Adverse Hematological Effects of COVID-19 Vaccination and Pathomechanisms of Low Acquired Immunity in Patients with Hematological Malignancies
Abstract
:1. Introduction
2. Materials and Methods
3. Hematological Comorbidities and Clinical Outcomes Associated with COVID-19 Infection
3.1. Thrombocytopenia
3.2. Coagulation Abnormalities
3.3. Red Blood Cells and Hemoglobin
4. Adverse Hematological Effects of COVID-19 Vaccination within the General Population
4.1. Vaccine-Induced Immune Thrombocytopenia
4.2. Premenstrual and Menstrual Changes
4.3. White Blood Cells
4.4. Cardiovascular and Hematological Complications
5. Vaccination Efficacy in Patients with Hematological Malignancies
5.1. Acute Myeloid Leukemia and Myelodysplastic Syndrome
5.2. Myeloproliferative Neoplasms and Syndromes (Essential Thrombocythemia, Polycythemia Vera, Myelofibrosis, Chronic Myeloid Leukemia)
5.3. Chronic Lymphocytic Leukemia
6. Vaccination Efficacy in Patients with Solid Malignancies
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Herzog Tzarfati, K.; Gutwein, O.; Apel, A.; Rahimi-Levene, N.; Sadovnik, M.; Harel, L.; Benveniste-Levkovitz, P.; Bar Chaim, A.; Koren-Michowitz, M. BNT162b2 COVID-19 vaccine is significantly less effective in patients with hematologic malignancies. Am. J. Hematol. 2021, 96, 1195–1203. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.; Niloofa, R.; Jayarajah, U.; De Mel, S.; Abeysuriya, V.; Seneviratne, S.L. Hematological Abnormalities in COVID-19: A Narrative Review. Am. J. Trop. Med. Hyg. 2021, 104, 1188–1201. [Google Scholar] [CrossRef]
- Chung, D.J.; Shah, G.L.; Devlin, S.M.; Ramanathan, L.V.; Doddi, S.; Pessin, M.S.; Hoover, E.; Marcello, L.T.; Young, J.C.; Boutemine, S.R.; et al. Disease- and Therapy-Specific Impact on Humoral Immune Responses to COVID-19 Vaccination in Hematologic Malignancies. Blood Cancer Discov. 2021, 2, 568–576. [Google Scholar] [CrossRef]
- Nooti, S.K.; Rai, V.; Singh, H.; Potluri, V.; Agrawal, D.K. Strokes, Neurological, and Neuropsychiatric Disorders in COVID-19. In Delineating Health and Health System: Mechanistic Insights into COVID-19 Complications; Springer: Singapore, 2021; pp. 209–231. [Google Scholar]
- Struyf, T.; Deeks, J.J.; Dinnes, J.; Takwoingi, Y.; Davenport, C.; Leeflang, M.M.; Spijker, R.; Hooft, L.; Emperador, D.; Dittrich, S.; et al. Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19 disease. Cochrane Database Syst. Rev. 2020, 7, CD013665. [Google Scholar] [CrossRef]
- Mittelman, M.; Magen, O.; Barda, N.; Dagan, N.; Oster, H.S.; Leader, A.; Balicer, R. Effectiveness of the BNT162b2mRNA COVID-19 vaccine in patients with hematological neoplasms in a nationwide mass vaccination setting. Blood 2022, 139, 1439–1451. [Google Scholar] [CrossRef] [PubMed]
- Sanyaolu, A.; Okorie, C.; Marinkovic, A.; Patidar, R.; Younis, K.; Desai, P.; Hosein, Z.; Padda, I.; Mangat, J.; Altaf, M. Comorbidity and its Impact on Patients with COVID-19. SN Compr. Clin. Med. 2020, 2, 1069–1076. [Google Scholar] [CrossRef]
- Ritchie, H.; Mathieu, E.; Rodés-Guirao, L.; Appel, C.; Giattino, C.; Ortiz-Ospina, E.; Hasell, J.; Macdonald, B.; Beltekian, D.; Roser, M. Coronavirus Pandemic (COVID-19). Our World in Data 2020. Available online: https://ourworldindata.org/coronavirus (accessed on 10 March 2023).
