Efficacy, Safety and Immunogenicity of Anti-SARS-CoV-2 Vaccines in Patients with Cirrhosis: A Narrative Review
Abstract
:1. Introduction
2. mRNA Vaccines
3. Viral Vector-Based Vaccines
4. Whole Virion Vaccines
5. Protein Subunit Vaccines
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506, Erratum in Lancet 2020, 395, 496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 17 December 2022).
- Velavan, T.P.; Pallerla, S.R.; Rüter, J.; Augustin, Y.; Kremsner, P.G.; Krishna, S.; Meyer, C.G. Host genetic factors determining COVID-19 susceptibility and severity. EBioMedicine 2021, 72, 103629. [Google Scholar] [CrossRef] [PubMed]
- Marjot, T.; Webb, G.J.; Barritt, A.S., 4th; Moon, A.M.; Stamataki, Z.; Wong, V.W.; Barnes, E. COVID-19 and liver disease: Mechanistic and clinical perspectives. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 348–364. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lei, J.; Li, Z.; Yan, L. Potential Effects of Coronaviruses on the Liver: An Update. Front. Med. 2021, 8, 651658. [Google Scholar] [CrossRef]
- Mohammed, A.; Paranji, N.; Chen, P.H.; Niu, B. COVID-19 in Chronic Liver Disease and Liver Transplantation: A Clinical Review. J. Clin. Gastroenterol. 2021, 55, 187–194. [Google Scholar] [CrossRef]
- Hippisley-Cox, J.; Coupland, C.A.; Mehta, N.; Keogh, R.H.; Diaz-Ordaz, K.; Khunti, K.; Lyons, R.A.; Kee, F.; Sheikh, A.; Rahman, S.; et al. Risk prediction of COVID-19 related death and hospital admission in adults after COVID-19 vaccination: National prospective cohort study. BMJ 2021, 374, n2244, Erratum in BMJ 2021, 374, n2300. [Google Scholar] [CrossRef]
- Marjot, T.; Moon, A.M.; Cook, J.A.; Abd-Elsalam, S.; Aloman, C.; Armstrong, M.J.; Pose, E.; Brenner, E.J.; Cargill, T.; Catana, M.A.; et al. Outcomes following SARS-CoV-2 infection in patients with chronic liver disease: An international registry study. J. Hepatol. 2021, 74, 567–577. [Google Scholar] [CrossRef]
- Ge, J.; Pletcher, M.J.; Lai, J.C.; N3C Consortium. Outcomes of SARS-CoV-2 Infection in Patients with Chronic Liver Disease and Cirrhosis: A National COVID Cohort Collaborative Study. Gastroenterology 2021, 161, 1487–1501.e5. [Google Scholar] [CrossRef]
- Kalinke, U.; Barouch, D.H.; Rizzi, R.; Lagkadinou, E.; Türeci, Ö.; Pather, S.; Neels, P. Clinical development and approval of COVID-19 vaccines. Expert Rev. Vaccines 2022, 21, 609–619. [Google Scholar] [CrossRef]
- Alkandari, D.; Herbert, J.A.; Alkhalaf, M.A.; Yates, C.; Panagiotou, S. SARS-CoV-2 vaccines: Fast track versus efficacy. Lancet Microbe 2021, 2, e89–e90. [Google Scholar] [CrossRef]
- World Health Organization. COVID-19 Vaccines with WHO Emergency Use Listing. Available online: https://extranet.who.int/pqweb/vaccines/vaccinescovid-19-vaccine-eul-issued (accessed on 17 December 2022).
