Secreted Aspartyl Proteinases Targeted Multi-Epitope Vaccine Design for Candida dubliniensis Using Immunoinformatics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recovery and Analysis of SAPs for C. dubliniensis
2.2. Designing a Vaccine Candidate
2.2.1. Predicting Epitopes from SAPs
2.2.2. Selection of the Best Epitopes against C. dubliniensis
2.2.3. Analysis of the Population Coverage of the Selected Epitopes
2.2.4. Designing the Final Vaccine Construct
2.3. Molecular Modeling, Docking, and Molecular Dynamics Simulations Study
2.4. In silico Immunosimulation of the C. dubliniensis Vaccine Candidate
3. Results
3.1. C. dubliniensis SAPs Sequence Retrieval and Analysis
3.2. Epitope Prediction from SAPs for Vaccine Candidate Design
3.3. Best Epitopes Prediction for Vaccine Candidate Design against C. dubliniensis and Population Coverage Analysis
3.4. Design of Final C. dubliniensis Vaccine Construct
3.5. Modeling and Docking of TLR5 Fungal–MEV Construct
3.6. Stability of Vaccine Construct Complexed with TLR5 Receptor
3.7. In Silico Immunosimulation of the C. dubliniensis Vaccine Candidate
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, Z.; Ahmad, S.; Joseph, L.; Chandy, R. Candida Dubliniensis: An Appraisal of Its Clinical Significance as a Bloodstream Pathogen. PLoS ONE 2012, 7, e32952. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, D.J.; Westerneng, T.J.; Haynes, K.A.; Bennett, D.E.; Coleman, D.C. Candida Dubliniensis Sp. Nov.: Phenotypic and Molecular Characterization of a Novel Species Associated with Oral Candidosis in HIV-Infected Individuals. Microbiology 1995, 141, 1507–1521. [Google Scholar] [CrossRef] [PubMed]
- Arendrup, M.C.; Bruun, B.; Christensen, J.J.; Fuursted, K.; Johansen, H.K.; Kjældgaard, P.; Knudsen, J.D.; Kristensen, L.; Møller, J.; Nielsen, L.; et al. National Surveillance of Fungemia in Denmark (2004 to 2009). J. Clin. Microbiol. 2011, 49, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Fotedar, R.; Al Hedaithy, S.S.A. Candida Dubliniensis at a University Hospital in Saudi Arabia. J. Clin. Microbiol. 2003, 41, 1907–1911. [Google Scholar] [CrossRef]
- Korem, M.; Cohen, M.J.; Michael-Gayego, A.; Castiel, D.; Assous, M.V.; Amit, S. Misidentification of Candida Dubliniensis Isolates with the VITEK MS. J. Mycol. Medicale 2021, 31, 101107. [Google Scholar] [CrossRef]
- Petty, L.A.; Gallan, A.J.; Detrick, J.A.; Ridgway, J.P.; Mueller, J.; Pisano, J. Candida Dubliniensis Pneumonia: A Case Report and Review of Literature. Mycopathologia 2016, 181, 765–768. [Google Scholar] [CrossRef]
- Molkenthin, F.; Hertel, M.; Neumann, K.; Schmidt-Westhausen, A.M. Factors Influencing the Presence of Candida Dubliniensis and Other Non-Albicans Species in Patients with Oral Lichen Planus: A Retrospective Observational Study. Clin. Oral Investig. 2022, 26, 333–342. [Google Scholar] [CrossRef]
- Patil, A.; Boparai, N.K.; Shankargouda, S.B.; Doddamani, M.H.; Vora, A.; Dave, T. Candida Dubliniensis: The New Culprit on the Block Causing Denture Stomatitis? An In Vivo Study. J. Contemp. Dent. Pract. 2021, 22, 517–521. [Google Scholar] [CrossRef]