- Agha, M.; Blake, M.; Chilleo, C.; Wells, A.; Haidar, G. Suboptimal response to COVID-19 mRNA vaccines in hematologic malignancies patients. medRxiv 2021. [Google Scholar] [CrossRef]
- Kaur, R.J.; Dutta, S.; Bhardwaj, P.; Charan, J.; Dhingra, S.; Mitra, P.; Singh, K.; Yadav, D.; Sharma, P.; Misra, S. Adverse Events Reported From COVID-19 Vaccine Trials: A Systematic Review. Indian J. Clin. Biochem. 2021, 36, 427–439. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Zhou, Q.; Xu, J. Mechanism of thrombocytopenia in COVID-19 patients. Ann. Hematol. 2020, 99, 1205–1208. [Google Scholar] [CrossRef] [Green Version]
- Al-Samkari, H.; Karp Leaf, R.S.; Dzik, W.H.; Carlson, J.C.T.; Fogerty, A.E.; Waheed, A.; Goodarzi, K.; Bendapudi, P.K.; Bornikova, L.; Gupta, S.; et al. COVID-19 and coagulation: Bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood 2020, 136, 489–500. [Google Scholar] [CrossRef]
- Conway, E.M.; Pryzdial, E.L.G. Is the COVID-19 thrombotic catastrophe complement-connected? J. Thromb. Haemost. 2020, 18, 2812–2822. [Google Scholar] [CrossRef]
- Glowacka, I.; Bertram, S.; Herzog, P.; Pfefferle, S.; Steffen, I.; Muench, M.O.; Simmons, G.; Hofmann, H.; Kuri, T.; Weber, F.; et al. Differential downregulation of ACE2 by the spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus NL63. J. Virol. 2010, 84, 1198–1205. [Google Scholar] [CrossRef] [Green Version]
- Imai, Y.; Kuba, K.; Rao, S.; Huan, Y.; Guo, F.; Guan, B.; Yang, P.; Sarao, R.; Wada, T.; Leong-Poi, H.; et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 2005, 436, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Spudich, S.; Nath, A. Nervous system consequences of COVID-19. Science 2022, 375, 267–269. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.; Perl, D.P.; Nair, G.; Li, W.; Maric, D.; Murray, H.; Dodd, S.J.; Koretsky, A.P.; Watts, J.A.; Cheung, V.; et al. Microvascular Injury in the Brains of Patients with COVID-19. N. Engl. J. Med. 2021, 384, 481–483. [Google Scholar] [CrossRef]
- Marietta, M.; Ageno, W.; Artoni, A.; De Candia, E.; Gresele, P.; Marchetti, M.; Marcucci, R.; Tripodi, A. COVID-19 and haemostasis: A position paper from Italian Society on Thrombosis and Haemostasis (SISET). Blood Transfus. 2020, 18, 167–169. [Google Scholar] [CrossRef]
- Thomas, T.; Stefanoni, D.; Dzieciatkowska, M.; Issaian, A.; Nemkov, T.; Hill, R.C.; Francis, R.O.; Hudson, K.E.; Buehler, P.W.; Zimring, J.C.; et al. Evidence of Structural Protein Damage and Membrane Lipid Remodeling in Red Blood Cells from COVID-19 Patients. J. Proteome Res. 2020, 19, 4455–4469. [Google Scholar] [CrossRef]
- Foy, B.H.; Carlson, J.C.T.; Reinertsen, E.; Padros, I.V.R.; Pallares Lopez, R.; Palanques-Tost, E.; Mow, C.; Westover, M.B.; Aguirre, A.D.; Higgins, J.M. Association of Red Blood Cell Distribution Width With Mortality Risk in Hospitalized Adults with SARS-CoV-2 Infection. JAMA Netw. Open 2020, 3, e2022058. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hu, J.; Huang, X.; Fu, S.; Ding, D.; Tao, Z. Association Between Red Blood Cell Distribution Width and COVID-19 Severity in Delta Variant SARS-CoV-2 Infection. Front. Med. 2022, 9, 837411. [Google Scholar] [CrossRef]
- Marchi, G.; Bozzini, C.; Bertolone, L.; Dima, F.; Busti, F.; Castagna, A.; Stranieri, C.; Fratta Pasini, A.M.; Friso, S.; Lippi, G.; et al. Red Blood Cell Morphologic Abnormalities in Patients Hospitalized for COVID-19. Front. Physiol. 2022, 13, 932013. [Google Scholar] [CrossRef]
- Mauriello, A.; Scimeca, M.; Amelio, I.; Massoud, R.; Novelli, A.; Di Lorenzo, F.; Finocchiaro, S.; Cimino, C.; Telesca, R.; Chiocchi, M.; et al. Thromboembolism after COVID-19 vaccine in patients with preexisting thrombocytopenia. Cell Death Dis. 2021, 12, 762. [Google Scholar] [CrossRef]
