particle (SVLP) vaccine, with Pam2Cys adjuvant mRNA-1345, mRNA-1045, mRNA-1230 (NCT05585632), multi-component, antigen: RSVF/Flu-HA/SARS-CoV-2S mRNA LNP (NCT05639894), vaccine candidate formulated with two different lipid nanoparticles (LNPs) CL-0059 and CL-0137 rBCG-N-hRSV (NCT03213405) recombinant Mycobacterium bovis BCG vaccine that expresses the human RSV nucleoprotein (N) | BARS13 (NCT04681833) recombinant subunit, antigen: rRSV-G-protein, with CsA adjuvant VN-0200 (NCT05547087), recombinant subunit, antigen: VAGA-9001a, with MABH-9002b adjuvant RSVPreF (NCT04785612), recombinant subunit, antigen: RSV F RSVPreF together with SIIV (NCT03529773), recombinant subunit, antigen: RSV F, with aluminium salt MV-012-968 (NCT04690335), live, attenuated target organism, antigen: all viral proteins, intranasal route mRNA-1345 (NCT05127434), antigen: RSVF | MVA-BN-RSV (NCT05238025) recombinant viral vector, antigen: two surface proteins and internal conserved protein Ad26.RSV.PreF (NCT05070546, NCT05071313, NCT05083585, NCT05101486, NCT0524243, NCT05327816), live attenuated, antigen: RSV fusion F mRNA-1345 (NCT05330975), antigen: RSVF, co-administered with a seasonal influenza vaccine (Afluria® Quadrivalent) | AREXEVY® recombinant subunit, antigen: RSVPreF3, with AS01E adjuvant ABRYSVO® recombinant subunit, antigen: RSV preF A and RSV preF B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopera, E.; Czajka, H.; Zapolnik, P.; Mazur, A. New Insights on Respiratory Syncytial Virus Prevention. Vaccines 2023, 11, 1797. https://doi.org/10.3390/vaccines11121797
Kopera E, Czajka H, Zapolnik P, Mazur A. New Insights on Respiratory Syncytial Virus Prevention. Vaccines. 2023; 11(12):1797. https://doi.org/10.3390/vaccines11121797
Chicago/Turabian StyleKopera, Edyta, Hanna Czajka, Paweł Zapolnik, and Artur Mazur. 2023. "New Insights on Respiratory Syncytial Virus Prevention" Vaccines 11, no. 12: 1797. https://doi.org/10.3390/vaccines11121797
APA StyleKopera, E., Czajka, H., Zapolnik, P., & Mazur, A. (2023). New Insights on Respiratory Syncytial Virus Prevention. Vaccines, 11(12), 1797. https://doi.org/10.3390/vaccines11121797