- Soiza, R.L.; Scicluna, C.; Thomson, E.C. Efficacy and safety of COVID-19 vaccines in older people. Age Ageing 2021, 50, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Buchwinkler, L.; Solagna, C.A.; Messner, J.; Pirklbauer, M.; Rudnicki, M.; Mayer, G.; Kerschbaum, J. Antibody Response to mRNA Vaccines against SARS-CoV-2 with Chronic Kidney Disease, Hemodialysis, and after Kidney Transplantation. J. Clin. Med. 2021, 11, 148. [Google Scholar] [CrossRef]
- Tzioufas, A.G.; Bakasis, A.D.; Goules, A.V.; Bitzogli, K.; Cinoku, I.I.; Chatzis, L.G.; Argyropoulou, O.D.; Venetsanopoulou, A.I.; Mavrommati, M.; Stergiou, I.E.; et al. A prospective multicenter study assessing humoral immunogenicity and safety of the mRNA SARS-CoV-2 vaccines in Greek patients with systemic autoimmune and autoinflammatory rheumatic diseases. J. Autoimmun. 2021, 125, 102743. [Google Scholar] [CrossRef] [PubMed]
- Graña, C.; Ghosn, L.; Evrenoglou, T.; Jarde, A.; Minozzi, S.; Bergman, H.; Buckley, B.S.; Probyn, K.; Villanueva, G.; Henschke, N.; et al. Efficacy and safety of COVID-19 vaccines. Cochrane Database Syst. Rev. 2022, 12, CD015477. [Google Scholar] [CrossRef] [PubMed]
- Sharif, N.; Alzahrani, K.J.; Ahmed, S.N.; Dey, S.K. Efficacy, Immunogenicity and Safety of COVID-19 Vaccines: A Systematic Review and Meta-Analysis. Front. Immunol. 2021, 12, 714170. [Google Scholar] [CrossRef]
- Pormohammad, A.; Zarei, M.; Ghorbani, S.; Mohammadi, M.; Razizadeh, M.H.; Turner, D.L.; Turner, R.J. Efficacy and Safety of COVID-19 Vaccines: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Vaccines 2021, 9, 467. [Google Scholar] [CrossRef]
- Efe, C.; Kulkarni, A.V.; Terziroli Beretta-Piccoli, B.; Magro, B.; Stättermayer, A.; Cengiz, M.; Clayton-Chubb, D.; Lammert, C.; Bernsmeier, C.; Gül, Ö.; et al. Liver injury after SARS-CoV-2 vaccination: Features of immune-mediated hepatitis, role of corticosteroid therapy and outcome. Hepatology. 2022, 76, 1576–1586. [Google Scholar] [CrossRef]
- Fiolet, T.; Kherabi, Y.; MacDonald, C.J.; Ghosn, J.; Peiffer-Smadja, N. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: A narrative review. Clin. Microbiol. Infect. 2022, 28, 202–221. [Google Scholar] [CrossRef]
- Liu, Q.; Qin, C.; Liu, M.; Liu, J. Effectiveness and safety of SARS-CoV-2 vaccine in real-world studies: A systematic review and meta-analysis. Infect. Dis. Poverty 2021, 10, 132. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, Z.; Wang, P.; Li, X.M.; Shuai, Z.W.; Ye, D.Q.; Pan, H.F. New-onset autoimmune phenomena post-COVID-19 vaccination. Immunology 2022, 165, 386–401. [Google Scholar] [CrossRef]
- Luxi, N.; Giovanazzi, A.; Capuano, A.; Crisafulli, S.; Cutroneo, P.M.; Fantini, M.P.; Ferrajolo, C.; Moretti, U.; Poluzzi, E.; Raschi, E.; et al. COVID-19 Vaccination in Pregnancy, Paediatrics, Immunocompromised Patients, and Persons with History of Allergy or Prior SARS-CoV-2 Infection: Overview of Current Recommendations and Pre- and Post-Marketing Evidence for Vaccine Efficacy and Safety. Drug Saf. 2021, 44, 1247–1269. [Google Scholar] [CrossRef] [PubMed]
- Logunov, D.Y.; Dolzhikova, I.V.; Shcheblyakov, D.V.; Tukhvatulin, A.I.; Zubkova, O.V.; Dzharullaeva, A.S.; Kovyrshina, A.V.; Lubenets, N.L.; Grousova, D.M.; Erokhova, A.S.; et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: An interim analysis of a randomised controlled phase 3 trial in Russia. Lancet 2021, 397, 671–681, Erratum in Lancet 2021, 397, 670. [Google Scholar] [CrossRef] [PubMed]
