Checkpoint Immunotherapy in Pediatric Oncology: Will We Say Checkmate Soon?
Abstract
:1. Introduction
2. Methodology
3. Checkpoint Inhibitor Use in Pediatric Oncology
3.1. Solid Tumors
3.1.1. Brain Tumors
Active Trials in Brain Tumors
3.1.2. Neuroblastoma
Active Trials in Neuroblastoma
3.1.3. Wilms Tumor
Active Trials in Wilms Tumors
3.1.4. Melanoma
Active Trials in Melanoma
3.1.5. Sarcomas and Other Solid Tumors
Active Trials in Sarcomas
3.2. Liquid Tumors
3.2.1. Leukemia
Active Trials in Leukemia
3.2.2. Lymphoma
Active Trials in Lymphoma
4. Monitoring and Complications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Hwang, J.-R.; Byeon, Y.; Kim, D.; Park, S.-G. Recent insights of T cell receptor-mediated signaling pathways for T cell activation and development. Exp. Mol. Med. 2020, 52, 750–761. [Google Scholar] [CrossRef] [PubMed]
- Smith-Garvin, J.E.; Koretzky, G.A.; Jordan, M.S. T cell activation. Annu. Rev. Immunol. 2009, 27, 591–619. [Google Scholar] [CrossRef] [PubMed]
- Esensten, J.H.; Helou, Y.A.; Chopra, G.; Weiss, A.; Bluestone, J.A. CD28 Costimulation: From Mechanism to Therapy. Immunity 2016, 44, 973–988. [Google Scholar] [CrossRef] [PubMed]
- Buchbinder, E.I.; Desai, A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am. J. Clin. Oncol. 2016, 39, 98–106. [Google Scholar] [CrossRef]
- Ohue, Y.; Nishikawa, H. Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Sci. 2019, 110, 2080–2089. [Google Scholar] [CrossRef]
- Zeng, G.; Jin, L.; Ying, Q.; Chen, H.; Thembinkosi, M.C.; Yang, C.; Zhao, J.; Ji, H.; Lin, S.; Peng, R.; et al. Regulatory T Cells in Cancer Immunotherapy: Basic Research Outcomes and Clinical Directions. Cancer Manag. Res. 2020, 12, 10411–10421. [Google Scholar] [CrossRef]
- Saleh, R.; Elkord, E. FoxP3+ T regulatory cells in cancer: Prognostic biomarkers and therapeutic targets. Cancer Lett. 2020, 490, 174–185. [Google Scholar] [CrossRef]
- Waldman, A.D.; Fritz, J.M.; Lenardo, M.J. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat. Rev. Immunol. 2020, 20, 651–668. [Google Scholar] [CrossRef]
- Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef]
- FDA Approves YERVOYTM (Ipilimumab) for the Treatment of Patients with Newly Diagnosed or Previously-Treated Unresectable or Metastatic Melanoma, the Deadliest Form of Skin Cancer. (n.d.). Available online: https://news.bms.com/news/details/2011/FDA-Approves-YERVOY-ipilimumab-for-the-Treatment-of-Patients-with-Newly-Diagnosed-or-Previously-Treated-Unresectable-or-Metastatic-Melanoma-the-Deadliest-Form-of-Skin-Cancer/default.aspx (accessed on 19 May 2023).
- Vaddepally, R.K.; Kharel, P.; Pandey, R.; Garje, R.; Chandra, A.B. Review of Indications of FDA-Approved Immune Checkpoint Inhibitors per NCCN Guidelines with the Level of Evidence. Cancers 2020, 12, 738. [Google Scholar] [CrossRef]
- Casey, D.L.; Cheung, N.-K.v. Immunotherapy of Pediatric Solid Tumors: Treatments at a Crossroads, with an Emphasis on Antibodies. Cancer Immunol. Res. 2020, 8, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Ring, E.K.; Markert, J.M.; Gillespie, G.Y.; Friedman, G.K. Checkpoint Proteins in Pediatric Brain and Extracranial Solid Tumors: Opportunities for Immunotherapy. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2017, 23, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.S.; Pacholczyk, R.; Aguilera, D.; Al-Basheer, A.; Bajaj, M.; Berrong, Z.; Castellino, R.C.; Eaton, B.R.; Esiashvili, N.; Foreman, N.; et al. IMMU-04. First-in-Children Phase 1B Study Using the IDO Pathway Inhibitor Inoximod in Combination with Radiation and Chemotherapy for Children with Newly Diagnosed DIPG (NCT02502708, NLG2105). Neuro-Oncology 2021, 23 (Suppl. S1), i27. [Google Scholar] [CrossRef]
- Das, A.; Tabori, U.; Sambira Nahum, L.C.; Collins, N.B.; Deyell, R.; Dvir, R.; Faure-Conter, C.; Hassall, T.E.; Minturn, J.E.; Edwards, M.; et al. Efficacy of nivolumab in pediatric cancers with high mutation burden and mismatch-repair deficiency. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2023, 29, 4770–4783. [Google Scholar] [CrossRef]
