Immunological Findings in a Group of Individuals Who Were Poor or Non-Responders to Standard Two-Dose SARS-CoV-2 Vaccines
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Enzyme-Linked Immunosorbent Assay (ELISA) of Immunoglobulin (Ig)
2.3. Flow Cytometry Analysis
2.4. Statistical Analysis
3. Results
3.1. Baseline Immunological Characteristics of Individuals Prior to Vaccination
3.2. Characteristics of Humoral Response after Complete Vaccination
3.3. Characteristics of Humoral Response in Male and Female after Complete Vaccination
3.4. Dynamics of Anti-Spike IgG Levels after Complete Vaccination
3.5. Characteristics of Responders and Poor or Non-Responders to the SARS-CoV-2 Vaccine Using Internationally Recognized Standards
3.6. Relationship between Seroconversion Rate and Baseline Immunity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 10 December 2022).
- World Health Organization. COVID-19 Advice for the Public: Getting Vaccinated. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/covid-19-vaccines/advice (accessed on 10 December 2022).
- Centers for Disease Control and Prevention. Burden Estimates for the 2016–2017 Influenza Season. Available online: https://www.cdc.gov/flu/about/burden/2016-2017.html (accessed on 10 December 2022).
- Marks, K.J.; Whitaker, M.; Anglin, O.; Milucky, J.; Patel, K.; Pham, H.; Chai, S.J.; Kirley, P.D.; Armistead, I.; McLafferty, S.; et al. Hospitalizations of children and adolescents with laboratory-confirmed COVID-19—COVID-NET, 14 States, July 2021–January 2022. Morb. Mortal. Wkly. Rep. MMWR 2022, 71, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Tenforde, M.W.; Self, W.H.; Adams, K. Association between mRNA vaccination and COVID-19 hospitalization and disease severity. JAMA 2021, 326, 2043–2054. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Li, Y.-Z.; Dong, S.Y.; Chen, Z.T.; Gao, X.Y.; Zhang, H.; Huang, G.; Xu, Y. Dynamic SARS-CoV-2-specific immunity in critically ill patients with hypertension. Front. Immunol. 2020, 11, 596684. [Google Scholar] [CrossRef] [PubMed]
- Lipsitch, M.; Krammer, F.; Regev-Yochay, G.; Lustig, Y.; Balicer, R.D. SARS-CoV-2 breakthrough infections in vaccinated individuals: Measurement, causes and impact. Nat. Rev. Immunol. 2022, 22, 57–65. [Google Scholar] [CrossRef]
- Sun, J.; Zheng, Q.; Madhira, V.; Olex, A.L.; Anzalone, A.J.; Vinson, A.; Singh, J.A.; French, E.; Abraham, A.G.; Mathew, J.; et al. Association between immune dysfunction and COVID-19 breakthrough infection after SARS-CoV-2 vaccination in the US. JAMA Intern. Med. 2022, 182, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Johns Hopkins University & Medicine. Understanding Vaccination Progress. Available online: https://coronavirus.jhu.edu/vaccines/international (accessed on 10 December 2022).