- Salzer, H.J.F.; Rolling, T.; Klupp, E.-M.; Schmiedel, S. Hematogenous Dissemination of Candida Dubliniensis Causing Spondylodiscitis and Spinal Abscess in a HIV-1 and HCV-Coinfected Patient. Med. Mycol. Case Rep. 2015, 8, 17–20. [Google Scholar] [CrossRef]
- Shrestha, A.; Munankarmi, R. Candida Dubliniensis Tricuspid Valve Endocarditis. Pres. Comments 2019, 72, 550–551. [Google Scholar]
- Tahir, M.; Peseski, A.M.; Jordan, S.J. Case Report: Candida Dubliniensis as a Cause of Chronic Meningitis. Front. Neurol. 2020, 11, 601242. [Google Scholar] [CrossRef] [PubMed]
- Willis, A.M.; Coulter, W.A.; Sullivan, D.J.; Coleman, D.C.; Hayes, J.R.; Bell, P.M.; Lamey, P.J. Isolation of C. Dubliniensis from Insulin-Using Diabetes Mellitus Patients. J. Oral Pathol. Med. Off. Publ. Int. Assoc. Oral Pathol. Am. Acad. Oral Pathol. 2000, 29, 86–90. [Google Scholar] [CrossRef]
- Kakehi, A.; Hagiya, H.; Iio, K.; Nakano, Y.; Ihoriya, H.; Taira, Y.; Nakamoto, K.; Hasegawa, K.; Higashikage, A.; Otsuka, F. Candida Dubliniensis Fungemia in a Patient with Severe COVID-19: A Case Report. J. Infect. Chemother. Off. J. Jpn. Soc. Chemother. 2022, 28, 1433–1435. [Google Scholar] [CrossRef] [PubMed]
- Coleman, D.C.; Moran, G.P.; McManus, B.A.; Sullivan, D.J. Mechanisms of Antifungal Drug Resistance in Candida Dubliniensis. Future Microbiol. 2010, 5, 935–949. [Google Scholar] [CrossRef]
- Parra-Ortega, B.; Cruz-Torres, H.; Villa-Tanaca, L.; Hernández-Rodríguez, C. Phylogeny and Evolution of the Aspartyl Protease Family from Clinically Relevant Candida Species. Mem. Inst. Oswaldo Cruz 2009, 104, 505–512. [Google Scholar] [CrossRef]
- Loaiza-Loeza, S.; Parra-Ortega, B.; Cancino-Díaz, J.C.; Illades-Aguiar, B.; Hernández-Rodríguez, C.H.; Villa-Tanaca, L. Differential Expression of Candida Dubliniensis-Secreted Aspartyl Proteinase Genes (CdSAP1–4) under Different Physiological Conditions and during Infection of a Keratinocyte Culture. FEMS Immunol. Med. Microbiol. 2009, 56, 212–222. [Google Scholar] [CrossRef]
- Jackson, A.P.; Gamble, J.A.; Yeomans, T.; Moran, G.P.; Saunders, D.; Harris, D.; Aslett, M.; Barrell, J.F.; Butler, G.; Citiulo, F.; et al. Comparative Genomics of the Fungal Pathogens Candida Dubliniensis and Candida Albicans. Genome Res. 2009, 19, 2231–2244. [Google Scholar] [CrossRef] [PubMed]
- Naglik, J.R.; Challacombe, S.J.; Hube, B. Candida Albicans Secreted Aspartyl Proteinases in Virulence and Pathogenesis. Microbiol. Mol. Biol. Rev. 2003, 67, 400–428. [Google Scholar] [CrossRef]
- De Bernardis, F.; Boccanera, M.; Adriani, D.; Girolamo, A.; Cassone, A. Intravaginal and Intranasal Immunizations Are Equally Effective in Inducing Vaginal Antibodies and Conferring Protection against Vaginal Candidiasis. Infect. Immun. 2002, 70, 2725–2729. [Google Scholar] [CrossRef]
- De Bernardis, F.; Amacker, M.; Arancia, S.; Sandini, S.; Gremion, C.; Zurbriggen, R.; Moser, C.; Cassone, A. A Virosomal Vaccine against Candidal Vaginitis: Immunogenicity, Efficacy and Safety Profile in Animal Models. Vaccine 2012, 30, 4490–4498. [Google Scholar] [CrossRef]