- Cacciotti, C.; Choi, J.; Alexandrescu, S.; Zimmerman, M.A.; Cooney, T.M.; Chordas, C.; Clymer, J.; Chi, S.; Yeo, K.K. Immune checkpoint inhibition for pediatric patients with recurrent/refractory CNS tumors: A single institution experience. J. Neuro-Oncol. 2020, 149, 113–122. [Google Scholar] [CrossRef]
- Gorsi, H.S.; Malicki, D.M.; Barsan, V.; Tumblin, M.; Yeh-Nayre, L.; Milburn, M.; Elster, J.D.; Crawford, J.R. Nivolumab in the Treatment of Recurrent or Refractory Pediatric Brain Tumors: A Single Institutional Experience. J. Pediatr. Hematol./Oncol. 2019, 41, e235–e241. [Google Scholar] [CrossRef]
- . Ehlert, K.; Hansjuergens, I.; Zinke, A.; Otto, S.; Siebert, N.; Henze, G.; Lode, H. Nivolumab and dinutuximab beta in two patients with refractory neuroblastoma. J. Immunother. Cancer 2020, 8, e000540. [Google Scholar] [CrossRef]
- Merchant, M.S.; Wright, M.; Baird, K.; Wexler, L.H.; Rodriguez-Galindo, C.; Bernstein, D.; Delbrook, C.; Lodish, M.; Bishop, R.; Wolchok, J.D.; et al. Phase I Clinical Trial of Ipilimumab in Pediatric Patients with Advanced Solid Tumors. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2016, 22, 1364–1370. [Google Scholar] [CrossRef]
- Davis, K.L.; Fox, E.; Isikwei, E.; Reid, J.M.; Liu, X.; Minard, C.G.; Voss, S.; Berg, S.L.; Weigel, B.J.; Mackall, C.L. A Phase I/II Trial of Nivolumab plus Ipilimumab in Children and Young Adults with Relapsed/Refractory Solid Tumors: A Children’s Oncology Group Study ADVL1412. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2022, 28, 5088–5097. [Google Scholar] [CrossRef]
- Geoerger, B.; Bergeron, C.; Gore, L.; Sender, L.; Dunkel, I.J.; Herzog, C.; Brochez, L.; Cruz, O.; Nysom, K.; Berghorn, E.; et al. Phase II study of ipilimumab in adolescents with unresectable stage III or IV malignant melanoma. Eur. J. Cancer 2017, 86, 358–363. [Google Scholar] [CrossRef]
- Bajčiová, V. Therapeutic Effect and Tolerance of Ipilimumam in Metastatic Malignant Melanoma in Children—A Case Report. Klin. Onkol. Cas. Ceske A Slov. Onkol. Spol. 2015, 28 (Suppl. S4), 4S115–20. [Google Scholar] [CrossRef] [PubMed]
- Tawbi, H.A.; Burgess, M.; Bolejack, V.; Van Tine, B.A.; Schuetze, S.M.; Hu, J.; D’Angelo, S.; Attia, S.; Riedel, R.F.; Priebat, D.A.; et al. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): A multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lance. Oncol. 2017, 18, 1493–1501. [Google Scholar] [CrossRef] [PubMed]
- Bishop, M.W.; Kaste, S.C.; Sykes, A.; Pan, H.; dela Cruz, F.S.; Whittle, S.; Mascarenhas, L.; Thomas, P.G.; Youngblood, B.; Harman, J.L.; et al. OSTPDL1: A phase II study of avelumab, a monoclonal antibody targeting programmed death-ligand 1 (PD-L1) in adolescent and young adult patients with recurrent or progressive osteosarcoma. J. Clin. Oncol. 2020, 38 (Suppl. S15), 10521. [Google Scholar] [CrossRef]
- Gao, X.-N.; Su, Y.-F.; Li, M.-Y.; Jing, Y.; Wang, J.; Xu, L.; Zhang, L.-L.; Wang, A.; Wang, Y.-Z.; Zheng, X.; et al. Single-center phase 2 study of PD-1 inhibitor combined with DNA hypomethylation agent + CAG regimen in patients with relapsed/refractory acute myeloid leukemia. Cancer Immunol. Immunother. CII 2023, 72, 2769–2782. [Google Scholar] [CrossRef]
- . Zeidner, J.F.; Vincent, B.G.; Ivanova, A.; Moore, D.; McKinnon, K.P.; Wilkinson, A.D.; Mukhopadhyay, R.; Mazziotta, F.; Knaus, H.A.; Foster, M.C.; et al. Phase II Trial of Pembrolizumab after High-Dose Cytarabine in Relapsed/Refractory Acute Myeloid Leukemia. Blood Cancer Discov. 2021, 2, 616–629. [Google Scholar] [CrossRef]
- Tschernia, N.P.; Kumar, V.; Moore, D.T.; Vincent, B.G.; Coombs, C.C.; van Deventer, H.; Foster, M.C.; DeZern, A.E.; Luznik, L.; Riches, M.L.; et al. Safety and Efficacy of Pembrolizumab Prior to Allogeneic Stem Cell Transplantation for Acute Myelogenous Leukemia. Transplant. Cell. Ther. 2021, 27, 1021.e1–1021.e5. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.R.; Solh, M.; Morris, L.E.; Holland, H.K.; Bachier-Rodriguez, L.; Zhang, X.; Guzowski, C.; Jackson, K.C.; Brown, S.; Bashey, A. Phase 2 study of PD-1 blockade following autologous transplantation for patients with AML ineligible for allogeneic transplant. Blood Adv. 2023, 7, 5215–5224. [Google Scholar] [CrossRef]