- Mani, A.; Ojha, V. Thromboembolism after COVID-19 Vaccination: A Systematic Review of Such Events in 286 Patients. Ann. Vasc. Surg. 2022, 84, 12–20.e11. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Kwon, W.A.; Shin, S.P.; Seo, H.K.; Lim, S.J.; Jung, Y.S.; Han, H.K.; Jeong, K.C.; Lee, S.J. Electrostatic interaction of tumor-targeting adenoviruses with aminoclay acquires enhanced infectivity to tumor cells inside the bladder and has better cytotoxic activity. Drug Deliv. 2018, 25, 49–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanack, A.J.; Padmanabhan, A. Vaccine-induced immune thrombotic thrombocytopenia. Best Pract. Res. Clin. Haematol. 2022, 35, 101381. [Google Scholar] [CrossRef] [PubMed]
- Beltrami-Moreira, M.; Bussel, J.B. A narrative review of anti-SARS-CoV-2 vaccines and immune thrombocytopenia: Be aware, but reassured. Clin. Adv. Hematol. Oncol. 2022, 20, 572–578. [Google Scholar]
- Pishko, A.M.; Bussel, J.B.; Cines, D.B. COVID-19 vaccination and immune thrombocytopenia. Nat. Med. 2021, 27, 1145–1146. [Google Scholar] [CrossRef]
- Simpson, C.R.; Shi, T.; Vasileiou, E.; Katikireddi, S.V.; Kerr, S.; Moore, E.; McCowan, C.; Agrawal, U.; Shah, S.A.; Ritchie, L.D.; et al. First-dose ChAdOx1 and BNT162b2 COVID-19 vaccines and thrombocytopenic, thromboembolic and hemorrhagic events in Scotland. Nat. Med. 2021, 27, 1290–1297. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.Y.; Woo, W.; Yon, D.K.; Lee, S.W.; Yang, J.W.; Kim, J.H.; Park, S.; Koyanagi, A.; Kim, M.S.; Lee, S.; et al. Thrombosis patterns and clinical outcome of COVID-19 vaccine-induced immune thrombotic thrombocytopenia: A Systematic Review and Meta-Analysis. Int. J. Infect. Dis. 2022, 119, 130–139. [Google Scholar] [CrossRef]
- Shah, H.; Kim, A.; Sukumar, S.; Mazepa, M.; Kohli, R.; Braunstein, E.M.; Brodsky, R.A.; Cataland, S.; Chaturvedi, S. SARS-CoV-2 vaccination and immune thrombotic thrombocytopenic purpura. Blood 2022, 139, 2570–2573. [Google Scholar] [CrossRef]
- Saluja, P.; Amisha, F.; Gautam, N.; Goraya, H. A Systematic Review of Reported Cases of Immune Thrombocytopenia after COVID-19 Vaccination. Vaccines 2022, 10, 1444. [Google Scholar] [CrossRef]
- Siegler, J.E.; Klein, P.; Yaghi, S.; Vigilante, N.; Abdalkader, M.; Coutinho, J.M.; Abdul Khalek, F.; Nguyen, T.N. Cerebral Vein Thrombosis with Vaccine-Induced Immune Thrombotic Thrombocytopenia. Stroke 2021, 52, 3045–3053. [Google Scholar] [CrossRef]
- Furie, K.L.; Cushman, M.; Elkind, M.S.V.; Lyden, P.D.; Saposnik, G.; American Heart Association/American Stroke Association Stroke Council Leadership. Diagnosis and Management of Cerebral Venous Sinus Thrombosis With Vaccine-Induced Immune Thrombotic Thrombocytopenia. Stroke 2021, 52, 2478–2482. [Google Scholar] [CrossRef]
- Baena-Garcia, L.; Aparicio, V.A.; Molina-Lopez, A.; Aranda, P.; Camara-Roca, L.; Ocon-Hernandez, O. Premenstrual and menstrual changes reported after COVID-19 vaccination: The EVA project. Womens Health 2022, 18, 17455057221112237. [Google Scholar] [CrossRef]
- Alvergne, A.; Woon, E.V.; Male, V. Effect of COVID-19 vaccination on the timing and flow of menstrual periods in two cohorts. Front. Reprod. Health 2022, 4, 952976. [Google Scholar] [CrossRef] [PubMed]
- Nazir, M.; Asghar, S.; Rathore, M.A.; Shahzad, A.; Shahid, A.; Ashraf Khan, A.; Malik, A.; Fakhar, T.; Kausar, H.; Malik, J. Menstrual abnormalities after COVID-19 vaccines: A systematic review. Vacunas 2022, 23, S77–S87. [Google Scholar] [CrossRef]
- Lebar, V.; Lagana, A.S.; Chiantera, V.; Kunic, T.; Lukanovic, D. The Effect of COVID-19 on the Menstrual Cycle: A Systematic Review. J. Clin. Med. 2022, 11, 3800. [Google Scholar] [CrossRef] [PubMed]