- Xia, S.; Zhang, Y.; Wang, Y.; Wang, H.; Yang, Y.; Gao, G.F.; Tan, W.; Wu, G.; Xu, M.; Lou, Z.; et al. Safety and immunogenicity of an inactivated COVID-19 vaccine, BBIBP-CorV, in people younger than 18 years: A randomised, double-blind, controlled, phase 1/2 trial. Lancet Infect. Dis. 2022, 22, 196–208. [Google Scholar] [CrossRef]
- Xia, S.; Duan, K.; Zhang, Y.; Zhao, D.; Zhang, H.; Xie, Z.; Li, X.; Peng, C.; Zhang, Y.; Zhang, W.; et al. Effect of an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity outcomes: Interim analysis of 2 randomized clinical trials. JAMA 2020, 324, 951–960. [Google Scholar] [CrossRef]
- Long, Q.X.; Liu, B.Z.; Deng, H.J.; Wu, G.C.; Deng, K.; Chen, Y.K.; Liao, P.; Qiu, J.F.; Lin, Y.; Cai, X.F.; et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat. Med. 2020, 26, 845–848. [Google Scholar] [CrossRef]
- Weissman, J.Y.; Tsuchiyose, M.M.; Tong, M.J.; Co, R.; Chin, K.; Ettenger, R.B. Lack of response to recombinant hepatitis B vaccine in nonresponders to the plasma vaccine. JAMA 1988, 260, 1734–1738. [Google Scholar] [CrossRef]
- Simon, D.; Tascilar, K.; Fagni, F.; Schmidt, K.; Krönke, G.; Kleyer, A.; Ramming, A.; Schoenau, V.; Bohr, D.; Knitza, J.; et al. Efficacy and safety of SARS-CoV-2 revaccination in non-responders with immune-mediated inflammatory disease. Ann. Rheum. Dis. 2021, 81, 1023–1027. [Google Scholar] [CrossRef]
- Szmuness, W.; Stevens, C.E.; Harley, E.J.; Zang, E.A.; Alter, H.J.; Taylor, P.E.; DE Vera, A.; Chen, G.T.S.; Kellner, A.; the Dialysis Vaccine Trial Study Group. Hepatitis B vaccine in medical staff of hemodialysis units: Efficacy and subtype cross-protection. N. Engl. J. Med. 1982, 307, 1481–1486. [Google Scholar] [CrossRef] [PubMed]
- Roome, A.J.; Walsh, S.J.; Cartter, M.L.; Hadler, J.L. Hepatitis B vaccine responsiveness in Connecticut public safety personnel. JAMA 1993, 270, 2931–2934. [Google Scholar] [CrossRef]
- Caillard, S.; Thaunat, O.; Benotmane, I.; Masset, C.; Blancho, G. Antibody response to a fourth messenger RNA COVID-19 vaccine dose in kidney transplant recipients: A case series. Ann. Intern. Med. 2022, 175, 455–456. [Google Scholar] [CrossRef] [PubMed]
- Chukwu, C.A.; Mahmood, K.; Elmakki, S.; Gorton, J.; Kalra, P.A.; Poulikakos, D.; Middleton, R. Evaluating the antibody response to SARS-COV-2 vaccination amongst kidney transplant recipients at a single nephrology center. PLoS ONE 2022, 17, e0265130. [Google Scholar] [CrossRef] [PubMed]
- Zuckerman, J.N.; Sabin, C.; Craig, F.M.; Williams, A.; Zuckerman, A.J. Immune response to a new hepatitis B vaccine in healthcare workers who had not responded to standard vaccine: Randomised double blind dose-response study. BMJ 1997, 314, 329–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Benenson, S.; Oster, Y.; Cohen, M.J.; Nir-Paz, R. BNT162b2 mRNA COVID-19 vaccine effectiveness among health care workers. N. Engl. J. Med. 2021, 384, 1775–1777. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
- Shields, A.M.; Faustini, S.E.; Hill, H.J.; Al-Taei, S.; Tanner, C.; Ashford, F.; Workman, S.; Moreira, F.; Verma, N.; Wagg, H.; et al. SARS-CoV-2 vaccine responses in individuals with antibody deficiency: Findings from the COV-AD Study. J. Clin. Immunol. 2022, 42, 923–934. [Google Scholar] [CrossRef]
