Insights into the Novel Therapeutics and Vaccines against Herpes Simplex Virus
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Pathological Biology of HSV and Associated Infection
3.2. Current Vaccination Efforts against HSV
3.3. Outlining the Current Vaccines against HSV
3.3.1. Subunit Vaccines against HSV
3.3.2. Vectored/DNA/RNA Vaccines against HSV
3.3.3. Live-Attenuated Vaccines against HSV
3.3.4. Peptide Vaccines against HSV
3.3.5. Killed-Virus Vaccines against HSV
3.3.6. Fractionated-Virus Vaccines against HSV
3.3.7. Discontinuously Replicating Virus Vaccines against HSVs
3.3.8. Replication-Competent Live-Virus Vaccines against HSV
3.4. Therapeutics and Antiviral Strategies against HSV
3.4.1. Receptor Targeting Therapeutics against HSV
Anti-Heparan Sulfate Peptides
Apolipoprotein E
AC-8-Potential Cationic Peptide
3.4.2. Nucleic Acid-Based Molecules
Aptamers
Dermaseptins
3.4.3. Viral Glycoprotein Targeting Therapeutics
Nanoparticles with Affinity to Bind GPs
K-5 and SP-510-50 Compounds
Dendrimers
3.4.4. Targeting the Downstream Signaling Cascades
3.5. Antimicrobial Peptides against HSV
3.6. Some of the Latest Therapeutic Options
3.6.1. Compounds Derived from Marine Resources (Algal Species)
3.6.2. Mucus Penetrating Particles
3.6.3. Plant-Derived Therapeutic Options
3.6.4. Combined Therapies
Sr. No. | Drug Type | Ongoing Trials | Refs. |
---|---|---|---|
1. | Receptor-targeting therapeutics | G1 and G2 anti-heparan sulfate peptides Apolipoprotein E AC-8 Aptamers (against enveloped gD glp (HSV-1 and HSV-2), Dermaseptins (group of lysine-rich peptides S1–S5 and K4K20S4, indolicidin, melittin, cecropin A, magainin I and II, and indolicidin) | [27,31,46,47,58,89,93,111] |
2. | Viral glycoprotein-targeting therapeutics | Nanoparticles (ZnO and SnO), protein microspheres (PM), AuNPs capped with (Au-MES) K-5 Compounds-(E. coli derived K5 polysaccharides including K5-N,OS(H), and Epi-K5-OS(H)) Polyionic compounds (SP-510-50, PRO-2000, cellulose sulfate, poly-methylene hydroquinone sulfonate, and polystyrene sulfonate) Dendrimers (glycodendrimer and peptide-dendrimers), such as SPL7013 Dendrimer with peptide gH625 Polycationic dendrimers: SB105 and SB105_A10 | [31,38,46,47,58,89] |
3. | Targeting cellular signaling cascades | PI3K family of heterodimeric enzymes inhibitors Akt/PKB inhibitors Cyclic AMP-dependent PKA inhibitors Inhibitors of PKC isoforms Inhibitors of ribosomal S6 kinases p70 and p85 | [98,99] |
4. | Marine organism-derived therapeutics | Caulerpin from Caulerpa Lamouroux (Caulerpales) Rhodophyta (16 species) Ochrophyta (8 species) Chlorophyta (12 species) Green algal species: Ulva fasciata and Codium decorticatum Red algal species: Laurencia dendroidea | [105,106] |
5. | Mucus-penetrating nanoparticles | Coated polystyrene/biodegradable poly (lactic-co-glycolic acid) with pegylated (PEG) NPs MMPs + acyclovir (ACVp-MPPs) Plant-derived antiretroviral Momordica charantia (proteins MAP30) Gelonium multiflorum (proteins GAP31) Gossypol (from cottonseed oil) and peri-acylated gossylic nitrile derivatives | [95,96,108] |
6. | Combinations trials on drugs | Trifluridine + idoxuridine + vidarabine Trifluridine + vidarabine Trifluridine + acyclovir Brivudine + idoxuridine Brivudine + trifluridine Brivudine + acyclovir Ganciclovir + acyclovir Foscarnet + trifluridine Foscarnet + acyclovir Foscarnet + ganciclovir Antiviral + interferon Debridement + antiviral | [22,30,45,46,48,79,106,111] |
7. | Other anti-therapies compounds in research trials | E-5-(2-Bromovinyl)-2′-deoxyuridine E-5-(2-Iodovinyl)-2′-deoxyuridine 5-Vinyl-2′deoxyuridine 2′-Fluoro-5-iodoaracytosine Acycloguanosine and 5-iodo-2′-deoxycytidine, Acycloguanosine (WELLCOME 248U)-(9-[2hydroxyethoxymethyl]guanine) | [20,109,110,111] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AChE | Acetylcholinesterase inhibitor |
Akt/PKB | Protein kinase B |
apoE | Apolipoprotein E |
CDC | Centers for Disease Control and Prevention |
FDA | Food and Drug Administration |
GP/gPs/gps | Glycoproteins |
HIC | High-income countries |
HS | Heparan sulfate |
HSV | Herpes simplex virus |
HSV-1 and HSV-2 | Herpes simplex virus type 1 and type 2 |
igG | Immunogloblins |
Au-MES | Mercaptoethane sulfonate |
AuNPs | Gold nanoparticles |
LMIC | Low-income countries |
MMPS | Mucus-penetrating particles |
NPs | Nanoparticles |
ORFs | Open reading frames |