- Gibson, E.A.; Li, H.; Fruh, V.; Gabra, M.; Asokan, G.; Jukic, A.M.Z.; Baird, D.D.; Curry, C.L.; Fischer-Colbrie, T.; Onnela, J.P.; et al. COVID-19 vaccination and menstrual cycle length in the Apple Women’s Health Study. NPJ Digit. Med. 2022, 5, 165. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Cheng, A.; Yuan, X.; Zhong, X.; Wang, H.; Zhou, W.; Xu, X.; Li, Y. Characteristics of peripheral white blood cells in COVID-19 patients revealed by a retrospective cohort study. BMC Infect. Dis. 2021, 21, 1236. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.S.; Wang, J.; Chen, M. Metabolic Reprogramming in CD8(+) T Cells During Acute Viral Infections. Front. Immunol. 2020, 11, 1013. [Google Scholar] [CrossRef]
- Veerman, S.R.T.; Moscou, T.; Bogers, J.; Cohen, D.; Schulte, P.F.J. Clozapine and COVID-19 Vaccination: Effects on blood levels and leukocytes. An observational cohort study. Acta Psychiatr. Scand. 2022, 146, 168–178. [Google Scholar] [CrossRef]
- de Montjoye, L.; Marot, L.; Baeck, M. Eosinophilic cellulitis after BNT162b2 mRNA COVID-19 vaccine. J. Eur. Acad. Dermatol. Venereol. 2022, 36, e26–e28. [Google Scholar] [CrossRef]
- Cinotti, E.; Perrot, J.L.; Bruzziches, F.; Tognetti, L.; Batsikosta, A.; Sorrentino, E.; Marzano, A.V.; Rubegni, P. Eosinophilic dermatosis after AstraZeneca COVID-19 vaccination. J. Eur. Acad. Dermatol. Venereol. 2022, 36, e171–e172. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Yan, X.; Fan, Q.; Liu, H.; Liu, X.; Liu, Z.; Zhang, Z. D-dimer levels on admission to predict in-hospital mortality in patients with COVID-19. J. Thromb. Haemost. 2020, 18, 1324–1329. [Google Scholar] [CrossRef] [Green Version]
- Voleti, N.; Reddy, S.P.; Ssentongo, P. Myocarditis in SARS-CoV-2 infection vs. COVID-19 vaccination: A systematic review and meta-analysis. Front. Cardiovasc. Med. 2022, 9, 951314. [Google Scholar] [CrossRef]
- Khan, M.S.; Shahid, I.; Anker, S.D.; Solomon, S.D.; Vardeny, O.; Michos, E.D.; Fonarow, G.C.; Butler, J. Cardiovascular implications of COVID-19 versus influenza infection: A review. BMC Med. 2020, 18, 403. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Qin, M.; Shen, B.; Cai, Y.; Liu, T.; Yang, F.; Gong, W.; Liu, X.; Liang, J.; Zhao, Q.; et al. Association of Cardiac Injury with Mortality in Hospitalized Patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020, 5, 802–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Wang, C.Y.; Wang, S.I.; Wei, J.C. Long-term cardiovascular outcomes in COVID-19 survivors among non-vaccinated population: A retrospective cohort study from the TriNetX US collaborative networks. EClinicalMedicine 2022, 53, 101619. [Google Scholar] [CrossRef]
- Mansanguan, S.; Charunwatthana, P.; Piyaphanee, W.; Dechkhajorn, W.; Poolcharoen, A.; Mansanguan, C. Cardiovascular Manifestation of the BNT162b2 mRNA COVID-19 Vaccine in Adolescents. Trop. Med. Infect. Dis. 2022, 7, 196. [Google Scholar] [CrossRef]
- Hana, D.; Patel, K.; Roman, S.; Gattas, B.; Sofka, S. Clinical Cardiovascular Adverse Events Reported Post-COVID-19 Vaccination: Are They a Real Risk? Curr. Probl. Cardiol. 2022, 47, 101077. [Google Scholar] [CrossRef]
- Li, Y.E.; Wang, S.; Reiter, R.J.; Ren, J. Clinical cardiovascular emergencies and the cellular basis of COVID-19 vaccination: From dream to reality? Int. J. Infect. Dis. 2022, 124, 1–10. [Google Scholar] [CrossRef]
- Fazlollahi, A.; Zahmatyar, M.; Noori, M.; Nejadghaderi, S.A.; Sullman, M.J.M.; Shekarriz-Foumani, R.; Kolahi, A.A.; Singh, K.; Safiri, S. Cardiac complications following mRNA COVID-19 vaccines: A systematic review of case reports and case series. Rev. Med. Virol. 2022, 32, e2318. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, B.; Kamat, I.; Hotez, P.J. Myocarditis With COVID-19 mRNA Vaccines. Circulation 2021, 144, 471–484. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.P.; Kafil, T.S. COVID-19 Vaccine Myocarditis: Cautious Reassurance in an Era of Dynamic Uncertainty. J. Am. Coll. Cardiol. 2022, 80, 2266–2268. [Google Scholar] [CrossRef] [PubMed]