- Sandini, S.; La Valle, R.; Deaglio, S.; Malavasi, F.; Cassone, A.; De Bernardis, F. A Highly Immunogenic Recombinant and Truncated Protein of the Secreted Aspartic Proteases Family (RSap2t) of Candida Albicans as a Mucosal Anticandidal Vaccine. FEMS Immunol. Med. Microbiol. 2011, 62, 215–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Su, Q.; Dong, S.; Shi, H.; Gao, X.; Wang, L. Hybrid Phage Displaying SLAQVKYTSASSI Induces Protection against Candida Albicans Challenge in BALB/c Mice. Hum. Vaccines Immunother. 2014, 10, 1057–1063. [Google Scholar] [CrossRef]
- Shukla, M.; Rohatgi, S. Vaccination with Secreted Aspartyl Proteinase 2 Protein from Candida Parapsilosis Can Enhance Survival of Mice during C. Tropicalis-Mediated Systemic Candidiasis. Infect. Immun. 2020, 88, e00312-20. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, N.; Singh, A.; Upadhyay, A.K.; Mannan, M.A. Design of a Multi-Epitope Vaccine against the Pathogenic Fungi Candida Tropicalis Using an in Silico Approach. J. Genet. Eng. Biotechnol. 2022, 20, 140. [Google Scholar] [CrossRef]
- Shukla, M.; Chandley, P.; Rohatgi, S. P120 Vaccine Induced Protection by Secreted Aspartyl Proteinase 2 from Candida Parapsilosis in Candida Tropicalis Mediated Murine Systemic Candidiasis: A Role of B-Cells and Antibodies. Med. Mycol. 2022, 60, myac072P120. [Google Scholar] [CrossRef]
- Doytchinova, I.A.; Flower, D.R. VaxiJen: A Server for Prediction of Protective Antigens, Tumour Antigens and Subunit Vaccines. BMC Bioinform. 2007, 8, 4. [Google Scholar] [CrossRef]
- Andreatta, M.; Nielsen, M. Gapped Sequence Alignment Using Artificial Neural Networks: Application to the MHC Class I System. Bioinforma. Oxf. Engl. 2016, 32, 511–517. [Google Scholar] [CrossRef]
- Jensen, K.K.; Andreatta, M.; Marcatili, P.; Buus, S.; Greenbaum, J.A.; Yan, Z.; Sette, A.; Peters, B.; Nielsen, M. Improved Methods for Predicting Peptide Binding Affinity to MHC Class II Molecules. Immunology 2018, 154, 394–406. [Google Scholar] [CrossRef]
- Larsen, J.E.P.; Lund, O.; Nielsen, M. Improved Method for Predicting Linear B-Cell Epitopes. Immunome Res. 2006, 2, 2. [Google Scholar] [CrossRef]
- Kringelum, J.V.; Nielsen, M.; Padkjær, S.B.; Lund, O. Structural Analysis of B-Cell Epitopes in Antibody:Protein Complexes. Mol. Immunol. 2013, 53, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Jespersen, M.C.; Mahajan, S.; Peters, B.; Nielsen, M.; Marcatili, P. Antibody Specific B-Cell Epitope Predictions: Leveraging Information From Antibody-Antigen Protein Complexes. Front. Immunol. 2019, 10, 298. [Google Scholar] [CrossRef]
- Dhanda, S.K.; Gupta, S.; Vir, P.; Raghava, G.P.S. Prediction of IL4 Inducing Peptides. J. Immunol. Res. 2013, 2013, e263952. [Google Scholar] [CrossRef]
- Dhanda, S.K.; Vir, P.; Raghava, G.P.S. Designing of Interferon-Gamma Inducing MHC Class-II Binders. Biol. Direct 2013, 8, 30. [Google Scholar] [CrossRef]
