Tixagevimab and Cilgavimab (Evusheld™) Prophylaxis Prevents Breakthrough COVID-19 Infections in Immunosuppressed Population: 6-Month Prospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Statistical Analyses
3. Results
3.1. Demographic Characteristics
3.2. Breakthrough COVID-19 Infections in the Study Populations
3.3. Longitudinal Antibody Changes in pwNID Treated with Tixagevimab and Cilgavimab
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef]
- Harvey, W.T.; Carabelli, A.M.; Jackson, B.; Gupta, R.K.; Thomson, E.C.; Harrison, E.M.; Ludden, C.; Reeve, R.; Rambaut, A.; Peacock, S.J.; et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 2021, 19, 409–424. [Google Scholar] [CrossRef]
- Fung, M.; Babik, J.M. COVID-19 in Immunocompromised Hosts: What We Know So Far. Clin. Infect. Dis. 2021, 72, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Baek, M.S.; Lee, M.-T.; Kim, W.-Y.; Choi, J.C.; Jung, S.-Y. COVID-19-related outcomes in immunocompromised patients: A nationwide study in Korea. PLoS ONE 2021, 16, e0257641. [Google Scholar] [CrossRef]
- Iaffaldano, P.; Lucisano, G.; Manni, A.; Paolicelli, D.; Patti, F.; Capobianco, M.; Brescia Morra, V.; Sola, P.; Pesci, I.; Lus, G.; et al. Risk of Getting COVID-19 in People with Multiple Sclerosis: A Case-Control Study. Neurol. Neuroimmunol. Neuroinflamm. 2022, 9, e1141. [Google Scholar] [CrossRef]
- Sormani, M.P.; De Rossi, N.; Schiavetti, I.; Carmisciano, L.; Cordioli, C.; Moiola, L.; Radaelli, M.; Immovilli, P.; Capobianco, M.; Trojano, M.; et al. Disease-Modifying Therapies and Coronavirus Disease 2019 Severity in Multiple Sclerosis. Ann. Neurol. 2021, 89, 780–789. [Google Scholar] [CrossRef] [PubMed]
- Middleton, R.M.; Craig, E.M.; Rodgers, W.J.; Tuite-Dalton, K.; Garjani, A.; Evangelou, N.; das Nair, R.; Hunter, R.; Tallantyre, E.C.; Cauchi, M.; et al. COVID-19 in Multiple Sclerosis: Clinically reported outcomes from the UK Multiple Sclerosis Register. Mult. Scler. Relat. Disord. 2021, 56, 103317. [Google Scholar] [CrossRef] [PubMed]
- Spelman, T.; Forsberg, L.; McKay, K.; Glaser, A.; Hillert, J. Increased rate of hospitalisation for COVID-19 among rituximab-treated multiple sclerosis patients: A study of the Swedish multiple sclerosis registry. Mult. Scler. 2022, 28, 1051–1059. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.E.; Madhavan, M.; Gratch, D.; Patel, A.; Saha, V.; Sammarco, C.; Rimler, Z.; Zuniga, G.; Gragui, D.; Charvet, L.; et al. Risk of COVID-19 infection and severe disease in MS patients on different disease-modifying therapies. Mult. Scler. Relat. Disord. 2022, 60, 103735. [Google Scholar] [CrossRef]
- Jakimovski, D.; Weinstock-Guttman, B.; Ramanathan, M.; Dwyer, M.G.; Zivadinov, R. Infections, Vaccines and Autoimmunity: A Multiple Sclerosis Perspective. Vaccines 2020, 8, 50. [Google Scholar] [CrossRef] [Green Version]
- Bar-Or, A.; Calkwood, J.C.; Chognot, C.; Evershed, J.; Fox, E.J.; Herman, A.; Manfrini, M.; McNamara, J.; Robertson, D.S.; Stokmaier, D.; et al. Effect of ocrelizumab on vaccine responses in patients with multiple sclerosis: The VELOCE study. Neurology 2020, 95, e1999–e2008. [Google Scholar] [CrossRef]
- Holroyd, K.B.; Healy, B.C.; Conway, S.; Houtchens, M.; Bakshi, R.; Bhattacharyya, S.; Bose, G.; Galetta, K.; Kaplan, T.; Severson, C.; et al. Humoral response to COVID-19 vaccination in MS patients on disease modifying therapy: Immune profiles and clinical outcomes. Mult. Scler. Relat. Disord. 2022, 67, 104079. [Google Scholar] [CrossRef]