- Prebet, T.; Goldberg, A.D.; Jurcic, J.G.; Khaled, S.; Dail, M.; Feng, Y.; Green, C.; Li, C.; Ma, C.; Medeiros, B.C.; et al. A phase 1b study of atezolizumab in combination with guadecitabine for the treatment of acute myeloid leukemia. Leuk. Lymphoma 2022, 63, 2180–2188. [Google Scholar] [CrossRef]
- Saxena, K.; Herbrich, S.M.; Pemmaraju, N.; Kadia, T.M.; DiNardo, C.D.; Borthakur, G.; Pierce, S.A.; Jabbour, E.; Wang, S.A.; Bueso-Ramos, C.; et al. A phase 1b/2 study of azacitidine with PD-L1 antibody avelumab in relapsed/refractory acute myeloid leukemia. Cancer 2021, 127, 3761–3771. [Google Scholar] [CrossRef]
- Jain, N.; Senapati, J.; Thakral, B.; Ferrajoli, A.; Thompson, P.; Burger, J.; Basu, S.; Kadia, T.; Daver, N.; Borthakur, G.; et al. A phase 2 study of nivolumab combined with ibrutinib in patients with diffuse large B-cell Richter transformation of CLL. Blood Adv. 2023, 7, 1958–1966. [Google Scholar] [CrossRef]
- Ding, W.; LaPlant, B.R.; Call, T.G.; Parikh, S.A.; Leis, J.F.; He, R.; Shanafelt, T.D.; Sinha, S.; Le-Rademacher, J.; Feldman, A.L.; et al. Pembrolizumab in patients with CLL and Richter transformation or with relapsed CLL. Blood 2017, 129, 3419–3427. [Google Scholar] [CrossRef] [PubMed]
- Davis, K.L.; Fox, E.; Merchant, M.S.; Reid, J.M.; Kudgus, R.A.; Liu, X.; Minard, C.G.; Voss, S.; Berg, S.L.; Weigel, B.J.; et al. Nivolumab in children and young adults with relapsed or refractory solid tumours or lymphoma (ADVL1412): A multicentre, open-label, single-arm, phase 1-2 trial. Lancet Oncol. 2020, 21, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Mei, M.G.; Lee, H.J.; Palmer, J.M.; Chen, R.; Tsai, N.C.; Chen, L.; McBride, K.; Smith, D.L.; Melgar, I.; Song, J.Y.; et al. Response-adapted anti-PD-1-based salvage therapy for Hodgkin lymphoma with nivolumab alone or in combination with ICE. Blood 2022, 139, 3605–3616. [Google Scholar] [CrossRef] [PubMed]
- Harker-Murray, P.; Mauz-Körholz, C.; Leblanc, T.; Mascarin, M.; Michel, G.; Cooper, S.; Beishuizen, A.; Leger, K.J.; Amoroso, L.; Buffardi, S.; et al. Nivolumab and brentuximab vedotin with or without bendamustine for R/R Hodgkin lymphoma in children, adolescents, and young adults. Blood 2023, 141, 2075–2084. [Google Scholar] [CrossRef] [PubMed]
- Greve, P.; Beishuizen, A.; Hagleitner, M.; Loeffen, J.; Veening, M.; Boes, M.; Peperzak, V.; Diez, C.; Meyer-Wentrup, F. Nivolumab plus Brentuximab vedotin +/− bendamustine combination therapy: A safe and effective treatment in pediatric recurrent and refractory classical Hodgkin lymphoma. Front. Immunol. 2023, 14, 1229558. [Google Scholar] [CrossRef]
- Chen, R.; Zinzani, P.L.; Fanale, M.A.; Armand, P.; Johnson, N.A.; Brice, P.; Radford, J.; Ribrag, V.; Molin, D.; Vassilakopoulos, T.P.; et al. Phase II Study of the Efficacy and Safety of Pembrolizumab for Relapsed/Refractory Classic Hodgkin Lymphoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2017, 35, 2125–2132. [Google Scholar] [CrossRef]
- Mei, M.; Chen, L.; Godfrey, J.; Song, J.; Egelston, C.; Puverel, S.; Budde, L.E.; Armenian, S.; Nikolaenko, L.; Nwangwu, M.; et al. Pembrolizumab plus vorinostat induces responses in patients with Hodgkin lymphoma refractory to prior PD-1 blockade. Blood 2023, 142, 1359–1370. [Google Scholar] [CrossRef]
- Geoerger, B.; Kang, H.J.; Yalon-Oren, M.; Marshall, V.L.; Vezina, C.; Pappo, A.; Laetsch, T.W.; Petrilli, A.S.; Ebinger, M.; Toporski, J.; et al. Pembrolizumab in paediatric patients with advanced melanoma or a PD-L1-positive, advanced, relapsed, or refractory solid tumour or lymphoma (KEYNOTE-051): Interim analysis of an open-label, single-arm, phase 1–2 trial. Lancet Oncol. 2020, 21, 121–133. [Google Scholar] [CrossRef]
- Kuruvilla, J.; Ramchandren, R.; Santoro, A.; Paszkiewicz-Kozik, E.; Gasiorowski, R.; Johnson, N.A.; Fogliatto, L.M.; Goncalves, I.; de Oliveira, J.S.; Buccheri, V.; et al. Pembrolizumab versus brentuximab vedotin in relapsed or refractory classical Hodgkin lymphoma (KEYNOTE-204): An interim analysis of a multicentre, randomised, open-label, phase 3 study. Lancet Oncol. 2021, 22, 512–524. [Google Scholar] [CrossRef]