PI3K | Phosphoinositide 3-kinases |
PKA | Protein kinase A |
PKC | Protein kinase C |
PM | Protein microspheres |
R&D | Research and development |
SnO | Tin oxide |
WHO | World Health Organization |
ZnO | Zinc oxide |
References
- Pinninti, S.G.; Kimberlin, D.W. Maternal and Neonatal Herpes Simplex Virus Infections. Am. J. Perinatol. 2013, 30, 113–120. [Google Scholar] [CrossRef]
- Curfman, A.L.; Glissmeyer, E.W.; Ahmad, F.A.; Korgenski, E.K.; Blaschke, A.J.; Byington, C.L.; Miller, A.S. Initial Presentation of Neonatal Herpes Simplex Virus Infection. J. Pediatr. 2016, 172, 121.e1–126.e1. [Google Scholar] [CrossRef] [PubMed]
- James, S.H.; Kimberlin, D.W. Neonatal herpes simplex virus infection: Epidemiology and treatment. Clin. Perinatol. 2015, 42, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.; Whitley, R. Neonatal Herpes Simplex Virus Infections: Where Are We Now? Hot Top. Infect. Immun. Child. VII 2011, 697, 221–230. [Google Scholar]
- Whitley, R.; Baines, J. Clinical management of herpes simplex virus infections: Past, present, and future. F1000Res 2018, 7. [Google Scholar] [CrossRef] [Green Version]
- Stelitano, D.; Franci, G.; Chianese, A.; Galdiero, S.; Morelli, G.; Galdiero, M. HSV membrane glycoproteins, their function in viral entry and their use in vaccine studies. In Amino Acids, Peptides and Proteins; Royal Society of Chemistry: London, UK, 2019; Volume 43, pp. 14–43. [Google Scholar] [CrossRef]
- SHarris, S.A.; Harris, E.A. Molecular Mechanisms for Herpes Simplex Virus Type 1 Pathogenesis in Alzheimer’s Disease. Front. Aging Neurosci. 2018, 10, 48. [Google Scholar] [CrossRef]
- Bradley, H.; Markowitz, L.E.; Gibson, T.; McQuillan, G.M. Seroprevalence of herpes simplex virus types 1 and 2—United States, 1999–2010. J. Infect. Dis. 2014, 209, 325–333. [Google Scholar] [CrossRef]
- BSilverberg, B.; Moyers, A.; Hinkle, T.; Kessler, R.; Russell, N.G. 2021 CDC Update: Treatment and Complications of Sexually Transmitted Infections (STIs). Venereology 2022, 1, 23–46. [Google Scholar] [CrossRef]
- Akhtar, L.N.; Kimberlin, D.W. The Changing Landscape of Neonatal Herpes Simplex Virus Disease. J. Pediatr. Infect. Dis. Soc. 2022, 11, 121–123. [Google Scholar] [CrossRef]
- Melvin, A.J.; Mohan, K.M.; Vora, S.B.; Selke, S.; Sullivan, E.; Wald, A. Neonatal Herpes Simplex Virus Infection: Epidemiology and Outcomes in the Modern Era. J. Pediatr. Infect. Dis. Soc. 2022, 11, 94–101. [Google Scholar] [CrossRef]
- Grinde, B. Herpesviruses: Latency and reactivation—Viral strategies and host response. J. Oral Microbiol. 2013, 5, 22766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicoll, M.; Proença, J.; Efstathiou, S. The molecular basis of herpes simplex virus latency. FEMS Microbiol. Rev. 2012, 36, 684–705. [Google Scholar] [CrossRef] [PubMed]
- Straface, G.; Selmin, A.; Zanardo, V.; De Santis, M.; Ercoli, A.; Scambia, G. Herpes Simplex Virus Infection in Pregnancy. Infect. Dis. Obstet. Gynecol. 2012, 2012, 385697. [Google Scholar] [CrossRef] [PubMed]
- Mulik, S.; Xu, J.; Reddy, P.B.; Rajasagi, N.K.; Gimenez, F.; Sharma, S.; Lu, P.Y.; Rouse, B.T. Role of miR-132 in Angiogenesis after Ocular Infection with Herpes Simplex Virus. Am. J. Pathol. 2012, 181, 525–534. [Google Scholar] [CrossRef] [Green Version]
- Koujah, L.; Suryawanshi, R.K.; Shukla, D. Pathological processes activated by herpes simplex virus-1 (HSV-1) infection in the cornea. Cell. Mol. Life Sci. 2019, 76, 405–419. [Google Scholar] [CrossRef]
- Piret, J.; Boivin, G. Resistance of herpes simplex viruses to nucleoside analogues: Mechanisms, prevalence, and management. Antimicrob. Agents Chemother. 2011, 55, 459–472. [Google Scholar] [CrossRef] [Green Version]
- Looker, K.J.; Magaret, A.S.; May, M.T.; Turner, K.M.E.; Vickerman, P.; Gottlieb, S.L.; Newman, L.M. Global and Regional Estimates of Prevalent and Incident Herpes Simplex Virus Type 1 Infections in 2012. PLoS ONE 2015, 10, e0140765. [Google Scholar] [CrossRef] [Green Version]
- Egan, K.P.; Wu, S.; Wigdahl, B.; Jennings, S.R. Immunological control of herpes simplex virus infections. J. NeuroVirology 2013, 19, 328–345. [Google Scholar] [CrossRef] [Green Version]
- Clementi, N.; Criscuolo, E.; Cappelletti, F.; Burioni, R.; Clementi, M.; Mancini, N. Novel therapeutic investigational strategies to treat severe and disseminated HSV infections suggested by a deeper understanding of in vitro virus entry processes. Drug Discov. Today 2016, 21, 682–691. [Google Scholar] [CrossRef]