- Sormani, M.P.; Inglese, M.; Schiavetti, I.; Carmisciano, L.; Laroni, A.; Lapucci, C.; Da Rin, G.; Serrati, C.; Gandoglia, I.; Tassinari, T.; et al. Effect of SARS-CoV-2 mRNA vaccination in MS patients treated with disease modifying therapies. EBioMedicine 2021, 72, 103581. [Google Scholar] [CrossRef] [PubMed]
- Jakimovski, D.; Zakalik, K.; Awan, S.; Kavak, K.S.; Pennington, P.; Hojnacki, D.; Kolb, C.; Lizarraga, A.A.; Eckert, S.P.; Sarrosa, R.; et al. COVID-19 Vaccination in Multiple Sclerosis and Inflammatory Diseases: Effects from Disease-Modifying Therapy, Long-Term Seroprevalence and Breakthrough Infections. Vaccines 2022, 10, 695. [Google Scholar] [CrossRef] [PubMed]
- Weinstock-Guttman, B.; Jakimovski, D. Late-onset cutaneous reaction to BNT162b2 mRNA COVID-19 vaccine in an immunocompromised patient. Mult. Scler. J. 2021, 27, 2291–2292. [Google Scholar] [CrossRef] [PubMed]
- Levin, M.J.; Ustianowski, A.; De Wit, S.; Launay, O.; Avila, M.; Templeton, A.; Yuan, Y.; Seegobin, S.; Ellery, A.; Levinson, D.J.; et al. Intramuscular AZD7442 (Tixagevimab-Cilgavimab) for Prevention of COVID-19. N. Engl. J. Med. 2022, 386, 2188–2200. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, H.; Hobbs, F.D.R.; Padilla, F.; Arbetter, D.; Templeton, A.; Seegobin, S.; Kim, K.; Campos, J.A.S.; Arends, R.H.; Brodek, B.H.; et al. Efficacy and safety of intramuscular administration of tixagevimab-cilgavimab for early outpatient treatment of COVID-19 (TACKLE): A phase 3, randomised, double-blind, placebo-controlled trial. Lancet Respir. Med. 2022, 10, 985–996. [Google Scholar] [CrossRef]
- Akinosoglou, K.; Rigopoulos, E.-A.; Kaiafa, G.; Daios, S.; Karlafti, E.; Ztriva, E.; Polychronopoulos, G.; Gogos, C.; Savopoulos, C. Tixagevimab/Cilgavimab in SARS-CoV-2 Prophylaxis and Therapy: A Comprehensive Review of Clinical Experience. Viruses 2023, 15, 118. [Google Scholar] [CrossRef]
- Bernard, R. Fundamentals of Biostatistics, 7th ed.; Brooks/Cole Cengage Learning: Boston, MA, USA, 2011. [Google Scholar]
- Tegally, H.; Moir, M.; Everatt, J.; Giovanetti, M.; Scheepers, C.; Wilkinson, E.; Subramoney, K.; Makatini, Z.; Moyo, S.; Amoako, D.G.; et al. Emergence of SARS-CoV-2 Omicron lineages BA.4 and BA.5 in South Africa. Nat. Med. 2022, 28, 1785–1790. [Google Scholar] [CrossRef]
- Bruel, T.; Hadjadj, J.; Maes, P.; Planas, D.; Seve, A.; Staropoli, I.; Guivel-Benhassine, F.; Porrot, F.; Bolland, W.-H.; Nguyen, Y.; et al. Serum neutralization of SARS-CoV-2 Omicron sublineages BA.1 and BA.2 in patients receiving monoclonal antibodies. Nat. Med. 2022, 28, 1297–1302. [Google Scholar] [CrossRef]
- Bruel, T.; Stéfic, K.; Nguyen, Y.; Toniutti, D.; Staropoli, I.; Porrot, F.; Guivel-Benhassine, F.; Bolland, W.H.; Planas, D.; Hadjadj, J.; et al. Longitudinal analysis of serum neutralization of SARS-CoV-2 Omicron BA.2, BA.4, and BA.5 in patients receiving monoclonal antibodies. Cell Rep. Med. 2022, 3, 100850. [Google Scholar] [CrossRef] [PubMed]
- Starr, T.N.; Czudnochowski, N.; Liu, Z.; Zatta, F.; Park, Y.-J.; Addetia, A.; Pinto, D.; Beltramello, M.; Hernandez, P.; Greaney, A.J.; et al. SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape. Nature 2021, 597, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Touret, F.; Baronti, C.; Pastorino, B.; Villarroel, P.M.S.; Ninove, L.; Nougairède, A.; de Lamballerie, X. In vitro activity of therapeutic antibodies against SARS-CoV-2 Omicron BA.1, BA.2 and BA.5. Sci. Rep. 2022, 12, 12609. [Google Scholar] [CrossRef]