- Grabovska, Y.; Mackay, A.; O’Hare, P.; Crosier, S.; Finetti, M.; Schwalbe, E.C.; Pickles, J.C.; Fairchild, A.R.; Avery, A.; Cockle, J.; et al. Pediatric pan-central nervous system tumor analysis of immune-cell infiltration identifies correlates of antitumor immunity. Nat. Commun. 2020, 11, 4324. [Google Scholar] [CrossRef]
- Bernstock, J.D.; Hoffman, S.E.; Kappel, A.D.; Valdes, P.A.; Essayed, W.I.; Klinger, N.V.; Kang, K.D.; Totsch, S.K.; Olsen, H.E.; Schlappi, C.W.; et al. Immunotherapy approaches for the treatment of diffuse midline gliomas. Oncoimmunology 2022, 11, 2124058. [Google Scholar] [CrossRef]
- Munn, D.H.; Mellor, A.L. IDO in the Tumor Microenvironment: Inflammation, Counter-Regulation, and Tolerance. Trends Immunol. 2016, 37, 193–207. [Google Scholar] [CrossRef]
- Wang, S.; Wu, J.; Shen, H.; Wang, J. The prognostic value of IDO expression in solid tumors: A systematic review and meta-analysis. BMC Cancer 2020, 20, 471. [Google Scholar] [CrossRef] [PubMed]
- Long, A.H.; Morgenstern, D.A.; Leruste, A.; Bourdeaut, F.; Davis, K.L. Checkpoint Immunotherapy in Pediatrics: Here, Gone, and Back Again. Am. Soc. Clin. Oncol. Educ. Book 2022, 42, 781–794. [Google Scholar] [CrossRef] [PubMed]
- Bouffet, E.; Larouche, V.; Campbell, B.B.; Merico, D.; De Borja, R.; Aronson, M.; Durno, C.; Krueger, J.; Cabric, V.; Ramaswamy, V.; et al. Immune Checkpoint Inhibition for Hypermutant Glioblastoma Multiforme Resulting From Germline Biallelic Mismatch Repair Deficiency. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2016, 34, 2206–2211. [Google Scholar] [CrossRef] [PubMed]
- Dyson, K.A.; Stover, B.D.; Grippin, A.; Mendez-Gomez, H.R.; Lagmay, J.; Mitchell, D.A.; Sayour, E.J. Emerging trends in immunotherapy for pediatric sarcomas. J. Hematol. Oncol. 2019, 12, 78. [Google Scholar] [CrossRef]
- Wagner, L.M.; Adams, V.R. Targeting the PD-1 pathway in pediatric solid tumors and brain tumors. OncoTargets Ther. 2017, 10, 2097–2106. [Google Scholar] [CrossRef]
- Chowdhury, F.; Dunn, S.; Mitchell, S.; Mellows, T.; Ashton-Key, M.; Gray, J.C. PD-L1 and CD8+ PD1+ lymphocytes exist as targets in the pediatric tumor microenvironment for immunomodulatory therapy. OncoImmunology 2015, 4, e1029701. [Google Scholar] [CrossRef]
- Dondero, A.; Pastorino, F.; della Chiesa, M.; Corrias, M.V.; Morandi, F.; Pistoia, V.; Olive, D.; Bellora, F.; Locatelli, F.; Castellano, A.; et al. PD-L1 expression in metastatic neuroblastoma as an additional mechanism for limiting immune surveillance. Oncoimmunology 2016, 5, e1064578. [Google Scholar] [CrossRef]
- Valind, A.; Gisselsson, D. Immune checkpoint inhibitors in Wilms’ tumor and Neuroblastoma: What now? Cancer Rep. 2021, 4, e1397. [Google Scholar] [CrossRef]
- Yoshimi, A.; Abdel-Wahab, O. Molecular Pathways: Understanding and Targeting Mutant Spliceosomal Proteins. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2017, 23, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Pathania, A.S.; Prathipati, P.; Murakonda, S.P.; Murakonda, A.B.; Srivastava, A.; Avadhesh Byrareddy, S.N.; Coulter, D.W.; Gupta, S.C.; Challagundla, K.B. Immune checkpoint molecules in neuroblastoma: A clinical perspective. Semin. Cancer Biol. 2022, 86 Pt 2, 247–258. [Google Scholar] [CrossRef] [PubMed]
- SEER*Explorer: An Interactive Website for SEER Cancer Statistics [Internet]. Surveillance Research Program, National Cancer Institute. 19 April 2023. Available online: https://seer.cancer.gov/statistics-network/explorer/ (accessed on 8 December 2023).
- NCCR Explorer National Cancer Institute. NCCR*Explorer: An Interactive Website for NCCR Cancer Statistics; National Cancer Institute: Bethesda, MD, USA, 2023. Available online: https://nccrexplorer.ccdi.cancer.gov (accessed on 19 May 2023).
- PDQ® Pediatric Treatment Editorial Board. PDQ Wilms Tumor and Other Childhood Kidney Tumors Treatment; National Cancer Institute: Bethesda, MD, USA, Updated 19 October 2023. Available online: https://www.cancer.gov/types/kidney/hp/wilms-treatment-pdq (accessed on 8 December 2023).