- Fronza, M.; Thavendiranathan, P.; Chan, V.; Karur, G.R.; Udell, J.A.; Wald, R.M.; Hong, R.; Hanneman, K. Myocardial Injury Pattern at MRI in COVID-19 Vaccine-Associated Myocarditis. Radiology 2022, 304, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Radwi, M.; Farsi, S. A case report of acquired hemophilia following COVID-19 vaccine. J. Thromb. Haemost. 2021, 19, 1515–1518. [Google Scholar] [CrossRef]
- Al-Ali, D.; Elshafeey, A.; Mushannen, M.; Kawas, H.; Shafiq, A.; Mhaimeed, N.; Mhaimeed, O.; Mhaimeed, N.; Zeghlache, R.; Salameh, M.; et al. Cardiovascular and haematological events post COVID-19 vaccination: A systematic review. J. Cell Mol. Med. 2022, 26, 636–653. [Google Scholar] [CrossRef]
- Hunter, P.R. Thrombosis after COVID-19 vaccination. BMJ 2021, 373, n958. [Google Scholar] [CrossRef]
- Tobaiqy, M.; MacLure, K.; Elkout, H.; Stewart, D. Thrombotic Adverse Events Reported for Moderna, Pfizer and Oxford-AstraZeneca COVID-19 Vaccines: Comparison of Occurrence and Clinical Outcomes in the EudraVigilance Database. Vaccines 2021, 9, 1326. [Google Scholar] [CrossRef]
- Abou-Ismail, M.Y.; Citla Sridhar, D.; Nayak, L. Estrogen and thrombosis: A bench to bedside review. Thromb. Res. 2020, 192, 40–51. [Google Scholar] [CrossRef]
- Sun, C.L.F.; Jaffe, E.; Levi, R. Increased emergency cardiovascular events among under-40 population in Israel during vaccine rollout and third COVID-19 wave. Sci. Rep. 2022, 12, 6978. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.E.; Huh, K.; Park, Y.J.; Peck, K.R.; Jung, J. Association between Vaccination and Acute Myocardial Infarction and Ischemic Stroke after COVID-19 Infection. JAMA 2022, 328, 887–889. [Google Scholar] [CrossRef] [PubMed]
- Block, J.P.; Boehmer, T.K.; Forrest, C.B.; Carton, T.W.; Lee, G.M.; Ajani, U.A.; Christakis, D.A.; Cowell, L.G.; Draper, C.; Ghildayal, N.; et al. Cardiac Complications after SARS-CoV-2 Infection and mRNA COVID-19 Vaccination—PCORnet, United States, January 2021–January 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Botton, J.; Jabagi, M.J.; Bertrand, M.; Baricault, B.; Drouin, J.; Le Vu, S.; Weill, A.; Farrington, P.; Zureik, M.; Dray-Spira, R. Risk for Myocardial Infarction, Stroke, and Pulmonary Embolism following COVID-19 Vaccines in Adults Younger Than 75 Years in France. Ann. Intern. Med. 2022, 175, 1250–1257. [Google Scholar] [CrossRef]
- Wenande, E.; Garvey, L.H. Immediate-type hypersensitivity to polyethylene glycols: A review. Clin. Exp. Allergy 2016, 46, 907–922. [Google Scholar] [CrossRef]
- Rzymski, P.; Perek, B.; Flisiak, R. Thrombotic Thrombocytopenia after COVID-19 Vaccination: In Search of the Underlying Mechanism. Vaccines 2021, 9, 559. [Google Scholar] [CrossRef]
- Ye, X.; Ma, T.; Blais, J.E.; Yan, V.K.C.; Kang, W.; Chui, C.S.L.; Lai, F.T.T.; Li, X.; Wan, E.Y.F.; Wong, C.K.H.; et al. Association between BNT162b2 or CoronaVac COVID-19 vaccines and major adverse cardiovascular events among individuals with cardiovascular disease. Cardiovasc. Res. 2022, 118, 2329–2338. [Google Scholar] [CrossRef]
- Rodriguez-Abreu, D.; Bordoni, A.; Zucca, E. Epidemiology of hematological malignancies. Ann. Oncol. 2007, 18 (Suppl. 1), i3–i8. [Google Scholar] [CrossRef]
- Niscola, P.; Cartoni, C.; Romani, C.; Brunetti, G.A.; D’Elia, G.M.; Cupelli, L.; Tendas, A.; de Fabritiis, P.; Mandelli, F.; Foa, R. Epidemiology, features and outcome of pain in patients with advanced hematological malignancies followed in a home care program: An Italian survey. Ann. Hematol. 2007, 86, 671–676. [Google Scholar] [CrossRef] [Green Version]
- Fendler, A.; Shepherd, S.T.C.; Au, L.; Wilkinson, K.A.; Wu, M.; Byrne, F.; Cerrone, M.; Schmitt, A.M.; Joharatnam-Hogan, N.; Shum, B.; et al. Adaptive immunity and neutralizing antibodies against SARS-CoV-2 variants of concern following vaccination in patients with cancer: The CAPTURE study. Nat. Cancer 2021, 2, 1305–1320. [Google Scholar] [CrossRef]