- Al Jurdi, A.; Morena, L.; Cote, M.; Bethea, E.; Azzi, J.; Riella, L.V. Tixagevimab/cilgavimab pre-exposure prophylaxis is associated with lower breakthrough infection risk in vaccinated solid organ transplant recipients during the omicron wave. Am. J. Transplant. 2022, 22, 3130–3136. [Google Scholar] [CrossRef]
- Kertes, J.; Shapiro Ben David, S.; Engel-Zohar, N.; Rosen, K.; Hemo, B.; Kantor, A.; Adler, L.; Shamir Stein, N.; Mizrahi Reuveni, M.; Shahar, A. Association Between AZD7442 (Tixagevimab-Cilgavimab) Administration and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection, Hospitalization, and Mortality. Clin. Infect. Dis. 2022, ciac625. [Google Scholar] [CrossRef] [PubMed]
- Jondreville, L.; D’Aveni, M.; Labussière-Wallet, H.; Le Bourgeois, A.; Villate, A.; Berceanu, A.; Bezsera, S.M.; Thiebaut, A.; Boissard-Simonet, M.; Legrand, M.; et al. Pre-exposure prophylaxis with tixagevimab/cilgavimab (AZD7442) prevents severe SARS-CoV-2 infection in recipients of allogeneic hematopoietic stem cell transplantation during the Omicron wave: A multicentric retrospective study of SFGM-TC. J. Hematol. Oncol. 2022, 15, 169. [Google Scholar] [CrossRef] [PubMed]
- Cochran, W.; Salto-Alejandre, S.; Barker, L.; Langlee, J.; Freed, K.; Carter, D.; Bannon, J.; Goddard, D.; Mostafa, H.; Werbel, W.; et al. COVID-19 Outcomes in Solid Organ Transplant Recipients Who Received Tixagevimab-cilgavimab Prophylaxis and/or Bebtelovimab Treatment in a Nurse-driven Monoclonal Antibody Program During the Omicron Surge. Transplantation 2022, 107, e60–e61. [Google Scholar] [CrossRef]
- Zerbit, J.; Detroit, M.; Meyer, A.; Decroocq, J.; Deau-Fischer, B.; Deschamps, P.; Birsen, R.; Mondesir, J.; Franchi, P.; Miekoutima, E.; et al. Patients with Hematological Malignancies Treated with T-Cell or B-Cell Immunotherapy Remain at High Risk of Severe Forms of COVID-19 in the Omicron Era. Viruses 2022, 14, 2377. [Google Scholar] [CrossRef]
- Davis, J.A.; Granger, K.; Roubal, K.; Smith, D.; Gaffney, K.J.; McGann, M.; Cendagorta, A.M.; Thurlapati, A.; Herbst, A.; Hendrickson, L.; et al. Efficacy of tixagevimab-cilgavimab in preventing SARS-CoV-2 for patients with B-cell malignancies. Blood 2022, 141, 200–203. [Google Scholar] [CrossRef]
- Najjar-Debbiny, R.; Gronich, N.; Weber, G.; Stein, N.; Saliba, W. Effectiveness of Evusheld in Immunocompromised Patients: Propensity Score-Matched Analysis. Clin. Infect. Dis. 2022, ciac855. [Google Scholar] [CrossRef]
- Conte, W.L.; Golzarri-Arroyo, L. Tixagevimab and Cilgavimab (Evusheld) boosts antibody levels to SARS-CoV-2 in patients with multiple sclerosis on b-cell depleters. Mult. Scler. Relat. Disord. 2022, 63, 103905. [Google Scholar] [CrossRef] [PubMed]
- Ocon, A.J.; Mustafa, S.S. Real-World Experience of Tixagevimab and Cilgavimab (Evusheld) in Rheumatologic Patients on Rituximab. J. Clin. Rheumatol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Aqeel, F.; Geetha, D. Tixagevimab and Cilgavimab (Evusheld©) in Rituximab-treated ANCA Vasculitis Patients. Kidney Int. Rep. 2022, 7, 2537–2538. [Google Scholar] [CrossRef]
- Piszczek, J.; Murthy, S.; Afra, K. Cardiac and vascular serious adverse events following tixagevimab-cilgavimab. Lancet Respir. Med. 2022, 11, e5–e6. [Google Scholar] [CrossRef]