- Silva, M.A.; Triltsch, N.; Leis, S.; Kanchev, I.; Tan, T.H.; van Peel, B.; van Kerckhoven, M.; Deschoolmeester, V.; Zimmermann, J. Biomarker recommendation for PD-1/PD-L1 immunotherapy development in pediatric cancer based on digital image analysis of PD-L1 and immune cells. J. Pathology. Clin. Res. 2020, 6, 124–137. [Google Scholar] [CrossRef] [PubMed]
- Routh, J.C.; Ashley, R.A.; Sebo, T.J.; Lohse, C.M.; Husmann, D.A.; Kramer, S.A.; Kwon, E.D. B7-H1 expression in Wilms tumor: Correlation with tumor biology and disease recurrence. J. Urol. 2008, 179, 1954–1959. [Google Scholar] [CrossRef]
- Routh, J.C.; Grundy, P.E.; Anderson, J.R.; Retik, A.B.; Kurek, K.C. B7-h1 as a biomarker for therapy failure in patients with favorable histology Wilms tumor. J. Urol. 2013, 189, 1487–1492. [Google Scholar] [CrossRef]
- Tracy, E.T.; Aldrink, J.H. Pediatric melanoma. Semin. Pediatr. Surg. 2016, 25, 290–298. [Google Scholar] [CrossRef]
- Sandru, A.; Voinea, S.; Panaitescu, E.; Blidaru, A. Survival rates of patients with metastatic malignant melanoma. J. Med. Life 2014, 7, 572–576. [Google Scholar]
- Hodi, F.S.; O’day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 2010, 363, 711–723. [Google Scholar] [CrossRef]
- Robert, C.; Schachter, J.; Long, G.V.; Arance, A.; Grob, J.J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.; Lotem, M.; et al. KEYNOTE-006 investigators. Pembrolizumab versus Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2015, 372, 2521–2532. [Google Scholar] [CrossRef]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N. Engl. J. Med. 2015, 373, 23–34. [Google Scholar] [CrossRef]
- Williams, R.F.; Fernandez-Pineda, I.; Gosain, A. Pediatric Sarcomas. Surg. Clin. North Am. 2016, 96, 1107–1125. [Google Scholar] [CrossRef]
- HaDuong, J.H.; Martin, A.A.; Skapek, S.X.; Mascarenhas, L. Sarcomas. Pediatr. Clin. North Am. 2015, 62, 179–200. [Google Scholar] [CrossRef]
- Scott, M.C.; Temiz, N.A.; Sarver, A.E.; LaRue, R.S.; Rathe, S.K.; Varshney, J.; Wolf, N.K.; Moriarity, B.S.; O’Brien, T.D.; Spector, L.G.; et al. Comparative Transcriptome Analysis Quantifies Immune Cell Transcript Levels, Metastatic Progression, and Survival in Osteosarcoma. Cancer Res. 2018, 78, 326–337. [Google Scholar] [CrossRef]
- Pinto, N.; Park, J.R.; Murphy, E.; Yearley, J.; McClanahan, T.; Annamalai, L.; Hawkins, D.S.; Rudzinski, E.R. Patterns of PD-1, PD-L1, and PD-L2 expression in pediatric solid tumors. Pediatr. Blood Cancer 2017, 64, e26613. [Google Scholar] [CrossRef]
- Koirala, P.; Roth, M.E.; Gill, J.; Piperdi, S.; Chinai, J.M.; Geller, D.S.; Hoang, B.H.; Park, A.; Fremed, M.A.; Zang, X.; et al. Immune infiltration and PD-L1 expression in the tumor microenvironment are prognostic in osteosarcoma. Sci. Rep. 2016, 6, 30093. [Google Scholar] [CrossRef]
- Lussier, D.M.; O’Neill, L.; Nieves, L.M.; McAfee, M.S.; Holechek, S.A.; Collins, A.W.; Dickman, P.; Jacobsen, J.; Hingorani, P.; Blattman, J.N. Enhanced T-cell immunity to osteosarcoma through antibody blockade of PD-1/PD-L1 interactions. J. Immunother. 2015, 38, 96–106. [Google Scholar] [CrossRef]
- Kim, C.; Kim, E.K.; Jung, H.; Chon, H.J.; Han, J.W.; Shin, K.-H.; Hu, H.; Kim, K.S.; Choi, Y.D.; Kim, S.; et al. Prognostic implications of PD-L1 expression in patients with soft tissue sarcoma. BMC Cancer 2016, 16, 434. [Google Scholar] [CrossRef]
- Hingorani, P.; Maas, M.L.; Gustafson, M.P.; Dickman, P.; Adams, R.H.; Watanabe, M.; Eshun, F.; Williams, J.; Seidel, M.J.; Dietz, A.B. Increased CTLA-4(+) T cells and an increased ratio of monocytes with loss of class II (CD14(+) HLA-DR(lo/neg)) found in aggressive pediatric sarcoma patients. J. Immunother. Cancer 2015, 3, 35. [Google Scholar] [CrossRef]
- Esparza, S.D.; Sakamoto, K.M. Topics in pediatric leukemia—Acute lymphoblastic leukemia. MedGenMed Medscape Gen. Med. 2005, 7, 23. [Google Scholar]
- Hunger, S.P.; Mullighan, C.G. Acute Lymphoblastic Leukemia in Children. N. Engl. J. Med. 2015, 373, 1541–1552. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.A.; Altekruse, S.F.; Adamson, P.C.; Reaman, G.H.; Seibel, N.L. Declining childhood and adolescent cancer mortality. Cancer 2014, 120, 2497–2506. [Google Scholar] [CrossRef] [PubMed]
- Curran, E.K.; Godfrey, J.; Kline, J. Mechanisms of Immune Tolerance in Leukemia and Lymphoma. Trends Immunol. 2017, 38, 513–525. [Google Scholar] [CrossRef] [PubMed]
- Thomas, E.D.; Lochte Jr, H.L.; Lu, W.C.; Ferrebee, J.W. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N. Engl. J. Med. 1957, 257, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA A Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.J.; Chapuy, B.; Ouyang, J.; Sun, H.H.; Roemer MG, M.; Xu, M.L.; Yu, H.; Fletcher CD, M.; Freeman, G.J.; Shipp, M.A.; et al. PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2013, 19, 3462–3473. [Google Scholar] [CrossRef] [PubMed]
- Carey, C.D.; Gusenleitner, D.; Lipschitz, M.; Roemer MG, M.; Stack, E.C.; Gjini, E.; Hu, X.; Redd, R.; Freeman, G.J.; Neuberg, D.; et al. Topological analysis reveals a PD-L1-associated microenvironmental niche for Reed-Sternberg cells in Hodgkin lymphoma. Blood 2017, 130, 2420–2430. [Google Scholar] [CrossRef]
- U.S. FDA. FDA Approves Pembrolizumab for Treatment of Relapsed or Refractory PMBCL; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2018. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pembrolizumab-treatment-relapsed-or-refractory-pmbcl#:~:text=On%20June%2013%2C%202018%2C%20the%20Food%20and%20Drug,after%20two%20or%20more%20prior%20lines%20of%20therapy (accessed on 19 May 2023).