- Barriere, J.; Chamorey, E.; Adjtoutah, Z.; Castelnau, O.; Mahamat, A.; Marco, S.; Petit, E.; Leysalle, A.; Raimondi, V.; Carles, M. Impaired immunogenicity of BNT162b2 anti-SARS-CoV-2 vaccine in patients treated for solid tumors. Ann. Oncol. 2021, 32, 1053–1055. [Google Scholar] [CrossRef]
- Maneikis, K.; Sablauskas, K.; Ringeleviciute, U.; Vaitekenaite, V.; Cekauskiene, R.; Kryzauskaite, L.; Naumovas, D.; Banys, V.; Peceliunas, V.; Beinortas, T.; et al. Immunogenicity of the BNT162b2 COVID-19 mRNA vaccine and early clinical outcomes in patients with haematological malignancies in Lithuania: A national prospective cohort study. Lancet Haematol. 2021, 8, e583–e592. [Google Scholar] [CrossRef] [PubMed]
- Monin, L.; Laing, A.G.; Munoz-Ruiz, M.; McKenzie, D.R.; Del Molino Del Barrio, I.; Alaguthurai, T.; Domingo-Vila, C.; Hayday, T.S.; Graham, C.; Seow, J.; et al. Safety and immunogenicity of one versus two doses of the COVID-19 vaccine BNT162b2 for patients with cancer: Interim analysis of a prospective observational study. Lancet Oncol. 2021, 22, 765–778. [Google Scholar] [CrossRef]
- Fendler, A.; Shepherd, S.T.C.; Au, L.; Wilkinson, K.A.; Wu, M.; Schmitt, A.M.; Tippu, Z.; Farag, S.; Rogiers, A.; Harvey, R.; et al. Immune responses following third COVID-19 vaccination are reduced in patients with hematological malignancies compared to patients with solid cancer. Cancer Cell 2022, 40, 438. [Google Scholar] [CrossRef]
- Döhner, H.; Weisdorf, D.J.; Bloomfield, C.D. Acute myeloid leukemia. N. Engl. J. Med. 2015, 373, 1136–1152. [Google Scholar] [CrossRef] [Green Version]
- Platzbecker, U.; Kubasch, A.S.; Homer-Bouthiette, C.; Prebet, T. Current challenges and unmet medical needs in myelodysplastic syndromes. Leukemia 2021, 35, 2182–2198. [Google Scholar] [CrossRef] [PubMed]
- Pagano, L.; Salmanton-Garcia, J.; Marchesi, F.; Busca, A.; Corradini, P.; Hoenigl, M.; Klimko, N.; Koehler, P.; Pagliuca, A.; Passamonti, F.; et al. COVID-19 infection in adult patients with hematological malignancies: A European Hematology Association Survey (EPICOVIDEHA). J. Hematol. Oncol. 2021, 14, 168. [Google Scholar] [CrossRef] [PubMed]
- Mori, A.; Onozawa, M.; Tsukamoto, S.; Ishio, T.; Yokoyama, E.; Izumiyama, K.; Saito, M.; Muraki, H.; Morioka, M.; Teshima, T.; et al. Humoral response to mRNA-based COVID-19 vaccine in patients with myeloid malignancies. Br. J. Haematol. 2022, 197, 691–696. [Google Scholar] [CrossRef] [PubMed]
- Van Oekelen, O.; Gleason, C.R.; Agte, S.; Srivastava, K.; Beach, K.F.; Aleman, A.; Kappes, K.; Team, P.V.S.; Mouhieddine, T.H.; Wang, B.; et al. Highly variable SARS-CoV-2 spike antibody responses to two doses of COVID-19 RNA vaccination in patients with multiple myeloma. Cancer Cell 2021, 39, 1028–1030. [Google Scholar] [CrossRef]
- Abdul-Jawad, S.; Beatson, R.; Lechmere, T.; Graham, R.; Alaguthurai, T.; Graham, C.; Vidler, J.; Kulasekararaj, A.; Patten, P.E.M.; Doores, K.J.; et al. BNT162b2 COVID-19 and ChAdOx1 nCoV-19 vaccination in patients with myelodysplastic syndromes. Haematologica 2022, 107, 1181–1184. [Google Scholar] [CrossRef]
- Parry, H.; McIlroy, G.; Bruton, R.; Ali, M.; Stephens, C.; Damery, S.; Otter, A.; McSkeane, T.; Rolfe, H.; Faustini, S.; et al. Antibody responses after first and second COVID-19 vaccination in patients with chronic lymphocytic leukaemia. Blood Cancer J. 2021, 11, 136. [Google Scholar] [CrossRef]
- Roeker, L.E.; Knorr, D.A.; Thompson, M.C.; Nivar, M.; Lebowitz, S.; Peters, N.; Deonarine, I., Jr.; Momotaj, S.; Sharan, S.; Chanlatte, V.; et al. COVID-19 vaccine efficacy in patients with chronic lymphocytic leukemia. Leukemia 2021, 35, 2703–2705. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, O.; Bruguier, H.; Mallett, G.; Sousos, N.; Crozier, K.; Allman, C.; Eyre, D.; Lumley, S.; Strickland, M.; Karali, C.S.; et al. Impaired antibody response to COVID-19 vaccination in patients with chronic myeloid neoplasms. Br. J. Haematol. 2021, 194, 1010–1015. [Google Scholar] [CrossRef] [PubMed]