- Al Kaabi, N.; Zhang, Y.; Xia, S.; Yang, Y.; Al Qahtani, M.M.; Abdulrazzaq, N.; Al Nusair, M.; Hassany, M.; Jawad, J.S.; Abdalla, J.; et al. Effect of 2 inactivated SARS-CoV-2 vaccines on symptomatic COVID-19 infection in adults: A randomized clinical trial. JAMA 2021, 326, 35–45. [Google Scholar] [CrossRef]
- Kristiansen, A.P.; Page, M.; Bernasconi, V.; Mattiuzzo, G.; Dull, P.; Makar, K.; Plotkin, S.; Knezevic, I. WHO International Standard for anti-SARS-CoV-2 immunoglobulin. Lancet 2021, 397, 1347–1348. [Google Scholar] [CrossRef] [PubMed]
- Knezevic, I.; Mattiuzzo, G.; Page, M.; Minor, P.; Griffiths, E.; Nuebling, M.; Moorthy, V. WHO International Standard for evaluation of the antibody response to COVID-19 vaccines: Call for urgent action by the scientific community. Lancet Microbe 2022, 3, e235–e240. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xing, S.; Liang, D.; Hu, W.; Ke, C.; He, J.; Yuan, R.; Huang, Y.; Li, Y.; Liu, D.; et al. Differential antibody response to inactivated COVID-19 vaccines in healthy subjects. Front. Cell. Infect. Microbiol. 2021, 11, 791660. [Google Scholar] [CrossRef] [PubMed]
- Khoury, D.S.; Cromer, D.; Reynaldi, A.; Schlub, T.E.; Wheatley, A.K.; Juno, J.A.; Subbarao, K.; Kent, S.J.; Triccas, J.A.; Davenport, M.P. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 2021, 27, 1205–1211. [Google Scholar] [CrossRef] [PubMed]
- Saadat, S.; Tehrani, Z.R.; Logue, J.; Newman, M.; Frieman, M.B.; Harris, A.D.; Sajadi, M.M. Binding and neutralization antibody titers after a single vaccine dose in health care workers previously infected with SARS-CoV-2. JAMA 2021, 325, 1467–1469. [Google Scholar] [CrossRef]
- Ju, B.; Zhang, Q.; Ge, J.; Wang, R.; Sun, J.; Ge, X.; Yu, J.; Shan, S.; Zhou, B.; Song, S.; et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature 2020, 584, 115–119. [Google Scholar] [CrossRef]
- Krammer, F.; Srivastava, K.; Alshammary, H.; Amoako, A.A.; Awawda, M.H.; Beach, K.F.; Bermúdez-González, M.C.; Bielak, D.A.; Carreño, J.M.; Chernet, R.L.; et al. Antibody responses in seropositive persons after a single dose of SARS-CoV-2 mRNA vaccine. N. Engl. J. Med. 2021, 384, 1372–1374. [Google Scholar] [CrossRef]
- Wajnberg, A.; Amanat, F.; Firpo, A.; Altman, D.R.; Bailey, M.J.; Mansour, M.; McMahon, M.; Meade, P.; Mendu, D.R.; Muellers, K.; et al. Robust neutralizing antibodies to SARS-CoV-2 infection persist for months. Science 2020, 370, 1227–1230. [Google Scholar] [CrossRef]
- Amanat, F.; Thapa, M.; Lei, T.; Ahmed, S.M.S.; Adelsberg, D.C.; Carreño, J.M.; Strohmeier, S.; Schmitz, A.J.; Zafar, S.; Zhou, J.Q.; et al. SARS-CoV-2 mRNA vaccination induces functionally diverse antibodies to NTD, RBD, and S2. Cell 2021, 184, 3936–3948.e10. [Google Scholar] [CrossRef]
- Amanat, F.; Stadlbauer, D.; Strohmeier, S.; Nguyen, T.H.O.; Chromikova, V.; McMahon, M.; Jiang, K.; Arunkumar, G.A.; Jurczyszak, D.; Polanco, J.; et al. A serological assay to detect SARS-CoV-2 seroconversion in humans. Nat. Med. 2020, 26, 1033–1036. [Google Scholar] [CrossRef]