- U.S. FDA. Nivolumab (Opdivo) for Hodgkin Lymphoma; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2016. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/nivolumab-opdivo-hodgkin-lymphoma (accessed on 19 May 2023).
- Lenz, H.-J.; van Cutsem, E.; Luisa Limon, M.; Wong KY, M.; Hendlisz, A.; Aglietta, M.; García-Alfonso, P.; Neyns, B.; Luppi, G.; Cardin, D.B.; et al. First-Line Nivolumab Plus Low-Dose Ipilimumab for Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: The Phase II CheckMate 142 Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2022, 40, 161–170. [Google Scholar] [CrossRef]
- How Does Keytruda Work? 2023. Available online: https://www.keytruda.com/how-does-keytruda-work/ (accessed on 19 May 2023).
- Marcus, L.; Fashoyin-Aje, L.A.; Donoghue, M.; Yuan, M.; Rodriguez, L.; Gallagher, P.S.; Philip, R.; Ghosh, S.; Theoret, M.R.; Beaver, J.A.; et al. FDA Approval Summary: Pembrolizumab for the Treatment of Tumor Mutational Burden-High Solid Tumors. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2021, 27, 4685–4689. [Google Scholar] [CrossRef]
- Halahleh, K.; Al Sawajneh, S.; Saleh, Y.; Shahin, O.; Abufara, A.; Ma’koseh, M.; Abdel-Razeq, R.; Barakat, F.; Abdelkhaleq, H.; Al-Hassan, N.; et al. Pembrolizumab for the Treatment of Relapsed and Refractory Classical Hodgkin Lymphoma After Autologous Transplant and in Transplant-Naïve Patients. Clin. Lymphoma Myeloma Leuk. 2022, 22, 589–595. [Google Scholar] [CrossRef]
- Ramos-Casals, M.; Brahmer, J.R.; Callahan, M.K.; Flores-Chávez, A.; Keegan, N.; Khamashta, M.A.; Lambotte, O.; Mariette, X.; Prat, A.; Suárez-Almazor, M.E. Immune-related adverse events of checkpoint inhibitors. Nat. Rev. Dis. Primers 2020, 6, 38. [Google Scholar] [CrossRef]
- Ramos-Casals, M.; Lambotte, O.; Kostine, M.; Calabrese, L.; Suarez-Almazor, M.; Bingham, C.; Radstake, T.R.; Baldini, C.; Schaeverbeke, T.; Gottenberg, J.E.; et al. THU0628 Immune-related Adverse Events Incuded by Cancer Immunotherapies. Big Data Analysis of 13,501 Cases (Immunocancer International Registry). Poster Present. 2019, 78, 607–608. [Google Scholar] [CrossRef]
- Heinzerling, L.; de Toni, E.N.; Schett, G.; Hundorfean, G.; Zimmer, L. Checkpoint Inhibitors. Dtsch. Arztebl. Int. 2019, 116, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Puzanov, I.; Diab, A.; Abdallah, K.; Bingham, C.; Brogdon, C.; Dadu, R.; Hamad, L.; Kim, S.; Lacouture, M.E.; LeBoeuf, N.R.; et al. Managing toxicities associated with immune checkpoint inhibitors: Consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. J. Immunother. Cancer 2017, 5, 95. [Google Scholar] [CrossRef] [PubMed]
- Schneider, B.J.; Naidoo, J.; Santomasso, B.D.; Lacchetti, C.; Adkins, S.; Anadkat, M.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; et al. Management of Immune-Related Adverse Events in Patients Treated With Immune Checkpoint Inhibitor Therapy: ASCO Guideline Update. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2021, 39, 4073–4126. [Google Scholar] [CrossRef]
- Haanen JB, A.G.; Carbonnel, F.; Robert, C.; Kerr, K.M.; Peters, S.; Larkin, J.; Jordan, K. ESMO Guidelines Committee. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2017, 28 (Suppl. S4), iv119–iv142. [Google Scholar] [CrossRef]
- Horvat, T.Z.; Adel, N.G.; Dang, T.-O.; Momtaz, P.; Postow, M.A.; Callahan, M.K.; Carvajal, R.D.; Dickson, M.A.; D’Angelo, S.P.; Woo, K.M.; et al. Immune-Related Adverse Events, Need for Systemic Immunosuppression, and Effects on Survival and Time to Treatment Failure in Patients With Melanoma Treated With Ipilimumab at Memorial Sloan Kettering Cancer Center. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015, 33, 3193–3198. [Google Scholar] [CrossRef]
- Michot, J.M.; Bigenwald, C.; Champiat, S.; Collins, M.; Carbonnel, F.; Postel-Vinay, S.; Berdelou, A.; Varga, A.; Bahleda, R.; Hollebecque, A.; et al. Immune-related adverse events with immune checkpoint blockade: A comprehensive review. Eur. J. Cancer 2016, 54, 139–148. [Google Scholar] [CrossRef]
Disease | Trial ID | Description | Result |
---|---|---|---|
Brain tumor | NCT02502708 | Indoximod, photon radiation, and temozolomide in patients with DIPG | Median OS of 14.5 months and 12-month OS of 61.5% compared to historical 10.8 months and 45.3%, respectively [14] |
NCT02992964 | Patients with pediatric solid tumors with high mutation burden and mismatch-repair deficiency treated with nivolumab | Two-year OS of 50%; 3 patients with refractory malignant gliomas with CR at time of publication [15] | |