- Albillos, A.; Lario, M.; Álvarez-Mon, M. Cirrhosis-associated immune dysfunction: Distinctive features and clinical relevance. J. Hepatol. 2014, 61, 1385–1396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irvine, K.M.; Ratnasekera, I.; Powell, E.E.; Hume, D.A. Causes and Consequences of Innate Immune Dysfunction in Cirrhosis. Front. Immunol. 2019, 10, 293, Erratum in Front. Immunol. 2019, 10, 818. [Google Scholar] [CrossRef] [PubMed]
- Alukal, J.J.; Naqvi, H.A.; Thuluvath, P.J. Vaccination in Chronic Liver Disease: An Update. J. Clin. Exp. Hepatol. 2022, 12, 937–947. [Google Scholar] [CrossRef] [PubMed]
- Härmälä, S.; Parisinos, C.A.; Shallcross, L.; O’Brien, A.; Hayward, A. Effectiveness of influenza vaccines in adults with chronic liver disease: A systematic review and meta-analysis. BMJ Open 2019, 9, e031070. [Google Scholar] [CrossRef] [Green Version]
- McCashland, T.M.; Preheim, L.C.; Gentry, M.J. Pneumococcal vaccine response in cirrhosis and liver transplantation. J. Infect. Dis. 2000, 181, 757–760. [Google Scholar] [CrossRef] [Green Version]
- Arguedas, M.R.; Johnson, A.; Eloubeidi, M.A.; Fallon, M.B. Immunogenicity of hepatitis A vaccination in decompensated cirrhotic patients. Hepatology 2001, 34, 28–31. [Google Scholar] [CrossRef]
- Roni, D.A.; Pathapati, R.M.; Kumar, A.S.; Nihal, L.; Sridhar, K.; Tumkur Rajashekar, S. Safety and efficacy of hepatitis B vaccination in cirrhosis of liver. Adv. Virol. 2013, 2013, 196704. [Google Scholar] [CrossRef] [Green Version]
- Aggeletopoulou, I.; Davoulou, P.; Konstantakis, C.; Thomopoulos, K.; Triantos, C. Response to hepatitis B vaccination in patients with liver cirrhosis. Rev. Med. Virol. 2017, 27, e1942. [Google Scholar] [CrossRef]
- Park, J.W.; Lagniton, P.N.P.; Liu, Y.; Xu, R.H. mRNA vaccines for COVID-19: What, why and how. Int. J. Biol. Sci. 2021, 17, 1446–1460. [Google Scholar] [CrossRef] [PubMed]
- Cornberg, M.; Buti, M.; Eberhardt, C.S.; Grossi, P.A.; Shouval, D. EASL position paper on the use of COVID-19 vaccines in patients with chronic liver diseases, hepatobiliary cancer and liver transplant recipients. J. Hepatol. 2021, 74, 944–951. [Google Scholar] [CrossRef] [PubMed]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
- Palla, P.; Vergadis, C.; Sakellariou, S.; Androutsakos, T. Letter to the editor: Autoimmune hepatitis after COVID-19 vaccination: A rare adverse effect? Hepatology 2022, 75, 489–490. [Google Scholar] [CrossRef] [PubMed]
- Garrido, I.; Lopesm, S.; Simões, M.S.; Liberal, R.; Lopes, J.; Carneiro, F.; Macedo, G. Autoimmune hepatitis after COVID-19 vaccine—More than a coincidence. J. Autoimmun. 2021, 125, 102741. [Google Scholar] [CrossRef]
- Bril, F.; Al Diffalha, S.; Dean, M.; Fettig, D.M. Autoimmune hepatitis developing after coronavirus disease 2019 (COVID-19) vaccine: Causality or casualty? J. Hepatol. 2021, 75, 222–224. [Google Scholar] [CrossRef]
- John, B.V.; Deng, Y.; Scheinberg, A.; Mahmud, N.; Taddei, T.H.; Kaplan, D.; Labrada, M.; Baracco, G.; Dahman, B. Association of BNT162b2 mRNA and mRNA-1273 Vaccines With COVID-19 Infection and Hospitalization Among Patients with Cirrhosis. JAMA Intern. Med. 2021, 18, 1306–1314. [Google Scholar] [CrossRef]