- Bader, M.S. Herpes zoster: Diagnostic, therapeutic, and preventive approaches. Postgrad Med. 2013, 125, 78–91. [Google Scholar] [CrossRef]
- Wilhelmus, K.R. Antiviral treatment and other therapeutic interventions for herpes simplex virus epithelial keratitis. Cochrane Database Syst. Rev. 2015, 1, CD002898. [Google Scholar] [CrossRef]
- Jiang, Y.-C.; Feng, H.; Lin, Y.-C.; Guo, X.-R. New strategies against drug resistance to herpes simplex virus. Int. J. Oral Sci. 2016, 8, 1–6. [Google Scholar] [CrossRef]
- James, S.H.; Prichard, M.N. Current and future therapies for herpes simplex virus infections: Mechanism of action and drug resistance. Curr. Opin. Virol. 2014, 8, 54–61. [Google Scholar] [CrossRef] [PubMed]
- AMehmood, A.; Kaushik, A.C.; Wei, D. Prediction and validation of potent peptides against herpes simplex virus type 1 via immunoinformatic and systems biology approach. Chem. Biol. Drug Des. 2019, 94, 1868–1883. [Google Scholar] [CrossRef] [PubMed]
- Wertheim, J.O.; Smith, M.D.; Smith, D.M.; Scheffler, K.; Pond, S.L.K. Evolutionary Origins of Human Herpes Simplex Viruses 1 and 2. Mol. Biol. Evol. 2014, 31, 2356–2364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falanga, A.; Vitiello, M.T.; Cantisani, M.; Tarallo, R.; Guarnieri, D.; Mignogna, E.; Netti, P.A.; Pedone, C.; Galdiero, M.; Galdiero, S. A peptide derived from herpes simplex virus type 1 glycoprotein H: Membrane translocation and applications to the delivery of quantum dots. Nanomedicine 2011, 7, 925–934. [Google Scholar] [CrossRef] [PubMed]
- Thomson, D.A.C.; Dimitrov, K.; Cooper, M.A. Amplification free detection of Herpes Simplex Virus DNA. Analyst 2011, 136, 1599–1607. [Google Scholar] [CrossRef] [Green Version]
- Dutton, J.L.; Li, B.; Woo, Y.; Marshak, J.O.; Xu, Y.; Huang, M.-L.; Dong, L.; Frazer, I.H.; Koelle, D.M. A Novel DNA Vaccine Technology Conveying Protection against a Lethal Herpes Simplex Viral Challenge in Mice. PLoS ONE 2013, 8, e76407. [Google Scholar] [CrossRef]
- Antoine, T.E.; Park, P.J.; Shukla, D. Glycoprotein targeted therapeutics: A new era of anti-herpes simplex virus-1 therapeutics. Rev. Med Virol. 2013, 23, 194–208. [Google Scholar] [CrossRef] [Green Version]
- Falanga, A.; Del Genio, V.; Kaufman, E.; Zannella, C.; Franci, G.; Weck, M.; Galdiero, S. Engineering of Janus-Like Dendrimers with Peptides Derived from Glycoproteins of Herpes Simplex Virus Type 1: Toward a Versatile and Novel Antiviral Platform. Int. J. Mol. Sci. 2021, 22, 6488. [Google Scholar] [CrossRef]
- Awasthi, S.; Zumbrun, E.E.; Si, H.; Wang, F.; Shaw, C.E.; Cai, M.; Lubinski, J.M.; Barrett, S.M.; Balliet, J.W.; Flynn, J.A.; et al. Live Attenuated Herpes Simplex Virus 2 Glycoprotein E Deletion Mutant as a Vaccine Candidate Defective in Neuronal Spread. J. Virol. 2012, 86, 4586–4598. [Google Scholar] [CrossRef] [Green Version]
- Flagg, E.W.; Weinstock, H. Incidence of Neonatal Herpes Simplex Virus Infections in the United States, 2006. Pediatrics 2011, 127, e1–e8. [Google Scholar] [CrossRef] [PubMed]
- Devi, V.R.; Sharmila, C.; Subramanian, S. Molecular docking studies involving the inhibitory effect of gymnemic acid, trigonelline and ferulic acid, the phytochemicals with antidiabetic properties, on glycogen synthase kinase 3 (α and β). J. Appl. Pharm. Sci. 2018, 8, 150–160. [Google Scholar]
- James, S.H.; Kimberlin, D.W. Neonatal herpes simplex virus infection. Infect. Dis. Clin. 2015, 29, 391–400. [Google Scholar] [CrossRef]
- Watanabe, D. Medical application of herpes simplex virus. J. Dermatol. Sci. 2010, 57, 75–82. [Google Scholar] [CrossRef]
- Galdiero, S.; Falanga, A.; Tarallo, R.; Russo, L.; Galdiero, E.; Cantisani, M.; Morelli, G.; Galdiero, M. Peptide inhibitors against herpes simplex virus infections. J. Pept. Sci. 2013, 19, 148–158. [Google Scholar] [CrossRef]
- Gmyrek, G.B.; Filiberti, A.; Montgomery, M.; Chitrakar, A.; Royer, D.J.; Carr, D.J.J. Herpes simplex virus 1 (HSV-1) 0ΔNLS live-attenuated vaccine protects against ocular HSV-1 infection in the absence of neutralizing antibody in HSV-1 gB T cell receptor-specific transgenic mice. J. Virol. 2020, 94, e01000-20. [Google Scholar] [CrossRef]
- Hogestyn, J.M.; Mock, D.J.; Mayer-Proschel, M. Contributions of neurotropic human herpesviruses herpes simplex virus 1 and human herpesvirus 6 to neurodegenerative disease pathology. Neural Regen. Res. 2018, 13, 211–221. [Google Scholar] [PubMed]