- Guglielmelli, P.; Mazzoni, A.; Maggi, L.; Kiros, S.T.; Zammarchi, L.; Pilerci, S.; Rocca, A.; Spinicci, M.; Borella, M.; Bartoloni, A.; et al. Impaired response to first SARS-CoV-2 dose vaccination in myeloproliferative neoplasm patients receiving ruxolitinib. Am. J. Hematol. 2021, 96, E408–E410. [Google Scholar] [CrossRef] [PubMed]
- Thakkar, A.; Gonzalez-Lugo, J.D.; Goradia, N.; Gali, R.; Shapiro, L.C.; Pradhan, K.; Rahman, S.; Kim, S.Y.; Ko, B.; Sica, R.A.; et al. Seroconversion rates following COVID-19 vaccination among patients with cancer. Cancer Cell 2021, 39, 1081–1090.e1082. [Google Scholar] [CrossRef] [PubMed]
- Agbarya, A.; Sarel, I.; Ziv-Baran, T.; Agranat, S.; Schwartz, O.; Shai, A.; Nordheimer, S.; Fenig, S.; Shechtman, Y.; Kozlener, E.; et al. Efficacy of the mRNA-Based BNT162b2 COVID-19 Vaccine in Patients with Solid Malignancies Treated with Anti-Neoplastic Drugs. Cancers 2021, 13, 4191. [Google Scholar] [CrossRef]
Aim [Reference #] | Sample | Findings |
---|---|---|
Utilization of metabolomics, proteomics, and lipidomics to study changes in RBC structure/function [19] | 29 molecularly diagnosed COVID-19 patients | RBCs had increased levels of glycolytic intermediates and significantly altered lipid metabolism, which both suggest changes in membrane homeostasis. This also suggests increased oxygen off-loading, as well as decreased capacity to respond to oxidative stress |
To investigate the association between mortality risk and elevated RDW at the time of hospital admission and during hospitalization [20] | 1641 adults diagnosed with SARS-CoV-2 infection and admitted to 1 of 4 hospitals in Boston, MA | Elevated RDW at the time of hospital admission and increase in RDW during hospitalization was associated with increased mortality risk in COVID-19 patients |
To investigate the association between elevated RDW and mortality risk within SARS-CoV-2 delta variant infections [21] | 677 COVID-19 Delta variant patients admitted at various centers in China | There was a decrease in anemic conditions within this cohort, as well as a decrease in RDW overall, with only 4.2% of patients showing abnormally high RDW values |
To investigate RBC morphological changes associated with COVID-19 [22] | 116 adult patients affected by COVID-19 between April and December 2020 | 65% of patients were found to have morphological abnormalities in their RBCs. Additionally, a follow-up study showed increased mortality among patients with <10% RBC abnormalities |
Test effectiveness of the BNT162b2 mRNA COVID-19 vaccine in patients with hematological neoplasms [6] | 37,899 vaccinated patients matched to 32,516 unvaccinated controls | Vaccinated patients with hematological neoplasms suffer from COVID-19 outcomes more than vaccinated individuals with intact immune systems |
Identify the efficacy of the COVID-19 vaccine in hematological malignancy patients [9] | 67 hematology malignancy patients receiving two mRNA vaccine doses | 46% did not produce antibodies, and patients with B-cell CLL were at particularly high risk |
Assess the functional immune response to COVID vaccinations in patients with cancer [76] | 80 blood cancer patients receiving a third and fourth dose of BNT162b2 | Patients with blood cancers can benefit from a fourth COVID-19 vaccine dosage, even if they have an undetectable response to the first three dosages |
Study the serological response following two doses BNT162b2 COVID-19 vaccine in hematologic malignancies patients [1] | 315 patients with hematologic malignancies and 108 control patients receiving the BNT162b2 vaccine | Chronic lymphocytic leukemia patients had the lowest rate of seropositivity post-vaccination, followed by non-Hodgkins lymphoma and multiple myeloma |