- Dimitrov, I.; Naneva, L.; Doytchinova, I.; Bangov, I. AllergenFP: Allergenicity Prediction by Descriptor Fingerprints. Bioinformatics 2014, 30, 846–851. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Kapoor, P.; Chaudhary, K.; Gautam, A.; Kumar, R.; Open Source Drug Discovery Consortium; Raghava, G.P.S. In Silico Approach for Predicting Toxicity of Peptides and Proteins. PLoS ONE 2013, 8, e73957. [Google Scholar] [CrossRef] [PubMed]
- Lathwal, A.; Kumar, R.; Kaur, D.; Raghava, G.P.S. In Silico Model for Predicting IL-2 Inducing Peptides in Human 2021. bioRxiv 2021. [Google Scholar] [CrossRef]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein Identification and Analysis Tools on the ExPASy Server. In The Proteomics Protocols Handbook; Walker, J.M., Ed.; Springer Protocols Handbooks; Humana Press: Totowa, NJ, USA, 2005; pp. 571–607. ISBN 978-1-59259-890-8. [Google Scholar]
- Kaushik, V.; Krishnan, S.; Gupta, L.R.; Kalra, U.; Shaikh, A.R.; Cavallo, L.; Chawla, M. Immunoinformatics Aided Design and In-Vivo Validation of a Cross-Reactive Peptide Based Multi-Epitope Vaccine Targeting Multiple Serotypes of Dengue Virus. Front. Immunol. 2022, 13, 865180. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, N.; Kaushik, V.; Grewal, R.K.; Wani, A.K.; Suwattanasophon, C.; Choowongkomon, K.; Oliva, R.; Shaikh, A.R.; Cavallo, L.; Chawla, M. Immunoinformatics-Aided Design of a Peptide Based Multiepitope Vaccine Targeting Glycoproteins and Membrane Proteins against Monkeypox Virus. Viruses 2022, 14, 2374. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, V.; Jain, P.; Akhtar, N.; Joshi, A.; Gupta, L.R.; Grewal, R.K.; Oliva, R.; Shaikh, A.R.; Cavallo, L.; Chawla, M. Immunoinformatics-Aided Design and In Vivo Validation of a Peptide-Based Multiepitope Vaccine Targeting Canine Circovirus. ACS Pharmacol. Transl. Sci. 2022, 5, 679–691. [Google Scholar] [CrossRef]
- Akhtar, N.; Joshi, A.; Kaushik, V.; Kumar, M.; Mannan, M.A. In-Silico Design of a Multivalent Epitope-Based Vaccine against Candida Auris. Microb. Pathog. 2021, 155, 104879. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- David, A.; Islam, S.; Tankhilevich, E.; Sternberg, M.J.E. The AlphaFold Database of Protein Structures: A Biologist’s Guide. J. Mol. Biol. 2022, 434, 167336. [Google Scholar] [CrossRef] [PubMed]
- van Zundert, G.C.P.; Rodrigues, J.P.G.L.M.; Trellet, M.; Schmitz, C.; Kastritis, P.L.; Karaca, E.; Melquiond, A.S.J.; van Dijk, M.; de Vries, S.J.; Bonvin, A.M.J.J. The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes. J. Mol. Biol. 2016, 428, 720–725. [Google Scholar] [CrossRef]
- Jacchieri, S.G.; Torquato, R.; Brentani, R.R. Structural study of binding of flagellin by Toll-like receptor 5. J. Bacteriol. 2003, 185, 4243–4247. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Gonzalez, H.C.; Darré, L.; Pantano, S. Transferable Mixing of Atomistic and Coarse-Grained Water Models. J. Phys. Chem. B 2013, 117, 14438–14448. [Google Scholar] [CrossRef]
- Machado, M.R.; Barrera, E.E.; Klein, F.; Sóñora, M.; Silva, S.; Pantano, S. The SIRAH 2.0 Force Field: Altius, Fortius, Citius. J. Chem. Theory Comput. 2019, 15, 2719–2733. [Google Scholar] [CrossRef] [PubMed]