- John, B.V.; Doshi, A.; Ferreira, R.D.; Taddei, T.H.; Kaplan, D.E.; Spector, S.A.; Deng, Y.; Bastaich, D.; Dahman, B. Comparison of infection-induced and vaccine-induced immunity against COVID-19 in patients with cirrhosis. Hepatology 2022, 77, 186–196. [Google Scholar] [CrossRef]
- John, B.V.; Ferreira, R.D.; Doshi, A.; Kaplan, D.E.; Taddei, T.H.; Spector, S.A.; Paulus, E.; Deng, Y.; Bastaich, D.; Dahman, B. Third dose of COVID-19 mRNA vaccine appears to overcome vaccine hyporesponsiveness in patients with cirrhosis. J. Hepatol. 2022, 77, 1349–1358. [Google Scholar] [CrossRef]
- Thuluvath, P.J.; Robarts, P.; Chauhan, M. Analysis of antibody responses after COVID-19 vaccination in liver transplant recipients and those with chronic liver diseases. J. Hepatol. 2021, 75, 1434–1439. [Google Scholar] [CrossRef]
- Bakasis, A.D.; Bitzogli, K.; Mouziouras, D.; Pouliakis, A.; Roumpoutsou, M.; Goules, A.V.; Androutsakos, T. Antibody Responses after SARS-CoV-2 Vaccination in Patients with Liver Diseases. Viruses 2022, 14, 207. [Google Scholar] [CrossRef]
- Ruether, D.F.; Schaub, G.M.; Duengelhoef, P.M.; Haag, F.; Brehm, T.T.; Fathi, A.; Wehmeyer, M.; Jahnke-Triankowski, J.; Mayer, L.; Hoffmann, A.; et al. SARS-CoV2-specific Humoral and T-cell Immune Response After Second Vaccination in Liver Cirrhosis and Transplant Patients. Clin. Gastroenterol. Hepatol. 2022, 20, 162–172.e9. [Google Scholar] [CrossRef]
- Willuweit, K.; Frey, A.; Passenberg, M.; Korth, J.; Saka, N.; Anastasiou, O.E.; Möhlendick, B.; Schütte, A.; Schmidt, H.; Rashidi-Alavijeh, J. Patients with Liver Cirrhosis Show High Immunogenicity upon COVID-19 Vaccination but Develop Premature Deterioration of Antibody Titers. Vaccines 2022, 10, 377. [Google Scholar] [CrossRef]
- Giambra, V.; Piazzolla, A.V.; Cocomazzi, G.; Squillante, M.M.; De Santis, E.; Totti, B.; Cavorsi, C.; Giuliani, F.; Serra, N.; Mangia, A. Effectiveness of Booster Dose of Anti SARS-CoV-2 BNT162b2 in Cirrhosis: Longitudinal Evaluation of Humoral and Cellular Response. Vaccines 2022, 10, 1281. [Google Scholar] [CrossRef]
- Al-Dury, S.; Waern, J.; Waldenström, J.; Alavanja, M.; Saed, H.H.; Törnell, A.; Arabpour, M.; Wiktorin, H.G.; Einarsdottir, S.; Ringlander, J.; et al. Impaired SARS-CoV-2-specific T-cell reactivity in patients with cirrhosis following mRNA COVID-19 vaccination. JHEP Rep. 2022, 4, 100496. [Google Scholar] [CrossRef]
- Iavarone, M.; Tosetti, G.; Facchetti, F.; Topa, M.; Er, J.M.; Hang, S.K.; Licari, D.; Lombardi, A.; D’Ambrosio, R.; Degasperi, E.; et al. Spike-specific humoral and cellular immune responses after COVID-19 mRNA vaccination in patients with cirrhosis: A prospective single center study. Dig. Liver Dis. 2022. ahead of print. [Google Scholar] [CrossRef]
- Chauhan, M.; Nzeako, I.; Li, F.; Thuluvath, P.J. Antibody response after a booster dose of SARS-CoV-2 vaccine in liver transplant recipients and those with chronic liver diseases. Ann. Hepatol. 2022, 27, 100702. [Google Scholar] [CrossRef] [PubMed]
- Fathizadeh, H.; Afshar, S.; Masoudi, M.R.; Gholizadeh, P.; Asgharzadeh, M.; Ganbarov, K.; Köse, Ş.; Yousefi, M.; Kafil, H.S. SARS-CoV-2 (COVID-19) vaccines structure, mechanisms and effectiveness: A review. Int. J. Biol. Macromol. 2021, 188, 740–750. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Collaborating Centre for Vaccine Safety. Available online: https://www.covid19infovaccines.com/en-posts/how-do-inactivated-vaccines-work. (accessed on 2 January 2023).