- Dan, J.M.; Mateus, J.; Kato, Y.; Hastie, K.M.; Yu, E.D.; Faliti, C.E.; Grifoni, A.; Ramirez, S.I.; Haupt, S.; Frazier, A.; et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science 2021, 371, eabf4063. [Google Scholar] [CrossRef] [PubMed]
- Zitt, E.; Davidovic, T.; Schimpf, J.; Abbassi-Nik, A.; Mutschlechner, B.; Ulmer, H.; Benda, M.A.; Sprenger-Mähr, H.; Winder, T.; Lhotta, K. The safety and immunogenicity of the mRNA-BNT162b2 SARS-CoV-2 vaccine in hemodialysis patients. Front. Immunol. 2021, 12, 704773. [Google Scholar] [CrossRef] [PubMed]
- Sauré, D.; O’Ryan, M.; Torres, J.P.; Zuniga, M.; Santelices, E.; Basso, L.J. Dynamic IgG seropositivity after rollout of CoronaVac and BNT162b2 COVID-19 vaccines in Chile: A sentinel surveillance study. Lancet Infect. Dis. 2022, 22, 56–63. [Google Scholar] [CrossRef]
- Chavarot, N.; Morel, A.; Leruez-Ville, M.; Villain, E.; Divard, G.; Burger, C.; Serris, A.; Sberro-Soussan, R.; Martinez, F.; Amrouche, L.; et al. Weak antibody response to three doses of mRNA vaccine in kidney transplant recipients treated with belatacept. Am. J. Transplant. 2021, 21, 4043–4051. [Google Scholar] [CrossRef] [PubMed]
- Accorsi, E.K.; Britton, A.; Fleming-Dutra, K.E.; Smith, Z.R.; Shang, N.; Derado, G.; Miller, J.; Schrag, S.J.; Verani, J.R. Association between 3 Doses of mRNA COVID-19 vaccine and symptomatic infectioncaused by the SARS-CoV-2 Omicron and Delta variants. JAMA 2022, 327, 639–651. [Google Scholar] [CrossRef] [PubMed]
- Rottenberg, Y.; Grinshpun, A.; Ben-Dov, I.Z.; Djian, E.O.; Wolf, D.G.; Kadouri, L. Assessment of response to a third dose of the SARS-CoV-2 BNT162b2 mRNA vaccine in patients with solid tumors undergoing active treatment. JAMA Oncol. 2022, 8, 300–301. [Google Scholar] [CrossRef] [PubMed]
- Weinreich, D.M.; Sivapalasingam, S.; Norton, T.; Ali, S.; Gao, H.; Bhore, R.; Musser, B.J.; Soo, Y.; Rofail, D.; Im, J.; et al. REGN-COV2, a neutralizing antibody cocktail, in outpatients with COVID-19. N. Engl. J. Med. 2021, 384, 238–251. [Google Scholar] [CrossRef]
- O’Brien, M.P.; Forleo-Neto, E.; Musser, B.J.; Isa, F.; Chan, K.-C.; Sarkar, N.; Bar, K.J.; Barnabas, R.V.; Barouch, D.H.; Cohen, M.S.; et al. Subcutaneous REGEN-COV antibody combination to prevent COVID-19. N. Engl. J. Med. 2021, 385, 1184–1195. [Google Scholar] [CrossRef]
- Weinreich, D.M.; Sivapalasingam, S.; Norton, T.; Ali, S.; Gao, H.; Bhore, R.; Xiao, J.; Hooper, A.T.; Hamilton, J.D.; Musser, B.J.; et al. REGEN-COV antibody combination and outcomes in outpatients with COVID-19. N. Engl. J. Med. 2021, 385, e81. [Google Scholar] [CrossRef]
- Tulchinsky, T.H. Maurice Hilleman: Creator of vaccines that changed the world. Case Stud. Public Health 2018, 19, 443–470. [Google Scholar] [CrossRef]
- Mast, E.E.; Weinbaum, C.M.; Fiore, E.A.; Alter, M.J.; Bell, B.P.; Finelli, L.; Rodewald, L.; Douglas, J.M.; Janssen, R.S.; Ward, J.W. A comprehensive immunization strategy to eliminate transmission of hepatitis B virus infection in the United States: Recommendations of the Advisory Committee on Immunization Practices (ACIP) Part II: Immunization of adults. MMWR Recomm. Rep. 2006, 55, 1–33. [Google Scholar] [PubMed]