PMID: 32627129 | Retrospective single institution study of patients with R/R CNS tumors treated with ipilimumab, nivolumab, and/or pembrolizumab | Median duration of treatment of 6.1 months and 7 of 11 patients discontinuing secondary to progression [16] | |
PMID: 30681550 | Retrospective single institution study of patients with R/R CNS tumors treated with nivolumab | Median time to progression of 5.5 weeks; 3 patients showed PR; median survival for PD-L1+ patients vs. PD-L1 patients was 13.7 weeks vs. 4.2 weeks, respectively [17] | |
Neuroblastoma | PMID: 32414861 | Two patients with refractory HRNB treated with nivolumab and dinutuximab | The first treated for 10 months with CR for 6 months, and the second treated for 9 months with CR in soft tissue lesions and regression of skeletal lesions with treatment ongoing at time of publication [18] |
NCT01445379 | Phase I trial of patients with advanced solid tumors treated with ipilimumab with 1 patient with NB | No reported response [19] | |
NCT02304458 | Phase I/II trial of patients with R/R solid tumors treated with nivolumab plus ipilimumab (ADVL1412) with 1 patient with NB | PD [20] | |
Wilms Tumor | NCT02304458 | Phase I/II trial of patients with R/R solid tumors treated with nivolumab plus ipilimumab (ADVL1412) with 2 patients with Wilms tumors | PD [20] |
Melanoma | NCT01445379 | Phase I trial of patients with advanced solid tumors treated with ipilimumab with 12 patients with unresectable stage IIIc or IV melanoma | One patient with prolonged SD [19] |
NCT01696045 | Phase II trial of patients with stage III or IV malignant melanoma treated with ipilimumab | 2 of 8 patients on 10 mg/kg with PR, and 1 of 4 patients on 3 mg/kg with SD; study discontinued due to slow accrual [21] | |
PMID: 26647899 | Patient with Li-Fraumeni with metastatic malignant melanoma treated with ipilimumab | SD and PFS of 3 years [22] | |
Sarcoma | NCT02301039 | Phase II trial of patients with soft-tissue and bone sarcomas treated with pembrolizumab (SARC028) | 7 of 40 patients with soft-tissue sarcoma with objective response (4 undifferentiated pleomorphic sarcoma, 2 liposarcoma, and 1 synovial sarcoma) and 2 of 40 patients with bone sarcoma with objective response (1 OS, 1 chondrosarcoma) [23] |
NCT01445379 | Phase I trial of patients with advanced solid tumors treated with ipilimumab | 17 patients with sarcomas with no reported response [19] | |
NCT02304458 | Phase I/II trial of patients with R/R solid tumors treated with nivolumab plus ipilimumab (ADVL1412) with 11 RMS, 14 EWS, 1 myxoid liposarcoma, 13 OS, and 1 synovial sarcoma | 1 PR in RMS, 1 PR in EWS, 2 SD in RMS, and no activity in OS [20] | |
NCT03006848 | Phase II trial of patients with R/R OS treated with avelumab (anti-PD-L1) (OSTPDL1) | Median PFS of 8 weeks and 16-week PFS of 0% [24] | |
Leukemia | NCT04541277 | Tislelizumab with DNA hypomethylation agent +/− CAG in R/R AML | ORR of 63% [25] |
NCT02768792 | Pembrolizumab given after high dose cytarabine in R/R AML | ORR of 46% and composite CR rate of 38% [26] | |
NCT02768792 | Pembrolizumab and cytarabine pre-allogenic stem cell transplant versus transplant alone in AML | No statistical difference in one-year survival rate (67% versus 78%) [27] | |
NCT02771197 | Pembrolizumab after autologous hematopoietic stem cell transplant in non-favorable risk AML | Two-year LFS of 48% and two-year OS of 68% [28]. | |
PMID: 35491816 | Atezolizumab with guadecitabine in R/R AML | 14 of 16 patients died during the trial from disease progression or adverse events, resulting in study termination [29] | |
NCT02953561 | Azacitidine and avelumab in adults with R/R AML | Overall CR rate was 2/19, calling into question its clinical benefit [30] | |
NCT02420912 | Nivolumab plus ibrutinib in CLL, DLBCL with RT | 3 of 10 CLL patients with CR and 10 of 24 DLBCL patients with clinical response [31] | |
NCT02332980 | Pembrolizumab in CLL and RT patients | 4 of 9 RT patients with clinical response and 0 of 16 CLL patients showed response [32] | |
Lymphoma | NCT02304458 | Nivolumab +/− ipilimumab in pediatric R/R lymphoma | 8 of 10 HL patients with objective response and 1 of 10 nHL patients with CR [33] |
NCT03016871 | Nivolumab +/− ifosfamide, carboplatin, etoposide intensification in R/R HL | ORR and CR rate of 93% and 91%, respectively [34] | |