- Vanaparthy, R.; Mohan, G.; Vasireddy, D.; Atluri, P. Review of COVID-19 viral vector-based vaccines and COVID-19 variants. Infez. Med. 2021, 29, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.C.; Li, Y.H.; Guan, X.H.; Hou, L.H.; Wang, W.J.; Li, J.X.; Wu, S.P.; Wang, B.S.; Wang, Z.; Wang, L.; et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: A dose-escalation, open-label, non-randomised, first-in-human trial. Lancet 2020, 395, 1845–1854. [Google Scholar] [CrossRef]
- Singh, A.; De, A.; Singh, M.P.; Rathi, S.; Verma, N.; Premkumar, M.; Taneja, S.; Duseja, A.; Singh, V. Antibody Response and Safety of ChAdOx1-nCOV (Covishield) in Patients with Cirrhosis: A Cross-Sectional, Observational Study. Dig. Dis. Sci. 2022, 68, 676–684. [Google Scholar] [CrossRef]
- Ivashkin, V.; Ismailova, A.; Dmitrieva, K.; Maslennikov, R.; Zharkova, M.; Aliev, S.; Bakhitov, V.; Marcinkevich, V. Efficacy and safety of COVID-19 vaccination in patients with cirrhosis. World J. Hepatol. 2022, 14, 1470–1479. [Google Scholar] [CrossRef] [PubMed]
- John, B.V.; Sidney Barritt, A., 4th; Moon, A.; Taddei, T.H.; Kaplan, D.E.; Dahman, B.; Doshi, A.; Deng, Y.; Mansour, N.; Ioannou, G.; et al. Effectiveness of COVID-19 Viral Vector Ad.26.COV2.S Vaccine and Comparison with mRNA Vaccines in Cirrhosis. Clin. Gastroenterol. Hepatol. 2022, 20, 2405–2408.e3. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, A.V.; Jaggaiahgari, S.; Iyengar, S.; Simhadri, V.; Gujjarlapudi, D.; Rugwani, H.; Vemula, V.K.; Gora, B.A.; Shaik, S.; Sharma, M.; et al. Poor immune response to coronavirus disease vaccines in decompensated cirrhosis patients and liver transplant recipients. Vaccine 2022, 40, 6971–6978. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Coronavirus Disease (COVID-19): Vaccines. Available online: https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-(covid-19)-vaccines (accessed on 2 January 2023).
- Xia, S.; Zhang, Y.; Wang, Y.; Wang, H.; Yang, Y.; Gao, G.F.; Tan, W.; Wu, G.; Xu, M.; Lou, Z.; et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: A randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect. Dis. 2021, 21, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zeng, G.; Pan, H.; Li, C.; Hu, Y.; Chu, K.; Han, W.; Chen, Z.; Tang, R.; Yin, W.; et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: A randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect. Dis. 2021, 21, 181–192. [Google Scholar] [CrossRef]
- Díaz, L.A.; Fuentes-López, E.; Lazo, M.; Kamath, P.S.; Arrese, M.; Arab, J.P. Vaccination against COVID-19 decreases hospitalizations in patients with cirrhosis: Results from a nationwide analysis. Liver Int. 2022, 42, 942–944. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q.; Ai, J.; Liu, D.; Liu, C.; Xiang, H.; Gu, Y.; Guo, Y.; Lv, J.; Huang, Y.; et al. Safety and immunogenicity of SARS-CoV-2 vaccines in Chinese patients with cirrhosis: A prospective multicenter study. Hepatol. Int. 2022, 16, 691–701. [Google Scholar] [CrossRef]
- Ai, J.; Wang, J.; Liu, D.; Xiang, H.; Guo, Y.; Lv, J.; Zhang, Q.; Li, J.; Zhang, X.; Li, Q.; et al. Safety and Immunogenicity of SARS-CoV-2 Vaccines in Patients With Chronic Liver Diseases (CHESS-NMCID 2101): A Multicenter Study. Clin. Gastroenterol. Hepatol. 2022, 20, 1516–1524.e2. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Y.; Song, R.; Wang, L.; Hu, X.; Li, H.; Cai, D.; Hu, P.; Shi, X.; Ren, H. Waning humoral immune responses to inactivated SARS-CoV-2 vaccines in patients with severe liver disease. Signal Transduct. Target Ther. 2022, 7, 174. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, H.; Tian, L.; Pang, Z.; Yang, Q.; Huang, T.; Fan, J.; Song, L.; Tong, Y.; Fan, H. COVID-19 vaccine development: Milestones, lessons and prospects. Signal Transduct. Target Ther. 2022, 7, 146. [Google Scholar] [CrossRef] [PubMed]
- Heidary, M.; Kaviar, V.H.; Shirani, M.; Ghanavati, R.; Motahar, M.; Sholeh, M.; Ghahramanpour, H.; Khoshnood, S. A Comprehensive Review of the Protein Subunit Vaccines Against COVID-19. Front. Microbiol. 2022, 13, 927306. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.P.; Gupta, V. COVID-19 Vaccine: A comprehensive status report. Virus Res. 2020, 288, 198114. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. COVID-19 Vaccine Tracker. Available online: https://covid19.trackvaccines.org/agency/who/ (accessed on 3 January 2023).