- Maselkar, S.; Kiazand, A.; Templeton, A.; Montgomery, H.; Esser, M.T. Cardiac and vascular serious adverse events following tixagevimab-cilgavimab—Author’s reply. Lancet Respir. Med. 2022, 11, e7–e8. [Google Scholar] [CrossRef] [PubMed]
- Ginde, A.A.; Paredes, R.; Murray, T.A.; Engen, N.; Grandits, G.; Vekstein, A.; Ivey, N.; Mourad, A.; Sandkovsky, U.; Gottlieb, R.L.; et al. Tixagevimab-cilgavimab for treatment of patients hospitalised with COVID-19: A randomised, double-blind, phase 3 trial. Lancet Respir. Med. 2022, 10, 972–984. [Google Scholar] [CrossRef]
Demographic and Clinical Characteristics | Evusheld™ Group * (n = 31) | Total Control Group (n = 126) | Seropositive Control Group (n = 38) | Seronegative Control Group (n = 88) | Evusheld™ vs. All Controls p-Value | Evusheld™ vs. Seronegative Controls p-Value |
---|---|---|---|---|---|---|
Female, n (%) | 19 (61.3) | 86 (68.3) | 26 (68.4) | 60 (68.2) | 0.545 | 0.488 |
Age, mean (SD) | 55.1 (10.3) | 51.2 (12.4) | 49.5 (13.9) | 51.9 (11.7) | 0.141 | 0.303 |
Cardiovascular comorbidities, n (%) | 17 (54.8) | 38 (30.2) | 14 (36.8) | 24 (27.3) | 0.02 | 0.005 |
SARS-CoV-2 vaccine | ||||||
BNT162b, n (%) | 16 (51.6) | 67 (53.2) | 17 (44.7) | 50 (56.8) | 0.533 | 0.444 |
mRNA 1273, n (%) | 12 (38.7) | 50 (39.7) | 21 (55.3) | 29 (32.9) | ||
Ad26.COV2.S, n (%) | 1 (3.2) | 9 (8.1) | - | 9 (10.3) | ||
Seroconversion, n (%) | 5 (16.1) | 38 (30.2) | 38 (100) | - | 0.117 | - |
DMT at the time of vaccination | ||||||
Anti-CD20 mAbs, n (%) | 24 (80.0) | 103 (81.7) | 30 (78.9) | 73 (82.9) | <0.001 | 0.002 |
S1Ps, n (%) | 2 (6.7) | 23 (18.3) | 8 (21.1) | 15 (17.1) | ||
No DMT | 4 (13.3) | - | - | - |
Post-Evusheld™ COVID-19 Breakthrough Infections | Evusheld™ Group * (n = 31) | Total Control Group (n = 126) | Seropositive Control Group (n = 38) | Seronegative Control Group (n = 88) | Evusheld™ vs. All Controls p-Value | Evusheld™ vs. Seronegative Controls p-Value |
---|---|---|---|---|---|---|
Breakthrough infection, n (%) | 2 (6.5) | 43 (34.1) | 9 (23.7) | 34 (38.6) | 0.002 | <0.001 |
Moderate/Severe COVID-19, n (%) | 0 (0) | 9 (20.9) | 3 (7.9) | 6 (6.8) | 0.207 | 0.338 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakimovski, D.; Eckert, S.P.; Mirmosayyeb, O.; Thapa, S.; Pennington, P.; Hojnacki, D.; Weinstock-Guttman, B. Tixagevimab and Cilgavimab (Evusheld™) Prophylaxis Prevents Breakthrough COVID-19 Infections in Immunosuppressed Population: 6-Month Prospective Study. Vaccines 2023, 11, 350. https://doi.org/10.3390/vaccines11020350
Jakimovski D, Eckert SP, Mirmosayyeb O, Thapa S, Pennington P, Hojnacki D, Weinstock-Guttman B. Tixagevimab and Cilgavimab (Evusheld™) Prophylaxis Prevents Breakthrough COVID-19 Infections in Immunosuppressed Population: 6-Month Prospective Study. Vaccines. 2023; 11(2):350. https://doi.org/10.3390/vaccines11020350
Chicago/Turabian StyleJakimovski, Dejan, Svetlana P. Eckert, Omid Mirmosayyeb, Sangharsha Thapa, Penny Pennington, David Hojnacki, and Bianca Weinstock-Guttman. 2023. "Tixagevimab and Cilgavimab (Evusheld™) Prophylaxis Prevents Breakthrough COVID-19 Infections in Immunosuppressed Population: 6-Month Prospective Study" Vaccines 11, no. 2: 350. https://doi.org/10.3390/vaccines11020350
APA StyleJakimovski, D., Eckert, S. P., Mirmosayyeb, O., Thapa, S., Pennington, P., Hojnacki, D., & Weinstock-Guttman, B. (2023). Tixagevimab and Cilgavimab (Evusheld™) Prophylaxis Prevents Breakthrough COVID-19 Infections in Immunosuppressed Population: 6-Month Prospective Study. Vaccines, 11(2), 350. https://doi.org/10.3390/vaccines11020350