- Tan, K.L.; Goh, K.T.; Oon, C.J.; Chan, S.H. Immunogenicity of recombinant yeast-derived hepatitis B vaccine in nonresponders to perinatal immunization. JAMA 1994, 271, 859–861. [Google Scholar] [CrossRef] [PubMed]
- Rumi, M.; Colombo, M.; Romeo, R.; Boschini, A.; Zanetti, A.; Gringeri, A.; Mannucci, P.M. Suboptimal response to hepatitis B vaccine in drug users. Arch. Intern. Med. 1991, 151, 574–578. [Google Scholar] [CrossRef] [PubMed]
- Van Oekelen, O.; Gleason, C.R.; Agte, S.; Srivastava, K.; Beach, K.F.; Aleman, A.; Kappes, K.; Mouhieddine, T.H.; Wang, B.; Chari, A.; et al. Highly variable SARS-CoV-2 spike antibody responses to two doses of COVID-19 RNA vaccination in patients with multiple myeloma. Cancer Cell 2021, 39, 1028–1030. [Google Scholar] [CrossRef]
- Ollila, T.A.; Lu, S.; Masel, R.; Zayac, A.; Paiva, K.; Rogers, R.D.; Olszewski, A.J. Antibody response to COVID-19 vaccination in adults with hematologic malignant disease. JAMA Oncol. 2021, 7, 1714–1716. [Google Scholar] [CrossRef]
- Greenberger, L.M.; Saltzman, L.A.; Senefeld, J.W.; Johnson, P.W.; DeGennaro, L.J.; Nichols, G.L. Antibody response to SARS-CoV-2 vaccines in patients with hematologic malignancies. Cancer Cell 2021, 39, 1031–1033. [Google Scholar] [CrossRef]
- Massarweh, A.; Eliakim-Raz, N.; Stemmer, A.; Levy-Barda, A.; Yust-Katz, S.; Zer, A.; Benouaich-Amiel, A.; Ben-Zvi, H.; Moskovits, N.; Brenner, B.; et al. Evaluation of seropositivity following BNT162b2 messenger RNA vaccination for SARS-CoV-2 in patients undergoing treatment for cancer. JAMA Oncol. 2021, 7, 1133–1140. [Google Scholar] [CrossRef]
- Obeid, M.; Suffiotti, M.; Pellaton, C.; Bouchaab, H.; Cairoli, A.; Salvadé, V.; Stevenel, C.; Hottinger, R.; Pythoud, C.; Coutechier, L.; et al. Humoral responses against variants of concern by COVID-19 mRNA vaccines in immunocompromised patients. JAMA Oncol. 2022, 8, e220446. [Google Scholar] [CrossRef]
- Maneikis, K.; Šablauskas, K.; Ringelevičiūtė, U.; Vaitekėnaitė, V.; Čekauskienė, R.; Kryžauskaitė, L.; Naumovas, D.; Banys, V.; Pečeliūnas, V.; Beinortas, T.; et al. Immunogenicity of the BNT162b2 COVID-19 mRNA vaccine and early clinical outcomes in patients with haematological malignancies in Lithuania: A national prospective cohort study. Lancet Haematol. 2021, 8, e583–e592. [Google Scholar] [CrossRef]
- Kamar, N.; Abravanel, F.; Marion, O.; Couat, C.; Izopet, J.; Del Bello, A. Three doses of an mRNA COVID-19 vaccine in solid-organ transplant recipients. N. Engl. J. Med. 2021, 385, 661–662. [Google Scholar] [CrossRef]
- Boyarsky, B.J.; Werbel, W.A.; Avery, R.K.; Tobian, A.A.R.; Massie, A.B.; Segev, D.L.; Garonzik-Wang, J.M. Antibody response to 2-dose SARS-CoV-2 mRNA vaccine series in solid organ transplant recipients. JAMA 2021, 325, 2204–2206. [Google Scholar] [CrossRef]
- Bobcakova, A.; Petriskova, J.; Vysehradsky, R.; Kocan, I.; Kapustova, L.; Barnova, M.; Diamant, Z.; Jesenak, M. Immune profile in patients with COVID-19: Lymphocytes exhaustion markers in relationship to clinical outcome. Front. Cell. Infect. Microbiol. 2021, 11, 646688. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Using Antibody Tests for COVID-19. Available online: https://www.cdc.gov/coronavirus/2019-ncov/lab/resources/antibody-tests.html (accessed on 17 December 2022).
