A Serological Analysis of the Humoral Immune Responses of Anti-RBD IgG, Anti-S1 IgG, and Anti-S2 IgG Levels Correlated to Anti-N IgG Positivity and Negativity in Sicilian Healthcare Workers (HCWs) with Third Doses of the mRNA-Based SARS-CoV-2 Vaccine: A Retrospective Cohort Study
Abstract
:1. Introduction
Objective
2. Materials and Methods
2.1. Patients and Study Design
- The group with hybrid immunity that tested positive for SARS-CoV-2 infection (COVID-19 H) was composed of 186 subjects (34.57%) with an anti-nucleocapsid (N) protein IgG level ≥10 U/mL, which included 44.62% males and 55.38% females, with ages ranging from 23 to 67 years (mean of 43.88 and standard deviation equal to 12.10 years).
- The group with vaccine immunity that tested negative for SARS-CoV-2 infection (COVID-19 V) was composed of 352 subjects (65.43%) with an anti-nucleocapsid (N) protein IgG level <10 U/mL, which included 51.99% males and 48.01% females, with ages ranging from 23 to 73 years (mean of 48.24 and standard deviation equal to 12.17 years).
2.2. Titration of SARS-CoV-2 Infection Antibody Analysis
2.3. Statistical Analysis
- Anti-N IgG (dependent variable): anti-N IgG level < 10 U/mL = 0 (negative) and anti-N IgG level ≥ 10 U/mL = 1 (positive);
- Anti-RBD IgG: anti-RBD IgG level < 10 U/mL = 0 and anti-RBD IgG level ≥ 10 U/mL = 1;
- Anti-S1 IgG: anti-S1 IgG level < 10 U/mL = 0 and anti-S1 IgG level ≥ 10 U/mL = 1;
- Anti-S2 IgG: anti-S2 IgG level < 10 U/mL = 0 and anti-S2 IgG level ≥ 10 U/mL = 1.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Epidemiological Update: SARS-CoV-2 Omicron Sub-Lineages BA.4 and BA.5. 2022. Available online: https://www.ecdc.europa.eu/en/news-events/epidemiological-update-sars-cov-2-omicron-sub-lineages-ba4-and-ba5 (accessed on 2 October 2022).
- European Centre for Disease Prevention and Control. COVID-19 Vaccine Tracker European Surveillance System (TESSy) ECDC. Available online: https://vaccinetracker.ecdc.europa.eu/public/extensions/COVID-19/vaccine-tracker.html#uptake-tab (accessed on 14 January 2023).
- Zamagni, G.; Armocida, B.; Abbafati, C.; Ronfani, L.; Monasta, L. COVID-19 Vaccination Coverage in Italy: How Many Hospitalisations and Related Costs Could Have Been Saved If We Were All Vaccinated? Front. Public Health 2022, 10, 825416. [Google Scholar] [CrossRef] [PubMed]
- Bergwerk, M.; Gonen, T.; Lustig, Y.; Amit, S.; Lipsitch, M.; Cohen, C.; Mandelboim, M.; Levin, E.G.; Rubin, C.; Indenbaum, V.; et al. COVID-19 Breakthrough Infections in Vaccinated Health Care Workers. N. Engl. J. Med. 2021, 385, 1474–1484. [Google Scholar] [CrossRef] [PubMed]
- Sansone, E.; Sala, E.; Tiraboschi, M.; Albini, E.; Lombardo, M.; Indelicato, A.; Rosati, C.; Boniotti, M.B.; Castelli, F.; De Palma, G. Effectiveness of BNT162b2 vaccine against SARS-CoV-2 among healthcare workers: Effectiveness of HCWs vaccination against SARS-CoV-2. Med. Lav. 2021, 112, 250–255. [Google Scholar] [PubMed]
- Di Gennaro, F.; Murri, R.; Segala, F.V.; Cerruti, L.; Abdulle, A.; Saracino, A.; Bavaro, D.F.; Fantoni, M. Attitudes towards Anti-SARS-CoV2 Vaccination among Healthcare Workers: Results from a National Survey in Italy. Viruses 2021, 13, 371. [Google Scholar] [CrossRef]