- Dunkle, L.M.; Kotloff, K.L.; Gay, C.L.; Áñez, G.; Adelglass, J.M.; Barrat Hernández, A.Q.; Harper, W.L.; Duncanson, D.M.; McArthur, M.A.; Florescu, D.F.; et al. Efficacy and Safety of NVX-CoV2373 in Adults in the United States and Mexico. N. Engl. J. Med. 2022, 386, 531–543. [Google Scholar] [CrossRef] [PubMed]
- Heath, P.T.; Galiza, E.P.; Baxter, D.N.; Boffito, M.; Browne, D.; Burns, F.; Chadwick, D.R.; Clark, R.; Cosgrove, C.; Galloway, J.; et al. Safety and Efficacy of NVX-CoV2373 COVID-19 Vaccine. N. Engl. J. Med. 2021, 385, 1172–1183. [Google Scholar] [CrossRef] [PubMed]
- Dadras, O.; Mehraeen, E.; Karimi, A.; Tantuoyir, M.M.; Afzalian, A.; Nazarian, N.; Mojdeganlou, H.; Mirzapour, P.; Shamsabadi, A.; Dashti, M.; et al. Safety and Adverse Events Related to Inactivated COVID-19 Vaccines and Novavax: A Systematic Review. Arch. Acad. Emerg. Med. 2022, 10, e54. [Google Scholar] [CrossRef]
- Hogan, M.J.; Pardi, N. mRNA Vaccines in the COVID-19 Pandemic and Beyond. Annu. Rev. Med. 2022, 27, 17–39. [Google Scholar] [CrossRef]
- Jeyanathan, M.; Afkhami, S.; Smaill, F.; Miller, M.S.; Lichty, B.D.; Xing, Z. Immunological Considerations for COVID-19 Vaccine Strategies. Nat. Rev. Immunol. 2020, 20, 615–632. [Google Scholar] [CrossRef]
- Thakur, V.; Ratho, R.K. OMICRON (B.1.1.529): A new SARS-CoV-2 variant of concern mounting worldwide fear. J. Med. Virol. 2022, 94, 1821–1824. [Google Scholar] [CrossRef]
- Andrews, N.; Stowe, J.; Kirsebom, F.; Toffa, S.; Rickeard, T.; Gallagher, E.; Gower, C.; Kall, M.; Groves, N.; O’Connell, A.M.; et al. COVID-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. N. Engl. J. Med. 2022, 386, 1532–1546. [Google Scholar] [CrossRef] [PubMed]
- Buchan, S.A.; Chung, H.; Brown, K.A.; Austin, P.C.; Fell, D.B.; Gubbay, J.B.; Nasreen, S.; Schwartz, K.L.; Sundaram, M.E.; Tadrous, M.; et al. Estimated Effectiveness of COVID-19 Vaccines Against Omicron or Delta Symptomatic Infection and Severe Outcomes. JAMA Netw. Open 2022, 5, e2232760. [Google Scholar] [CrossRef] [PubMed]
- Stowe, J.; Andrews, N.; Kirsebom, F.; Ramsay, M.; Bernal, J.L. Effectiveness of COVID-19 vaccines against Omicron and Delta hospitalisation, a test negative case-control study. Nat. Commun. 2022, 13, 5736. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Beltran, W.F.; St Denis, K.J.; Hoelzemer, A.; Lam, E.C.; Nitido, A.D.; Sheehan, M.L.; Berrios, C.; Ofoman, O.; Chang, C.C.; Hauser, B.M.; et al. mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant. Cell 2022, 185, 457–466.e4. [Google Scholar] [CrossRef]
- Campos, G.R.F.; Almeida, N.B.F.; Filgueiras, P.S.; Corsini, C.A.; Gomes, S.V.C.; de Miranda, D.A.P.; de Assis, J.V.; de Souza Silva, T.B.; Alves, P.A.; da Rocha Fernandes, G.; et al. Booster dose of BNT162b2 after two doses of CoronaVac improves neutralization of SARS-CoV-2 Omicron variant. Commun. Med. 2022, 2, 76. [Google Scholar] [CrossRef]
- Monge, S.; Rojas-Benedicto, A.; Olmedo, C.; Mazagatos, C.; José Sierra, M.; Limia, A.; Martín-Merino, E.; Larrauri, A.; Hernán, M.A. Effectiveness of mRNA vaccine boosters against infection with the SARS-CoV-2 omicron (B.1.1.529) variant in Spain: A nationwide cohort study. Lancet Infect. Dis. 2022, 22, 1313–1320. [Google Scholar] [CrossRef] [PubMed]
First Author, Year | Type of Trial | Number of PWLC | Controls | Results |
---|---|---|---|---|