- Lustig, Y.; Nemet, I.; Kliker, L.; Zuckerman, N.; Yishai, R.; Alroy-Preis, S.; Mendelson, E.; Mandelboim, M. Neutralizing response against variants after SARS-CoV-2 infection and one dose of BNT162b2. N. Engl. J. Med. 2021, 384, 2453–2454. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Beltran, W.F.; St Denis, K.J.; Hoelzemer, A.; Lam, E.C.; Nitido, A.D.; Sheehan, M.L.; Berrios, C.; Ofoman, O.; Chang, C.C.; Hauser, B.M.; et al. mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant. Cell 2022, 185, 457–466.e4. [Google Scholar] [CrossRef] [PubMed]
- Collie, S.; Champion, J.; Moultrie, H.; Bekker, L.-G.; Gray, G. Effectiveness of BNT162b2 vaccine against Omicron variant in South Africa. N. Engl. J. Med. 2022, 386, 494–496. [Google Scholar] [CrossRef] [PubMed]
- Andrews, N.; Stowe, J.; Kirsebom, F.; Toffa, S.; Rickeard, T.; Gallagher, E.; Gower, C.; Kall, M.; Groves, N.; O’Connell, A.-M.; et al. COVID-19 vaccine effectiveness against the Omicron (B.1.1.529) variant. N. Engl. J. Med. 2022, 386, 1532–1546. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Zhang, X.; Chen, Y.; Wang, D.; Zhang, D.; Yan, S.; Wang, H.; Xiao, M.; Liang, T.; Li, H.; et al. Dynamic landscape mapping of humoral immunity to SARS-CoV-2 identifies non-structural protein antibodies associated with the survival of critical COVID-19 patients. Signal Transduct. Target. Ther. 2021, 6, 304. [Google Scholar] [CrossRef]
- Hall, V.G.; Ferreira, V.H.; Ku, T.; Ierullo, M.; Majchrzak-Kita, B.; Chaparro, C.; Selzner, N.; Schiff, J.; McDonald, M.; Tomlinson, G.; et al. Randomized trial of a third dose of mRNA-1273 vaccine in transplant recipients. N. Engl. J. Med. 2021, 385, 1244–1246. [Google Scholar] [CrossRef]
- Benotmane, I.; Gautier, G.; Perrin, P.; Olagne, J.; Cognard, N.; Fafi-Kremer, S.; Caillard, S. Antibody response after a third dose of the mRNA-1273 SARS-CoV-2 vaccine in kidney transplant recipients with minimal serologic response to 2 doses. JAMA 2021, 326, 1063–1065. [Google Scholar] [CrossRef]
- Holmgren, J.; Czerkinsky, C. Mucosal immunity and vaccines. Nat. Med. 2005, 11, S45–S53. [Google Scholar] [CrossRef]
- Kamar, N.; Abravanel, F.; Marion, O.; Romieu-Mourez, R.; Couat, C.; Del Bello, A.; Izopet, J. Assessment of 4 doses of SARS-CoV-2 messenger RNA-based vaccine in recipients of a solid organ transplant. JAMA Netw. Open 2021, 4, e2136030. [Google Scholar] [CrossRef] [PubMed]
- Sfeir, M.M.; Snayd, M. Serologic testing for hepatitis B. JAMA 2021, 326, 2423–2424. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Zhang, G.-M.; Chan, P.L.; Wang, F.Z.; Rodewald, L.E.; Miao, N.; Sun, X.J.; Yin, Z.D.; Edwards, J.; Wang, H.Q. Compliance among infants exposed to hepatitis B virus in a post-vaccination serological testing program in four provinces in China. Infect. Dis. Poverty 2019, 8, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trevisan, A.; Frasson, C.; De Nuzzo, D.; Nicolli, A.; Scapellato, M.L. Significance of anti-HB levels below 10 IU/L after vaccination against hepatitis B in infancy or adolescence: An update in relation to sex. Hum. Vaccin. Immunother. 2020, 16, 460–464. [Google Scholar] [CrossRef] [PubMed]