- Kuhlmann, I.; Minihane, A.M.; Huebbe, P.; Nebel, A.; Rimbach, G. Apolipoprotein E genotype and hepatitis C, HIV and herpes simplex disease risk: A literature review. Lipids Health Dis. 2010, 9, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeGoff, J.; Péré, H.; Bélec, L. Diagnosis of genital herpes simplex virus infection in the clinical laboratory. Virol. J. 2014, 11, 1–17. [Google Scholar] [CrossRef]
- Sarkar, B.; Ullah, M.A. Designing novel subunit vaccines against herpes simplex virus-1 using reverse vaccinology approach. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Stanfield, B.; Kousoulas, K.G. Herpes Simplex Vaccines: Prospects of Live-Attenuated HSV Vaccines to Combat Genital and Ocular Infections. Curr. Clin. Microbiol. Rep. 2015, 2, 125–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, C.; Gottlieb, S.L.; Wald, A. Status of vaccine research and development of vaccines for herpes simplex virus. Vaccine 2016, 34, 2948–2952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connolly, D.J.; O’Neill, L.A. New developments in Toll-like receptor targeted therapeutics. Curr. Opin. Pharmacol. 2012, 12, 510–518. [Google Scholar] [CrossRef] [PubMed]
- YHuang, Y.; Song, Y.; Li, J.; Lv, C.; Chen, Z.-S.; Liu, Z. Receptors and ligands for herpes simplex viruses: Novel insights for drug targeting. Drug Discov. Today 2021, 27, 185–195. [Google Scholar]
- SHadigal, S.; Shukla, D. Exploiting Herpes Simplex Virus Entry for Novel Therapeutics. Viruses 2013, 5, 1447–1465. [Google Scholar] [CrossRef] [Green Version]
- Cuérel, A.; Favre, G.; Vouga, M.; Pomar, L. Monkeypox and Pregnancy: Latest Updates. Viruses 2022, 14, 2520. [Google Scholar] [CrossRef]
- Cunningham, A.L. The herpes zoster subunit vaccine. Expert Opin. Biol. Ther. 2016, 16, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Lal, H.; Cunningham, A.L.; Godeaux, O.; Chlibek, R.; Diez-Domingo, J.; Hwang, S.-J.; Levin, M.J.; McElhaney, J.E.; Poder, A.; Puig-Barberà, J.; et al. Efficacy of an Adjuvanted Herpes Zoster Subunit Vaccine in Older Adults. N. Engl. J. Med. 2015, 372, 2087–2096. [Google Scholar] [CrossRef]
- Cunningham, A.L.; Lal, H.; Kovac, M.; Chlibek, R.; Hwang, S.-J.; Díez-Domingo, J.; Godeaux, O.; Levin, M.J.; McElhaney, J.E.; Puig-Barberà, J.; et al. Efficacy of the Herpes Zoster Subunit Vaccine in Adults 70 Years of Age or Older. N. Engl. J. Med. 2016, 375, 1019–1032. [Google Scholar] [CrossRef]
- Lathwal, A.; Kumar, R.; Raghava, G.P. In-silico identification of subunit vaccine candidates against lung cancer-associated oncogenic viruses. Comput. Biol. Med. 2021, 130, 104215. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xie, G.; Liao, J.; Yin, D.; Guan, W.; Pan, M.; Li, J.; Li, Y. Design and evaluation of a multi-epitope assembly Peptide (MEAP) against herpes simplex virus type 2 infection in BALB/c mice. Virol. J. 2011, 8, 232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, M.M.; Karasneh, G.A.; Jarding, M.J.; Tiwari, V.; Shukla, D. A 3- O -Sulfated Heparan Sulfate Binding Peptide Preferentially Targets Herpes Simplex Virus 2-Infected Cells. J. Virol. 2012, 86, 6434–6443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwari, V.; Liu, J.; Valyi-Nagy, T.; Shukla, D. Anti-heparan Sulfate Peptides That Block Herpes Simplex Virus Infection in Vivo. J. Biol. Chem. 2011, 286, 25406–25415. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.A.; Srivastava, R.; Vahed, H.; Roy, S.; Walia, S.S.; Kim, G.J.; Fouladi, M.A.; Yamada, T.; Ly, V.T.; Lam, C.; et al. Human Asymptomatic Epitope Peptide/CXCL10-Based Prime/Pull Vaccine Induces Herpes Simplex Virus-Specific Gamma Interferon-Positive CD107 + CD8 + T Cells That Infiltrate the Corneas and Trigeminal Ganglia of Humanized HLA Transgenic Rabbits and Protect against Ocular Herpes Challenge. J. Virol. 2018, 92, e00535-18. [Google Scholar]
- Luganini, A.; Nicoletto, S.F.; Pizzuto, L.; Pirri, G.; Giuliani, A.; Landolfo, S.; Gribaudo, G. Inhibition of herpes simplex virus type 1 and type 2 infections by peptide-derivatized dendrimers. Antimicrob. Agents Chemother. 2011, 55, 3231–3239. [Google Scholar] [CrossRef] [Green Version]
- Hu, K.; Dou, J.; Yu, F.; He, X.; Yuan, X.; Wang, Y.; Liu, C.; Gu, N. An ocular mucosal administration of nanoparticles containing DNA vaccine pRSC-gD-IL-21 confers protection against mucosal challenge with herpes simplex virus type 1 in mice. Vaccine 2011, 29, 1455–1462. [Google Scholar] [CrossRef]