- Brockman, M.A.; Mwimanzi, F.; Lapointe, H.R.; Sang, Y.; Agafitei, O.; Cheung, P.K.; Ennis, S.; Ng, K.; Basra, S.; Lim, L.Y.; et al. Reduced Magnitude and Durability of Humoral Immune Responses to COVID-19 mRNA Vaccines among Older Adults. J. Infect. Dis. 2022, 225, 1129–1140. [Google Scholar] [CrossRef]
- Cocomazzi, G.; Piazzolla, V.; Squillante, M.M.; Antinucci, S.; Giambra, V.; Giuliani, F.; Maiorana, A.; Serra, N.; Mangia, A. Early Serological Response to BNT162b2 mRNA Vaccine in Healthcare Workers. Vaccines 2021, 9, 913. [Google Scholar] [CrossRef]
- Soegiarto, G.; Wulandari, L.; Purnomosari, D.; Dhia Fahmita, K.; Ikhwan Gautama, H.; Tri Hadmoko, S.; Edwin Prasetyo, M.; Aulia Mahdi, B.; Arafah, N.; Prasetyaningtyas, D.; et al. Hypertension is associated with antibody response and breakthrough infection in health care workers following vaccination with inactivated SARS-CoV-2. Vaccine 2022, 40, 4046–4056. [Google Scholar] [CrossRef]
- Wheeler, S.E.; Shurin, G.V.; Yost, M.; Anderson, A.; Pinto, L.; Wells, A.; Shurin, M.R. Differential Antibody Response to mRNA COVID-19 Vaccines in Healthy Subjects. Microbiol. Spectr. 2021, 9, e0034121. [Google Scholar] [CrossRef]
- Qi, H.; Liu, B.; Wang, X.; Zhang, L. The humoral response and antibodies against SARS-CoV-2 infection. Nat. Immunol. 2022, 23, 1008–1020. [Google Scholar] [CrossRef]
- Morgiel, E.; Szmyrka, M.; Madej, M.; Sebastian, A.; Sokolik, R.; Andrasiak, I.; Chodyra, M.; Walas-Antoszek, M.; Korman, L.; Świerkot, J. Complete (Humoral and Cellular) Response to Vaccination against COVID-19 in a Group of Healthcare Workers-Assessment of Factors Affecting Immunogenicity. Vaccines 2022, 10, 710. [Google Scholar] [CrossRef] [PubMed]
- Błaszczuk, A.; Michalski, A.; Malm, M.; Drop, B.; Polz-Dacewicz, M. Antibodies to NCP, RBD and S2 SARS-CoV-2 in Vaccinated and Unvaccinated Healthcare Workers. Vaccines 2022, 10, 1169. [Google Scholar] [CrossRef] [PubMed]
- Amodio, E.; Capra, G.; Casuccio, A.; Grazia, S.; Genovese, D.; Pizzo, S.; Calamusa, G.; Ferraro, D.; Giammanco, G.M.; Vitale, F.; et al. Antibodies Responses to SARS-CoV-2 in a Large Cohort of Vaccinated Subjects and Seropositive Patients. Vaccines 2021, 9, 714. [Google Scholar] [CrossRef] [PubMed]
- Bates, T.A.; Leier, H.C.; McBride, S.K.; Schoen, D.; Lyski, Z.L.; Xthona Lee, D.D.; Messer, W.B.; Curlin, M.E.; Tafesse, F.G. An extended interval between vaccination and infection enhances hybrid immunity against SARS-CoV-2 variants. JCI Insight 2023, 8, e165265. [Google Scholar] [CrossRef]
- Chotpitayasunondh, T.; Fisher, D.A.; Hsueh, P.-R.; Lee, P.-I.; Nogales Crespo, K.; Ruxrungtham, K. Exploring the Role of Serology Testing to Strengthen Vaccination Initiatives and Policies for COVID-19 in Asia Pacific Countries and Territories: A Discussion Paper. Int. J. Transl. Med. 2022, 2, 275–308. [Google Scholar]
- Mouna, L.; Razazian, M.; Duquesne, S.; Roque-Afonso, A.-M.; Vauloup-Fellous, C. Validation of a SARS-CoV-2 Surrogate Virus Neutralization Test in Recovered and Vaccinated HealthcareWorkers. Viruses 2023, 15, 426. [Google Scholar] [CrossRef]
- BioPlex 2200 SARS-CoV-2 IgG Panel. Available online: https://www.trillium.de/fileadmin/user_upload/BioPlex_2200_SARS-CoV-2_IgG_Panel_Brochure.pdf (accessed on 12 April 2023).