NCT02927769 | Nivolumab and brentuximab +/− bendamustine in R/R HL | Increase of complete metabolic response rate from 59% to 94% after adding bendamustine to intensification regimen [35] | |
PMID: 37583696 | Nivolumab and brentuximab +/− bendamustine in R/R HL | 10 of 10 patients with CR prior to consolidation [36] | |
NCT02453594 | Pembrolizumab in R/R HL | 145 of 210 patients with objective response [37] | |
NCT03150329 | Pembrolizumab plus vorinostat in R/R DLBCL, follicular lymphoma, or HL | 14 of 32 patients with R/R HL previously refractory to anti-PD-1 therapy with objective response [38] | |
NCT02332668 | Pembrolizumab in R/R HL and other pediatric cancers | 9 of 15 with R/R HL with objective response [39] | |
NCT02684292 | Comparing pembrolizumab versus brentuximab in R/R HL | Median PFS of 13.2 and 8.3 months, respectively, which was statistically significant [40] |
ICI Drug and Mechanism of Action | Active NIH Clinical Trial IDs | Study Title |
---|---|---|
Pembrolizumab (PD-L1 Inhibitor) | NCT02332668 | A Study of Pembrolizumab (MK-3475) in Pediatric Participants with an Advanced Solid Tumor or Lymphoma (MK-3475-051/KEYNOTE-051) |
NCT02359565 | Pembrolizumab in Treating Younger Patients with Recurrent, Progressive, or Refractory High-Grade Gliomas, Diffuse Intrinsic Pontine Gliomas, Hypermutated Brain Tumors, Ependymoma or Medulloblastoma | |
NCT03605589 | Pembrolizumab + Blinatumomab Combination in Pediatric and Young Adult Patients with Relapsed/Refractory Acute Leukemia or Lymphoma | |
Nivolumab (PD-L1 Inhibitor) | NCT02813135 | European Proof-of-Concept Therapeutic Stratification Trial of Molecular Anomalies in Relapsed or Refractory Tumors (ESMART) |
NCT03703050 | Nivolumab for Pediatric and Adult Relapsing/Refractory ALK+, for Evaluation of Response in Patients with Progressive Disease (Cohort 1) or as Consolidative Immunotherapy in Patients in Complete Remission After Relapse (Cohort 2) (NIVO-ALCL) | |
NCT02992964 | Pilot Study of Nivolumab in Pediatric Patients with Hypermutant Cancers | |
NCT03825367 | Nivolumab in Combination with 5-azacytidine in Childhood Relapsed/Refractory AML | |
NCT04416568 | Study of Nivolumab and Ipilimumab in Children and Young Adults with INI1-Negative Cancers | |
NCT04546399 | A Study to Compare Blinatumomab Alone to Blinatumomab with Nivolumab in Patients Diagnosed with First Relapse B-Cell Acute Lymphoblastic Leukemia (B-ALL) | |
NCT05255601 | A Study to Evaluate the Safety, Tolerability, Drug Levels, and Preliminary Efficacy of Relatlimab Plus Nivolumab in Pediatric and Young Adults with Hodgkin and Non-Hodgkin Lymphoma (RELATIVITY-069) | |
NCT05302921 | Neoadjuvant Dual Checkpoint Inhibition and Cryoablation in Relapsed/Refractory Pediatric Solid Tumors | |
NCT05675410 | A Study to Compare Standard Therapy to Treat Hodgkin Lymphoma to the Use of Two Drugs, Brentuximab Vedotin and Nivolumab | |
NCT05772624 | Low-dose Nivolumab in Combination with AVD as Front-Line Therapy for Classic Hodgkin’s Lymphoma | |
Durvalumab (PD-1 Inhibitor) | NCT02793466 | Durvalumab in Pediatric and Adolescent Patients |
Ipilimumab (CTLA-4 Inhibitor) | NCT01738139 | Ipilimumab and Imatinib Mesylate in Advanced Cancer |
NCT02879695 | Blinatumomab and Nivolumab with or Without Ipilimumab in Treating Patients with Poor-Risk Relapsed or Refractory CD19+ Precursor B-Lymphoblastic Leukemia | |
NCT04416568 | Study of Nivolumab and Ipilimumab in Children and Young Adults with INI1-Negative Cancers | |
NCT05302921 | Neoadjuvant Dual Checkpoint Inhibition and Cryoablation in Relapsed/Refractory Pediatric Solid Tumors |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciurej, A.; Lewis, E.; Gupte, A.; Al-Antary, E. Checkpoint Immunotherapy in Pediatric Oncology: Will We Say Checkmate Soon? Vaccines 2023, 11, 1843. https://doi.org/10.3390/vaccines11121843
Ciurej A, Lewis E, Gupte A, Al-Antary E. Checkpoint Immunotherapy in Pediatric Oncology: Will We Say Checkmate Soon? Vaccines. 2023; 11(12):1843. https://doi.org/10.3390/vaccines11121843
Chicago/Turabian StyleCiurej, Alexander, Elizabeth Lewis, Avanti Gupte, and Eman Al-Antary. 2023. "Checkpoint Immunotherapy in Pediatric Oncology: Will We Say Checkmate Soon?" Vaccines 11, no. 12: 1843. https://doi.org/10.3390/vaccines11121843
APA StyleCiurej, A., Lewis, E., Gupte, A., & Al-Antary, E. (2023). Checkpoint Immunotherapy in Pediatric Oncology: Will We Say Checkmate Soon? Vaccines, 11(12), 1843. https://doi.org/10.3390/vaccines11121843