- Parsania, M.; Bamdad, T.; Hassan, Z.M.; Kheirandish, M.; Pouriayevali, M.H.; Sari, R.D.; Jamali, A. Evaluation of apoptotic and anti-apoptotic genes on efficacy of DNA vaccine encoding glycoprotein B of Herpes Simplex Virus type 1. Immunol. Lett. 2010, 128, 137–142. [Google Scholar] [CrossRef]
- Yadavalli, T.; Agelidis, A.; Jaishankar, D.; Mangano, K.; Thakkar, N.; Penmetcha, K.; Shukla, D. Targeting Herpes Simplex Virus-1 gD by a DNA Aptamer Can Be an Effective New Strategy to Curb Viral Infection. Mol. Ther.-Nucleic Acids 2017, 9, 365–378. [Google Scholar] [CrossRef] [Green Version]
- Jaijyan, D.K.; Govindasamy, K.; Lee, M.; Zhu, H. A chemical method for generating live-attenuated, replication-defective DNA viruses for vaccine development. Cell Rep. Methods 2022, 2, 100287. [Google Scholar] [CrossRef]
- Stanfield, B.A.; Kousoulas, K.G.; Fernandez, A.; Gershburg, E. Rational Design of Live-Attenuated Vaccines against Herpes Simplex Viruses. Viruses 2021, 13, 1637. [Google Scholar] [CrossRef] [PubMed]
- Joyce, J.; Patel, A.; Murphy, B.; Carr, D.; Gershburg, E.; Bertke, A. Assessment of Two Novel Live-Attenuated Vaccine Candidates for Herpes Simplex Virus 2 (HSV-2) in Guinea Pigs. Vaccines 2021, 9, 258. [Google Scholar] [CrossRef] [PubMed]
- Coleman, J.; Shukla, D. Recent advances in vaccine development for herpes simplex virus types I and II. Hum. Vaccines Immunother. 2013, 9, 729–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarz, T.F.; Aggarwal, N.; Moeckesch, B.; Schenkenberger, I.; Claeys, C.; Douha, M.; Godeaux, O.; Grupping, K.; Heineman, T.C.; Fauqued, M.L.; et al. Immunogenicity and Safety of an Adjuvanted Herpes Zoster Subunit Vaccine Coadministered With Seasonal Influenza Vaccine in Adults Aged 50 Years or Older. J. Infect. Dis. 2017, 216, 1352–1361. [Google Scholar] [CrossRef] [Green Version]
- Chlibek, R.; Pauksens, K.; Rombo, L.; van Rijckevorsel, G.; Richardus, J.H.; Plassmann, G.; Schwarz, T.F.; Catteau, G.; Lal, H.; Heineman, T.C. Long-term immunogenicity and safety of an investigational herpes zoster subunit vaccine in older adults. Vaccine 2016, 34, 863–868. [Google Scholar] [CrossRef] [PubMed]
- Bharucha, T.; Ming, D.; Breuer, J. A critical appraisal of ‘Shingrix’, a novel herpes zoster subunit vaccine (HZ/Su or GSK1437173A) for varicella zoster virus. Hum. Vaccines Immunother. 2017, 13, 1789–1797. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Zhang, Y.; Li, Q. Characteristics of herpes simplex virus infection and pathogenesis suggest a strategy for vaccine development. Rev. Med. Virol. 2019, 29, e2054. [Google Scholar] [CrossRef] [Green Version]
- Gottlieb, S.L.; Giersing, B.; Boily, M.-C.; Chesson, H.; Looker, K.J.; Schiffer, J.; Spicknall, I.; Hutubessy, R.; Broutet, N. Modelling efforts needed to advance herpes simplex virus (HSV) vaccine development: Key findings from the World Health Organization Consultation on HSV Vaccine Impact Modelling. Vaccine 2019, 37, 7336–7345. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, R.; Khan, A.A.; Huang, J.; Nesburn, A.B.; Wechsler, S.L.; Mohamed, B.L. A herpes simplex virus type 1 human asymptomatic CD8+ T-cell epitopes-based vaccine protects against ocular herpes in a ‘humanized’ HLA transgenic rabbit model. Investig. Ophthalmol. Vis. Sci. 2015, 56, 4013–4028. [Google Scholar] [CrossRef] [Green Version]
- Dorosti, H.; Eskandari, S.; Zarei, M.; Nezafat, N.; Ghasemi, Y. Design of a multi-epitope protein vaccine against herpes simplex virus, human papillomavirus and Chlamydia trachomatis as the main causes of sexually transmitted diseases. Infect. Genet. Evol. 2021, 96, 105136. [Google Scholar] [CrossRef]
- Bathula, N.V.; Popova, P.; Blakney, A. Delivery vehicles for self-amplifying RNA. In Messenger RNA Therapeutics; Springer: Berlin/Heidelberg, Germany, 2022; pp. 355–370. [Google Scholar]
- Eid, E.; Abdullah, L.; Kurban, M.; Abbas, O. Herpes zoster emergence following mRNA COVID-19 vaccine. J. Med. Virol. 2021, 93, 5231–5232. [Google Scholar] [CrossRef]
- Knezevic, I.; Liu, M.A.; Peden, K.; Zhou, T.; Kang, H.-N. Development of mRNA Vaccines: Scientific and Regulatory Issues. Vaccines 2021, 9, 81. [Google Scholar] [CrossRef]