Study spike-specific antibody response following first and/or second dose of COVID-19 vaccination [83] | 299 patients with CLL receiving BNT152b2 and ChAdOx1 COVID-19 vaccination | Spike-specific antibody response is detectable in 34% of patients with CLL compared to 94% in healthy donors. Antibody titers 104 fold lower in the CLL group |
Understand serologic response to mRNA vaccination in CLL patients [84] | 44 CLL patients receiving two doses of mRNA (BNT162b2 or mRNA-1273) vaccine | Half of CLL patients vaccinated for COVID develop any detectable anti-SARS-CoV-2 S1/S2 antibodies |
Assess risk factors associated with lymphoproliferative and myeloproliferative malignancies within the context of COVID-19 infection [79] | 1084 patients with lymphoproliferative malignancy and 684 patients with myeloproliferative malignancy | Patients with hematological malignancies were at higher risk for severe/critical COVID-19, but the highest mortality was observed in acute myeloid leukemia and myelodysplastic syndrome patients |
Assess serological response in AML and MDS patients 3 months after vaccination [80] | 69 patients with AML or MDS receiving 2nd mRNA-based COVID-19 vaccination | Patients with MDS showed a significantly lower antibody titer than that in healthy controls (HCs) or AML patients; AML patients had a comparable serological response when compared with HCs, but lower in patients undergoing maintenance therapy |
Assess the response (serological and T-cell) of MDS patients to different COVID-19 vaccine types [82] | 38 patients with MDS receiving either BNT162b2 mRNA or ChAdOx1 nCoV-19 vaccines | Overall T-cell response to the BNT162b2 and ChAdOx1 vaccines were 71.4% and 70.6%, respectively. Overall serological responses to the BNT162b2 and ChAdOx1 vaccines were 100% and 76.2%, respectively |
Assess the serological response of myeloid cancer patients to different COVID-19 vaccine types [85] | 60 myeloid cancer (CML, ET, MF, PCV, MDS) patients receiving either BNT162b2 or ChAdOx1 nCoV-19 vaccines | After a single vaccination dose, only 58% of patients with chronic myeloid blood cancers showed seroconversion, with the highest rate of seroconversion in CML patients |
Assess the serological response of MPN patients undergoing ruxolitinib treatment to the COVID-19 vaccine [86] | 30 patients with PV, ET, and MF receiving Ruxolitinib treatment and a first dose COVID-19 mRNA vaccine | 38.8%, 33.3%, and 33.3% of patients undergoing Ruxolitinib treatment had a serological response for the anti-S IgG, anti-RBD IgG, and neutralizing antibodies, respectively. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yazdani, A.N.; DeMarco, N.; Patel, P.; Abdi, A.; Velpuri, P.; Agrawal, D.K.; Rai, V. Adverse Hematological Effects of COVID-19 Vaccination and Pathomechanisms of Low Acquired Immunity in Patients with Hematological Malignancies. Vaccines 2023, 11, 662. https://doi.org/10.3390/vaccines11030662
Yazdani AN, DeMarco N, Patel P, Abdi A, Velpuri P, Agrawal DK, Rai V. Adverse Hematological Effects of COVID-19 Vaccination and Pathomechanisms of Low Acquired Immunity in Patients with Hematological Malignancies. Vaccines. 2023; 11(3):662. https://doi.org/10.3390/vaccines11030662
Chicago/Turabian StyleYazdani, Armand N., Nathaniel DeMarco, Parth Patel, Arian Abdi, Prathosh Velpuri, Devendra K. Agrawal, and Vikrant Rai. 2023. "Adverse Hematological Effects of COVID-19 Vaccination and Pathomechanisms of Low Acquired Immunity in Patients with Hematological Malignancies" Vaccines 11, no. 3: 662. https://doi.org/10.3390/vaccines11030662
APA StyleYazdani, A. N., DeMarco, N., Patel, P., Abdi, A., Velpuri, P., Agrawal, D. K., & Rai, V. (2023). Adverse Hematological Effects of COVID-19 Vaccination and Pathomechanisms of Low Acquired Immunity in Patients with Hematological Malignancies. Vaccines, 11(3), 662. https://doi.org/10.3390/vaccines11030662