- Le, M.H.; Yeo, Y.H.; So, S.; Gane, E.; Cheung, R.C.; Nguyen, M.H. Prevalence of hepatitis B vaccination coverage and serologic evidence of immunity among US-born children and adolescents from 1999 to 2016. JAMA Netw. Open 2020, 3, e2022388. [Google Scholar] [CrossRef]
- Wood, R.C.; Macdonald, K.L.; White, E.K.; Hedberg, C.W.; Hanson, M.; Osterholm, M.T. Risk factors for lack of detectable antibody following hepatitis B vaccination of Minnesota health care workers. JAMA 1993, 270, 2935–2939. [Google Scholar] [CrossRef]
- Zeng, Q.; Huang, G.; Li, Y.Z.; Xu, Y. Tackling COVID-19 by exploiting pre-existing cross-reacting spike-specific immunity. Mol. Ther. 2020, 28, 2314–2315. [Google Scholar] [CrossRef]
- Servellita, V.; Syed, A.M.; Morris, M.K.; Brazer, N.; Saldhi, P.; Garcia-Knight, M.; Sreekumar, B.; Khalid, M.M.; Ciling, A.; Chen, P.-Y.; et al. Neutralizing immunity in vaccine breakthrough infections from the SARS-CoV-2 Omicron and Delta variants. Cell 2022, 185, 1539–1548.e5. [Google Scholar] [CrossRef]
- Gueguen, J.; Colosio, C.; Del Bello, A.; Scemla, A.; N’Guyen, Y.; Rouzaud, C.; Carvalho-Schneider, C.; Vargas, G.G.; Tremolières, P.; Eddine, A.J.; et al. Early administration of anti-SARS-CoV-2 monoclonal antibodies prevents severe COVID-19 in kidney transplant patients. Kidney Int. Rep. 2022, 7, 1241–1247. [Google Scholar] [CrossRef]
- Wen, W.; Chen, C.; Tang, J.; Wang, C.; Zhou, M.; Cheng, Y.; Zhou, X.; Wu, Q.; Zhang, X.; Feng, Z.; et al. Efficacy and safety of three new oral antiviral treatment (molnupiravir, fluvoxamine and Paxlovid) for COVID-19: A meta-analysis. Ann. Med. 2022, 54, 516–523. [Google Scholar] [CrossRef]
- Mahase, E. COVID-19: Pfizer’s paxlovid is 89% effective in patients at risk of serious illness, company reports. BMJ 2021, 375, n2713. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, R.T.; Malani, P.N.; Del Rio, C. COVID-19 therapeutics for nonhospitalized patients. JAMA 2022, 327, 617–618. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.A.; Rhee, C.; Tucker, R.; Badwaik, A.; Coughlin, C.; Holtzman, A.M.; Hsieh, C.; Maguire, A.; Blaeser, E.M.; Seetharaman, S.; et al. Rapid control of hospital-based SARS-CoV-2 omicron clusters through daily testing and universal use of N95 respirators. Clin. Infect. Dis. 2022, 75, e296–e299. [Google Scholar] [CrossRef] [PubMed]
Characteristics | 18–59-Year Group | ≥60-Year Group | p-Value |
---|---|---|---|
Total number of cases | 361 | 266 | |
Sex (%) | |||
Male | 183 (50.7) | 136 (51.1) | |
Female | 178 (49.3) | 130 (48.9) | 0.1201 |
Age, yrs mean (SD) | 45 (9) | 67 (6) | <0.0001 |
Naïve immune cells, median (IQR) | |||
Lymphocytes (/mm3) | 1476 (1168–1875) | 1281 (1023–1520) | <0.0001 |