- Lladó, I.; Fernández-Bernáldez, A.; Rodríguez-Jiménez, P. Varicella zoster virus reactivation and mRNA vaccines as a trigger. JAAD Case Rep. 2021, 15, 62–63. [Google Scholar] [CrossRef] [PubMed]
- Dropulic, L.K.; I Cohen, J. The challenge of developing a herpes simplex virus 2 vaccine. Expert Rev. Vaccines 2012, 11, 1429–1440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gambini, E.; Reisoli, E.; Appolloni, I.; Gatta, V.; Campadelli-Fiume, G.; Menotti, L.; Malatesta, P. Replication-competent Herpes Simplex Virus Retargeted to HER2 as Therapy for High-grade Glioma. Mol. Ther. 2012, 20, 994–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delagrave, S.; Hernandez, H.; Zhou, C.; Hamberger, J.F.; Mundle, S.T.; Catalan, J.; Baloglu, S.; Anderson, S.F.; DiNapoli, J.M.; Londoño-Hayes, P.; et al. Immunogenicity and Efficacy of Intramuscular Replication-Defective and Subunit Vaccines against Herpes Simplex Virus Type 2 in the Mouse Genital Model. PLoS ONE 2012, 7, e46714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leventhal, S.S.; Meade-White, K.; Rao, D.; Haddock, E.; Leung, J.; Scott, D.; Archer, J.; Randall, S.; Erasmus, J.H.; Feldmann, H.; et al. Replicating RNA vaccination elicits an unexpected immune response that efficiently protects mice against lethal Crimean-Congo hemorrhagic fever virus challenge. Ebiomedicine 2022, 82, 104188. [Google Scholar] [CrossRef] [PubMed]
- Voellmy, R.; Bloom, D.C.; Vilaboa, N. Herpes Simplex Viruses Whose Replication Can Be Deliberately Controlled as Candidate Vaccines. Vaccines 2020, 8, 230. [Google Scholar] [CrossRef]
- Vuitika, L.; Prates-Syed, W.A.; Silva, J.D.Q.; Crema, K.P.; Côrtes, N.; Lira, A.; Lima, J.B.M.; Camara, N.O.S.; Schimke, L.F.; Cabral-Marques, O.; et al. Vaccines against Emerging and Neglected Infectious Diseases: An Overview. Vaccines 2022, 10, 1385. [Google Scholar] [CrossRef] [PubMed]
- Hook, L.M.; Awasthi, S.; Dubin, J.; Flechtner, J.; Long, D.; Friedman, H.M. A trivalent gC2/gD2/gE2 vaccine for herpes simplex virus generates antibody responses that block immune evasion domains on gC2 better than natural infection. Vaccine 2019, 37, 664–669. [Google Scholar] [CrossRef] [PubMed]
- Campadelli-Fiume, G.; De Giovanni, C.; Gatta, V.; Nanni, P.; Lollini, P.-L.; Menotti, L. Rethinking herpes simplex virus: The way to oncolytic agents. Rev. Med. Virol. 2011, 21, 213–226. [Google Scholar] [CrossRef] [PubMed]
- Jenks, J.A.; Goodwin, M.L.; Permar, S.R. The Roles of Host and Viral Antibody Fc Receptors in Herpes Simplex Virus (HSV) and Human Cytomegalovirus (HCMV) Infections and Immunity. Front. Immunol. 2019, 10, 2110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Yesupriya, A.; Chang, M.-H.; Teshale, E.; Teo, C.-G. Apolipoprotein E and protection against hepatitis E viral infection in American non-Hispanic blacks. Hepatology 2015, 62, 1346–1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gopinath, S.C.B.; Hayashi, K.; Kumar, P.K.R. Aptamer That Binds to the gD Protein of Herpes Simplex Virus 1 and Efficiently Inhibits Viral Entry. J. Virol. 2012, 86, 6732–6744. [Google Scholar] [CrossRef] [Green Version]
- Bergaoui, I.; Zairi, A.; Tangy, F.; Aouni, M.; Selmi, B.; Hani, K. In vitro antiviral activity of dermaseptin S4 and derivatives from amphibian skin against herpes simplex virus type 2. J. Med. Virol. 2013, 85, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Lal, H.M.; Uthaman, A.; Thomas, S. Silver Nanoparticle as an Effective Antiviral Agent. In Polymer Nanocomposites Based on Silver Nanoparticles; Springer: Berlin/Heidelberg, Germany, 2021; pp. 247–265. [Google Scholar]
- Ensign, L.M.; Tang, B.C.; Wang, Y.-Y.; Tse, T.A.; Hoen, T.; Cone, R.; Hanes, J. Mucus-Penetrating Nanoparticles for Vaginal Drug Delivery Protect Against Herpes Simplex Virus. Sci. Transl. Med. 2012, 4, 138ra79. [Google Scholar] [CrossRef] [Green Version]
- Ensign, L.M.; Lai, S.K.; Wang, Y.-Y.; Yang, M.; Mert, O.; Hanes, J.; Cone, R. Pretreatment of Human Cervicovaginal Mucus with Pluronic F127 Enhances Nanoparticle Penetration without Compromising Mucus Barrier Properties to Herpes Simplex Virus. Biomacromolecules 2014, 15, 4403–4409. [Google Scholar] [CrossRef] [Green Version]
- Afolayan, F.I.D.; Erinwusi, B.; Oyeyemi, O.T. Immunomodulatory activity of curcumin-entrapped poly d, l-lactic-co-glycolic acid nanoparticles in mice. Integr. Med. Res. 2018, 7, 168–175. [Google Scholar] [CrossRef]