John B.V., 2021 [40] | Retrospective | 20,037 with at least one dose of BNT162 mRNA or mRNA1273 vaccine | 20,037 unvaccinated PWLC | 64.8% reduction in COVID-19 cases and 100% reduction in hospitalizations and SARS-CoV-2-related deaths 28 days post-vaccination. A second dose of an mRNA vaccine further decreased infection rate to 78.6% reduction in COVID-19 cases after 2nd dose. Reduction more evident among those with compensated cirrhosis. |
Tuluvath P.J., 2021 [43] | Prospective | 79 (10 decompensated) | 62 LT recipients and 92 with CLD but no cirrhosis | 3 PWLD with no and 15 with suboptimal antibody responses. Cirrhosis not associated with poor antibody responses in multivariable analysis |
Bakasis A.D., 2022 [44] | Prospective | 38 (13 decompensated) | 49 with CLD and 40 healthy controls | Seroconversion rate 97.4% and neutralizing activity 92.1% in PWLC. Cirrhosis not associated with poor antibody responses in multivariable analysis |
Iavarone M., 2022 [49] | Prospective | 182 (28 with previous SARS-CoV-2 infection, 154 without) | 38 healthy (12 with previous SARS-CoV-2 infection, 26 without) | Anti-spike protein S antibody titers statistically significantly lower in PWLC. T-cell responses lower in PWLC, but not statistically significant |
John B.V., 2022 [41] | Retrospective | 27,131 with 2 doses of mRNA vaccine | 634 PWLC who developed immunity after infection | Vaccine-induced immunity better regarding infection susceptibility, symptomatic and moderate/severe critical disease. |
John B.V., 2022 [42] | Retrospective | 13,041 with 3 doses of mRNA vaccine | 13,041 PWLC with 2 doses of mRNA vaccine | 80% reduction in infections, symptoms, and severe disease, and 100% reduction in death rate with a 3rd dose. Better results with BNT162b, and in compensated cirrhosis. |
Giambra V., 2022 [47] | Prospective | 151 vaccinated with BNT162b2 | 117 healthy controls vaccinated with BNT162b2 | Delay in B-cell and lack of prompt T-cell response in PWLC. No difference in breakthrough infections among PWLC and controls. |
Ruether D.F., 2022 [45] | Prospective | 53 (91.6% mRNA vaccinated) | 138 LT recipients (87.7% mRNA vaccinated) and 52 controls (75% mRNA vaccinated) | Seroconversion achieved in 100% of PWLC, lower spike-specific T-cell responses than controls, higher than LT recipients. |
Willuweit K., 2022 [46] | Retrospective | 110, vaccinated with 2 doses of BNT162b2 | 80 healthy controls vaccinated with 2 doses of BNT162b2 | No significant difference in seroconversion rates, but lower antibody titers in PWLC. Rapid and significant decrease in antibody titers in PWLC |
Al Dury S., 2022 [48] | Prospective | 48, all mRNA vaccinated | 39 healthy controls | 68% of PWLC with undetectable anti-SARS-CoV-2 T-cell reactivity after 1st dose; 36% after 2nd, significantly lower than controls. Likewise for anti-SARS-CoV-2 antibody titers. Lower antibody levels and worse T-cell reactivity in advanced cirrhosis. |
Name of First Author, Year | Type of Study | Number of PWLC | Number of Controls | Outcome |
---|---|---|---|---|
Singh A., 2022 [55] | Cross sectional, observational | 97 with one ChadOx1-nCOV vaccine dose, 134 with two doses | N/A | 92,1% with detectable antibodies (6,8% low, 77,3% moderate and 8% high titers). No differences in antibody responses among compensated and decompensated PWLC |