- Bussi, G.; Donadio, D.; Parrinello, M. Canonical Sampling through Velocity Rescaling. J. Chem. Phys. 2007, 126, 014101. [Google Scholar] [CrossRef]
- Parrinello, M.; Rahman, A. Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J. Appl. Phys. 1981, 52, 7182–7190. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 27–28, 33–38. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rapin, N.; Lund, O.; Castiglione, F. Immune System Simulation Online. Bioinformatics 2011, 27, 2013–2014. [Google Scholar] [CrossRef] [PubMed]
- Castiglione, F.; Mantile, F.; De Berardinis, P.; Prisco, A. How the Interval between Prime and Boost Injection Affects the Immune Response in a Computational Model of the Immune System. Comput. Math. Methods Med. 2012, 2012, e842329. [Google Scholar] [CrossRef]
- Robinson, C.L.; Romero, J.R.; Kempe, A.; Pellegrini, C. Advisory Committee on Immunization Practices Recommended Immunization Schedule for Children and Adolescents Aged 18 Years or Younger—United States, 2017. Morb. Mortal. Wkly. Rep. 2017, 66, 134–135. [Google Scholar] [CrossRef] [PubMed]
- Wiederstein, M.; Sippl, M.J. ProSA-Web: Interactive Web Service for the Recognition of Errors in Three-Dimensional Structures of Proteins. Nucleic Acids Res. 2007, 35, W407–W410. [Google Scholar] [CrossRef]
- Vangone, A.; Spinelli, R.; Scarano, V.; Cavallo, L.; Oliva, R. COCOMAPS: A Web Application to Analyze and Visualize Contacts at the Interface of Biomolecular Complexes. Bioinforma. Oxf. Engl. 2011, 27, 2915–2916. [Google Scholar] [CrossRef]
- Vangone, A.; Oliva, R.; Cavallo, L. CONS-COCOMAPS: A Novel Tool to Measure and Visualize the Conservation of Inter-Residue Contacts in Multiple Docking Solutions. BMC Bioinform. 2012, 13, S19. [Google Scholar] [CrossRef]
- Karplus, M.; Kuriyan, J. Molecular Dynamics and Protein Function. Proc. Natl. Acad. Sci. USA 2005, 102, 6679–6685. [Google Scholar] [CrossRef] [PubMed]
- Allen, H.C.; Sharma, P. Histology, Plasma Cells. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Tagle-Olmedo, T.; Andrade-Pavón, D.; Martínez-Gamboa, A.; Gómez-García, O.; García-Sierra, F.; Hernández-Rodríguez, C.; Villa-Tanaca, L. Inhibitors of DNA Topoisomerases I and II Applied to Candida Dubliniensis Reduce Growth, Viability, the Generation of Petite Mutants and Toxicity, While Acting Synergistically with Fluconazole. FEMS Yeast Res. 2021, 21, foab023. [Google Scholar] [CrossRef]
- Chupácová, J.; Borghi, E.; Morace, G.; Los, A.; Bujdáková, H. Anti-Biofilm Activity of Antibody Directed against Surface Antigen Complement Receptor 3-Related Protein-Comparison of Candida Albicans and Candida Dubliniensis. Pathog. Dis. 2018, 76, ftx127. [Google Scholar] [CrossRef]
- Akhtar, N.; Joshi, A.; Singh, B.; Kaushik, V. Immuno-Informatics Quest against COVID-19/SARS-COV-2: Determining Putative T-Cell Epitopes for Vaccine Prediction. Infect. Disord. Drug Targets 2021, 21, 541–552. [Google Scholar] [PubMed]