- You, H.; Zheng, S.; Huang, Z.; Lin, Y.; Shen, Q.; Zheng, C. Herpes Simplex Virus 1 Tegument Protein UL46 Inhibits TANK-Binding Kinase 1-Mediated Signaling. mBio 2019, 10, e00919-19. [Google Scholar] [CrossRef] [Green Version]
- Wagner, M.J.; Smiley, J.R. Herpes simplex virus requires VP11/12 to activate Src family kinase-phosphoinositide 3-kinase-Akt signaling. J. Virol. 2011, 85, 2803–2812. [Google Scholar] [CrossRef] [Green Version]
- Shahnazaryan, D.; Khalil, R.; Wynne, C.; Jefferies, C.A.; Gabhann-Dromgoole, J.N.; Murphy, C.C. Herpes simplex virus 1 targets IRF7 via ICP0 to limit type I IFN induction. Sci. Rep. 2020, 10, 22216. [Google Scholar] [CrossRef] [PubMed]
- Shuvo, P.A.; Roy, A.; Dhawan, M.; Chopra, H.; Emran, T. Recent outbreak of monkeypox: Overview of signs, symptoms, preventive measures, and guideline for supportive management. Int. J. Surg. 2022, 105, 106877. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Siman-Tov, G.; Hall, G.; Bhalla, N.; Narayanan, A. Human Antimicrobial Peptides as Therapeutics for Viral Infections. Viruses 2019, 11, 704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zannella, C.; Chianese, A.; Palomba, L.; Marcocci, M.E.; Bellavita, R.; Merlino, F.; Grieco, P.; Folliero, V.; De Filippis, A.; Mangoni, M.; et al. Broad-Spectrum Antiviral Activity of the Amphibian Antimicrobial Peptide Temporin L and Its Analogs. Int. J. Mol. Sci. 2022, 23, 2060. [Google Scholar] [CrossRef]
- Chianese, A.; Zannella, C.; Monti, A.; De Filippis, A.; Doti, N.; Franci, G.; Galdiero, M. The Broad-Spectrum Antiviral Potential of the Amphibian Peptide AR-23. Int. J. Mol. Sci. 2022, 23, 883. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, A.; Moghadamtousi, S.Z.; Abubakar, S.; Zandi, K. Antiviral potential of algae polysaccharides isolated from marine sources: A review. BioMed Res. Int. 2015, 2015, 825203. [Google Scholar]
- Vo, T.-S.; Ngo, D.-H.; Van Ta, Q.; Kim, S.-K. Marine organisms as a therapeutic source against herpes simplex virus infection. Eur. J. Pharm. Sci. 2011, 44, 11–20. [Google Scholar] [CrossRef]
- Li, W.; Xu, C.; Hao, C.; Zhang, Y.; Wang, Z.; Wang, S.; Wang, W. Inhibition of herpes simplex virus by myricetin through targeting viral gD protein and cellular EGFR/PI3K/Akt pathway. Antivir. Res. 2020, 177, 104714. [Google Scholar] [CrossRef]
- Schroeder, H.A.; Nunn, K.L.; Schaefer, A.; Henry, C.E.; Lam, F.; Pauly, M.H.; Whaley, K.J.; Zeitlin, L.; Humphrys, M.S.; Ravel, J.; et al. Herpes simplex virus-binding IgG traps HSV in human cervicovaginal mucus across the menstrual cycle and diverse vaginal microbial composition. Mucosal Immunol. 2018, 11, 1477–1486. [Google Scholar] [CrossRef] [Green Version]
- Mishra, K.P.; Sharma, N.; Diwaker, D.; Ganju, L.; Singh, S.B. Plant derived antivirals: A potential source of drug development. J. Virol. Antivir. Res 2013, 2, 2. [Google Scholar]
- Gebre, M.S.; Brito, L.A.; Tostanoski, L.H.; Edwards, D.K.; Carfi, A.; Barouch, D.H. Novel approaches for vaccine development. Cell 2021, 184, 1589–1603. [Google Scholar] [CrossRef] [PubMed]
- van de Sand, L.; Bormann, M.; Schmitz, Y.; Heilingloh, C.; Witzke, O.; Krawczyk, A. Antiviral Active Compounds Derived from Natural Sources against Herpes Simplex Viruses. Viruses 2021, 13, 1386. [Google Scholar] [CrossRef] [PubMed]
- Hutson, C.L.; Kondas, A.V.; Mauldin, M.R.; Doty, J.B.; Grossi, I.M.; Morgan, C.N.; Ostergaard, S.D.; Hughes, C.M.; Nakazawa, Y.; Kling, C.; et al. Pharmacokinetics and efficacy of a potential smallpox therapeutic, brincidofovir, in a lethal monkeypox virus animal model. mSphere 2021, 6, e00927-20. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Su, H.-H.; Yang, Y.; Hu, Y.; Zhang, L.; Blancafort, P.; Huang, L. Systemic Delivery of Modified mRNA Encoding Herpes Simplex Virus 1 Thymidine Kinase for Targeted Cancer Gene Therapy. Mol. Ther. 2013, 21, 358–367. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, N.; Shimizu, T.; Hirano, D.; Ishikane, M.; Kataoka, Y. Lack of clinical evidence of antiviral therapy for human monkeypox: A scoping review. J. Infect. Chemother. 2022, 29, 228–231. [Google Scholar] [CrossRef]
- Yuan, J.; Yu, J.; Huang, Y.; He, Z.; Luo, J.; Wu, Y.; Zheng, Y.; Wu, J.; Zhu, X.; Wang, H.; et al. Antibiotic fidaxomicin is an RdRp inhibitor as a potential new therapeutic agent against Zika virus. BMC Med. 2020, 18, 1–16. [Google Scholar] [CrossRef]