Ivashkin V., 2022 [56] | Retrospective cohort | 89 vaccinated with Gam-Covid-Vac | 148 unvaccinated PWLC | Vaccine efficacy of 69.5% against symptomatic, 100% against severe COVID-19, and 100% against COVID-19 associated death. Higher overall mortality in unvaccinated group. No significant differences in liver-related mortality, incidence of liver decompensation and bleeding esophageal varices between two groups |
John B.V., 2022 [57] | Cohort | 94 vaccinated with Ad.26.COV2.S | 1089 mRNA vaccinated and 727 unvacinated PWLC | Ad.26.COV2.S efficacy of 64% against COVID-19, with 72% against severe/critical COVID-19. no statistically significant differences between viral vector and mRNA vaccines. |
Thuluvath P.J., 2021 [43] | Prospective | 7 vaccinated with Ad.26.COV2.S | 41 mRNA1273 vaccinated and 31 BNT162b2 vaccinated PWLC, 62 LT vaccinated patients and 92 vaccinated patients with liver diseases, non-cirrhotic | JNJ-78435735 vaccination associated with poor immune response in multivariable analysis |
Kulkarni A.V., 2022 [58] | Prospective | 90 ChAdOx1, 23 BBV152 | 60 healthy controls, 50 patients with liver diseases, non-cirrhotic, 17 LT patients | No differences in antibody responses among healthy controls, non-cirrhotics and compensated PWLC. 34% of decompensated PWLC non-responders. 34% with decompensated cirrhosis non-responders.CD4-naïve, CD4-effector, and B-memory cells lower in decompensated PWLC |
Name of First Author, Year | Type of Study | Number of PWLC | Number of Controls | Outcome |
---|---|---|---|---|
Wang J., 2022 [62] | Prospective, multicenter | 340 PiCoVacc, 151 BBIBP-CorV and 62 WIBP-CorV | N/A | 71,6% with compensated and 66,6% with decompensated cirrhosis had positive rates of COVID-19 neutralizing antibodies |
Ai J., 2021 [63] | Prospective, multicenter | 153 vaccinated with PiCoVacc, BBIBP-CorV or WIBP-CorV | 284 with CLD, non-cirrhotic,144 healthy controls | Statistically significantly lower neutralizing antibodies in all CLD patients when compared with healthy controls. No differences between non-cirrhotic, compensated and decompensated cirrhotic patients with CLD |
Chen Z., 2022 [64] | Prospective, observational | 127 vaccinated with BBIBP-CoV or PiCoVacc | 142 healthy controls and 65 patients with HCC | Seropositivity rate of anti-SARS-CoV-2 antibodies high in PWLC and patients with HCC. Lower detection levels of neutralizing antibodies in PWLC and patients with HCC. Lower antibody responses in CTP B and C compared with A. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toutoudaki, K.; Dimakakou, M.; Androutsakos, T. Efficacy, Safety and Immunogenicity of Anti-SARS-CoV-2 Vaccines in Patients with Cirrhosis: A Narrative Review. Vaccines 2023, 11, 452. https://doi.org/10.3390/vaccines11020452
Toutoudaki K, Dimakakou M, Androutsakos T. Efficacy, Safety and Immunogenicity of Anti-SARS-CoV-2 Vaccines in Patients with Cirrhosis: A Narrative Review. Vaccines. 2023; 11(2):452. https://doi.org/10.3390/vaccines11020452
Chicago/Turabian StyleToutoudaki, Konstantina, Melitini Dimakakou, and Theodoros Androutsakos. 2023. "Efficacy, Safety and Immunogenicity of Anti-SARS-CoV-2 Vaccines in Patients with Cirrhosis: A Narrative Review" Vaccines 11, no. 2: 452. https://doi.org/10.3390/vaccines11020452
APA StyleToutoudaki, K., Dimakakou, M., & Androutsakos, T. (2023). Efficacy, Safety and Immunogenicity of Anti-SARS-CoV-2 Vaccines in Patients with Cirrhosis: A Narrative Review. Vaccines, 11(2), 452. https://doi.org/10.3390/vaccines11020452