CD4 cells (/mm3) | 851 (677–1151) | 747 (562–955) | <0.0001 |
CD8 cells (/mm3) | 490 (357–632) | 418 (288–544) | <0.0001 |
B cells (/mm3) | 256 (179–367) | 204 (138–303) | <0.0001 |
Natural killer cells (/mm3) | 193 (141–287) | 234 (162–355) | <0.0001 |
Anti-spike IgG | |||
Titer, BAU/mL, median (IQR) | 416.8 (355.7–479.2) | 307.2 (118.2–417.3) | <0.0001 |
Characteristics | 18–59-Year Group | ≥60-Year Group | ||||
---|---|---|---|---|---|---|
Groups | Fold-Index < 4 | Fold-Index ≥ 4 | p-Value | Fold-Index < 4 | Fold-Index ≥ 4 | p-Value |
Total number of cases | 361 | 266 | ||||
Anti-spike IgG, BAU/mL (the 2.5th–97.5th percentile) | 88.9–576.2 | 27.7–491.0 | ||||
Fold–index, % (no.) * | 7.5 (27/361) | 92.5 (334/361) | 11.7 (31/266) | 88.3 (235/266) | ||
Anti-spike IgG, BAU/mL | ||||||
Median (IQR) | 115.8 (88.6–167.8) | 420.8 (369.9–480.6) | <0.0001 | 63.9 (35.1–106.9) | 346.0 (160.4–424.7) | <0.0001 |
The 2.5th–97.5th percentile | 11.3–266.3 | 200.7–576.5 | 5.4–317.8 | 46.6–491.1 | ||
Naïve immune cells (/mm3) | ||||||
Lymphocytes, mean (95% CI) | 1130 (1007–1252) | 1578 (1524–1633) | <0.0001 | 1015 (888–1143) | 1344 (1291–1397) | <0.0001 |
CD4 cells, mean (95% CI) | 631 (555–708) | 942 (905–979) | <0.0001 | 563 (494–631) | 818 (777–858) | <0.0001 |
CD8 cells, mean (95% CI) | 414 (349–479) | 532 (508–557) | 0.0081 | 394 (310–478) | 444 (420–468) | 0.1744 |
B cells, mean (95% CI) | 119 (72–166) | 306 (289–323) | <0.0001 | 74 (60–88) | 248 (231–266) | <0.0001 |
NK cells, mean (95% CI) | 192 (151–233) | 235 (220–251) | 0.1241 | 281 (225–337) | 286 (261–311) | 0.8902 |
Characteristics * | 18–59-Year Group | ≥60-Year Group |
---|---|---|
Lymphocytes (<1000/mm3) | 37.0% | 58.1% |
CD4 cells (<500/mm3) | 33.3% | 45.2% |
CD8 cells (<150/mm3) | 0% | 3.2% |
B cells (<100/mm3) | 74.1% | 96.8% |
NK cells (<70/mm3) | 3.7% | 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Q.; Yang, X.; Lin, B.-Y.; Li, Y.-Z.; Huang, G.; Xu, Y. Immunological Findings in a Group of Individuals Who Were Poor or Non-Responders to Standard Two-Dose SARS-CoV-2 Vaccines. Vaccines 2023, 11, 461. https://doi.org/10.3390/vaccines11020461
Zeng Q, Yang X, Lin B-Y, Li Y-Z, Huang G, Xu Y. Immunological Findings in a Group of Individuals Who Were Poor or Non-Responders to Standard Two-Dose SARS-CoV-2 Vaccines. Vaccines. 2023; 11(2):461. https://doi.org/10.3390/vaccines11020461
Chicago/Turabian StyleZeng, Qiang, Xue Yang, Biao-Yang Lin, Yong-Zhe Li, Gang Huang, and Yang Xu. 2023. "Immunological Findings in a Group of Individuals Who Were Poor or Non-Responders to Standard Two-Dose SARS-CoV-2 Vaccines" Vaccines 11, no. 2: 461. https://doi.org/10.3390/vaccines11020461
APA StyleZeng, Q., Yang, X., Lin, B. -Y., Li, Y. -Z., Huang, G., & Xu, Y. (2023). Immunological Findings in a Group of Individuals Who Were Poor or Non-Responders to Standard Two-Dose SARS-CoV-2 Vaccines. Vaccines, 11(2), 461. https://doi.org/10.3390/vaccines11020461