- Antoine, T.E.; Mishra, Y.K.; Trigilio, J.; Tiwari, V.; Adelung, R.; Shukla, D. Prophylactic, therapeutic and neutralizing effects of zinc oxide tetrapod structures against herpes simplex virus type-2 infection. Antivir. Res. 2012, 96, 363–375. [Google Scholar] [CrossRef] [Green Version]
- Skoberne, M.; Cardin, R.; Lee, A.; Kazimirova, A.; Zielinski, V.; Garvie, D.; Lundberg, A.; Larson, S.; Bravo, F.J.; Bernstein, D.I.; et al. An Adjuvanted Herpes Simplex Virus 2 Subunit Vaccine Elicits a T Cell Response in Mice and Is an Effective Therapeutic Vaccine in Guinea Pigs. J. Virol. 2013, 87, 3930–3942. [Google Scholar] [CrossRef] [Green Version]
Sr. No. | Vaccination Protocol | Vaccine Candidates under Trial | Refs. |
---|---|---|---|
1. | Subunit vaccines | GEN-003 (gD2/ICP4 + matrix M2 adjuvant) gD2/gC2/gE2 (glycoprotein target) Monovalent gD2 vaccine and gD2 + alum Subunit HSV-2 Bivalent vaccine containing (gD2 and gB2) + nanoemulsion NE01 adjuvant Bivalent vaccine + MF59 adjuvants Subunit HSV-2 trivalent vaccine containing (gC2, gD2, and gE2) + CpG (5′-TCCATGACGTTCCTGACGTT-3′)/alum Chiron vaccine containing gB2 and gD2 (with deletions at amino acid 696 and 302 respectively) + adjuvant MF59 and MTP-PE Adjuvant MF59 alone | [42,50,51,52,53] |
2. | Peptide vaccines | HerpV + (HSP + 32–35-mer peptides + QS-21 adjuvant and heat-shock proteins) Vaccine based on immune-dominant CD8 and CTL neutralizing epitope T-helper epitope adjuvants Heat-shock protein adjuvants HLA (A*0201)-restricted epitope in monovalent gB2 + HSP adjuvant | [25,27,31,37,54,55,56,57,58] |
3. | DNA vaccines | Codon optimized polynucleotide vaccine: gD2 codon + tagged ubiquitin gD/UL46, + Vaxfectin® adjuvant Polyvalent HSV-2 vaccine containing glycoproteins (g) B2, C2, D2, E2, H2, L2, and I2 + IL-12 adjuvant Nucleoside-modified mRNA encoding gC2, gD2, and gE2 + lipid nanoparticles (LNP) (MVA) vector encoding glycoprotein (gD2) VCL-HB01/HM01 | [28,29,59,60,61,62] |
4. | Live attenuated or replication deficient virus-based vaccines | HSV529 (HSV-2 having deletions in UL5 and UL29) ΔgD2 (HSV-2 with deleted Gd2) HF10 (HSV-1 with mutations in regions UL43, 49.5, 55, UL56, and LAT) HSV-2 0ΔNLS (HSV-2 with deletion of ICPO) RVx201 (derivative of HSV-2 0∆NLS) AD472 (HSV-2 with mutations in g34.5, UL43.5, 55–56, US10, 11, and US12) Gd2 dominant neg HSV-2 (CJ2-gD2) (HSV-GS3 and HSV-GS7) SP0148 (ACAM/HSV 529), replication-deficient HSV-2 (with deletions in regions UL5 and UL29) VC2-HSV-1 vaccine (with deletions in region of gK aa31-68 and UL20 aa4-22) RVx1001 (HSV-1 VC2) R2 non-neuroinvasive HSV-1 vaccine (HSV1-GS6264, 5 missense mutations in UL37) gH-deleted HSV-2 vaccine HSV-2 DISC Thymidine kinase-deficient mutants of HSV-1 and HSV-2 RAV 9395 with deletions of UL55 and UL56 Strain R7020, with deletions extending from UL54 (encoding ICP27) via promotor ICP4 replaced by gD2, G2, I2, and a part of gE2. | [32,38,43,62,63,64,65] |
5. | Prime-pull strategy | live attenuated HSV-2 + topical intravaginal CXCL9/CXCL10 chemokine activation Epitopes based on CD8 + T-cell peptide (UL44 aa400–408, UL9 aa196–204, and UL25 aa572–580) + adjuvant CpG (Prime) and AAV8 vectored CXCL10 (Pull) | [32,38,64,65] |
6. | Inactivated vaccine candidates | Formalin inactivated HSV-2 + MPL/alum | [66] |
7. | Viral vector agents | gB1 of HSV-1 expressing Lentivirus vector gB1s-NISV (recombinant HSV-1 Gb+ intranasal nonionic surfactant vesicles) Plasmid based vaccine VCL-HB01 encoding HSV-2 proteins + Vaxfectin | [25,67,68,69,70,71] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malik, S.; Sah, R.; Ahsan, O.; Muhammad, K.; Waheed, Y. Insights into the Novel Therapeutics and Vaccines against Herpes Simplex Virus. Vaccines 2023, 11, 325. https://doi.org/10.3390/vaccines11020325
Malik S, Sah R, Ahsan O, Muhammad K, Waheed Y. Insights into the Novel Therapeutics and Vaccines against Herpes Simplex Virus. Vaccines. 2023; 11(2):325. https://doi.org/10.3390/vaccines11020325
Chicago/Turabian StyleMalik, Shiza, Ranjit Sah, Omar Ahsan, Khalid Muhammad, and Yasir Waheed. 2023. "Insights into the Novel Therapeutics and Vaccines against Herpes Simplex Virus" Vaccines 11, no. 2: 325. https://doi.org/10.3390/vaccines11020325
APA StyleMalik, S., Sah, R., Ahsan, O., Muhammad, K., & Waheed, Y. (2023). Insights into the Novel Therapeutics and Vaccines against Herpes Simplex Virus. Vaccines, 11(2), 325. https://doi.org/10.3390/vaccines11020325