- Tarang, S.; Kesherwani, V.; LaTendresse, B.; Lindgren, L.; Rocha-Sanchez, S.M.; Weston, M.D. In Silico Design of a Multivalent Vaccine Against Candida Albicans. Sci. Rep. 2020, 10, 1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Protein | Accession Number | Vaxijen Score/Antigenicity |
---|---|---|
SAP1 | XP_002421073.1 | 0.6952 /Antigen |
SAP2 | XP_002422286.1 | 0.7204/Antigen |
SAP3 | XP_002419429.1 | 0.7361/Antigen |
SAP6 | XP_002421072.1 | 0.6642/Antigen |
SAP7 | XP_002417130.1 | 0.3687/Non-antigen |
SAP8 | XP_002419185.1 | 0.6518/Antigen |
SAP9 | XP_002419306.1 | 0.8219/Antigen |
SAP10 | XP_002420070.1 | 0.5786/Antigen |
Epitope Type | Protein ID | Peptide | Binding Affinity (nM) | Vaxijen Score | Antigen/Non-Antigen | Allergenicity | Toxicity | IL-2 Inducer | IL-4 Inducer | IFNepitope |
---|---|---|---|---|---|---|---|---|---|---|
B-cell | XP_002421073.1 | PVNATGQDGKVKR | NA | 1.7534 | Antigen | Non-allergen | Non-toxin | Inducer | Inducer | Yes |
B-cell | XP_002419306.1 | LYQPSKTIETDEEKDSSDK | NA | 0.5936 | Antigen | Non-allergen | Non-toxin | Inducer | Inducer | Yes |
Tc-cell | XP_002421073.1 | GSSSHGTLY | 144.8 | 0.9695 | Antigen | Non-allergen | Non-toxin | Inducer | Inducer | Yes |
XP_002421073.1 | EISLAQVKY | 572.7 | 0.8786 | Antigen | Non-allergen | Non-toxin | Inducer | Inducer | Yes | |
XP_002419429.1 | LNNPFSIEY | 1028.1 | 2.8077 | Antigen | Non-allergen | Non-toxin | Inducer | Inducer | Yes | |
Th-cell | XP_002422286.1 | VALDFSVVK | 5122.8 | 1.4652 | Antigen | Non-allergen | Non-toxin | Inducer | Inducer | Yes |
XP_002419306.1 | LQSSSSSYM | 207.3 | 0.8152 | Antigen | Non-allergen | Non-toxin | Inducer | Inducer | Yes | |
XP_002419306.1 | IWGYDDVVI | 2881.8 | 0.5754 | Antigen | Non-allergen | Non-toxin | Inducer | Inducer | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhtar, N.; Magdaleno, J.S.L.; Ranjan, S.; Wani, A.K.; Grewal, R.K.; Oliva, R.; Shaikh, A.R.; Cavallo, L.; Chawla, M. Secreted Aspartyl Proteinases Targeted Multi-Epitope Vaccine Design for Candida dubliniensis Using Immunoinformatics. Vaccines 2023, 11, 364. https://doi.org/10.3390/vaccines11020364
Akhtar N, Magdaleno JSL, Ranjan S, Wani AK, Grewal RK, Oliva R, Shaikh AR, Cavallo L, Chawla M. Secreted Aspartyl Proteinases Targeted Multi-Epitope Vaccine Design for Candida dubliniensis Using Immunoinformatics. Vaccines. 2023; 11(2):364. https://doi.org/10.3390/vaccines11020364
Chicago/Turabian StyleAkhtar, Nahid, Jorge Samuel Leon Magdaleno, Suryakant Ranjan, Atif Khurshid Wani, Ravneet Kaur Grewal, Romina Oliva, Abdul Rajjak Shaikh, Luigi Cavallo, and Mohit Chawla. 2023. "Secreted Aspartyl Proteinases Targeted Multi-Epitope Vaccine Design for Candida dubliniensis Using Immunoinformatics" Vaccines 11, no. 2: 364. https://doi.org/10.3390/vaccines11020364
APA StyleAkhtar, N., Magdaleno, J. S. L., Ranjan, S., Wani, A. K., Grewal, R. K., Oliva, R., Shaikh, A. R., Cavallo, L., & Chawla, M. (2023). Secreted Aspartyl Proteinases Targeted Multi-Epitope Vaccine Design for Candida dubliniensis Using Immunoinformatics. Vaccines, 11(2), 364. https://doi.org/10.3390/vaccines11020364