- Patel, S.; Wheeler, S.E.; Anderson, A.; Pinto, L.M.; Shurin, M.R. SARS-CoV-2 antibody response to third dose vaccination in a healthy cohort. Insights Clin. Cell Immunol. 2022, 6, 008–013. [Google Scholar] [CrossRef]
- Meyers, J.; Windau, A.; Schmotzer, C.; Saade, E.; Noguez, J.; Stempak, L.; Zhang, X. SARS-CoV-2 antibody profile of naturally infected and vaccinated individuals detected using qualitative, semi-quantitative and multiplex immunoassays. Diagn. Microbiol. Infect. Dis. 2022, 104, 115803. [Google Scholar] [CrossRef]
- The Lancet Infectious Diseases. Why hybrid immunity is so triggering. Lancet Infect. Dis. 2022, 22, 1649. [Google Scholar] [CrossRef]
- Cui, Z.; Luo, W.; Chen, R.; Li, Y.; Wang, Z.; Liu, Y.; Liu, S.; Feng, L.; Jia, Z.; Cheng, R.; et al. Comparing T- and B-cell responses to COVID-19 vaccines across varied immune backgrounds. Signal Transduct. Target. Ther. 2023, 8, 179. [Google Scholar] [CrossRef]
- Reeg, D.B.; Hofmann, M.; Neumann-Haefelin, C.; Thimme, R.; Luxenburger, H. SARS-CoV-2-Specific T Cell Responses in Immunocompromised Individuals with Cancer, HIV or Solid Organ Transplants. Pathogens 2023, 12, 244. [Google Scholar] [CrossRef] [PubMed]
- Zmievskaya, E.; Valiullina, A.; Ganeeva, I.; Petukhov, A.; Rizvanov, A.; Bulatov, E. Application of CAR-T Cell Therapy beyond Oncology: Autoimmune Diseases and Viral Infections. Biomedicines 2021, 9, 59. [Google Scholar] [CrossRef] [PubMed]
- Mistry, P.; Barmania, F.; Mellet, J.; Peta, K.; Strydom, A.; Viljoen, I.M.; James, W.; Gordon, S.; Pepper, M.S. SARS-CoV-2 Variants, Vaccines, and Host Immunity. Front. Immunol. 2022, 12, 809244. [Google Scholar] [CrossRef]
- Accorsi, E.K.; Britton, A.; Fleming-Dutra, K.E.; Smith, Z.R.; Shang, N.; Derado, G.; Miller, J.; Schrag, S.J.; Verani, J.R. Association Between 3 Doses of mRNA COVID-19 Vaccine and Symptomatic Infection Caused by the SARS-CoV-2 Omicron and Delta Variants. JAMA 2022, 327, 639–651. [Google Scholar] [CrossRef] [PubMed]
- Kontopoulou, K.; Nakas, C.T.; Papazisis, G. Significant Increase in Antibody Titers after the 3rd Booster Dose of the Pfizer–BioNTech mRNA COVID-19 Vaccine in Healthcare Workers in Greece. Vaccines 2022, 10, 876. [Google Scholar] [CrossRef]
- Van Elslande, J.; Oyaert, M.; Lorent, N.; Weygaerde, Y.V.; Van Pottelbergh, G.; Godderis, L.; Van Ranst, M.; André, E.; Padalko, E.; Lagrou, K.; et al. Lower persistence of anti-nucleocapsid compared to anti-spike antibodies up to one year after SARS-CoV-2 infection. Diagn. Microbiol. Infect. Dis. 2022, 103, 115659. [Google Scholar] [CrossRef]
- Amanat, F.; Thapa, M.; Lei, T.; Sayed Ahmed, S.M.; Adelsberg, D.C.; Carreno, J.M.; Strohmeier, S.; Schmitz, A.J.; Zafar, S.; Zhou, J.Q.; et al. The plasmablast response to SARS-CoV-2 mRNA vaccination is dominated by non-neutralizing antibodies and targets both the NTD and the RBD. medRxiv 2021, arXiv:2021.03.07.21253098. [Google Scholar] [CrossRef]
- Assis, R.; Jain, A.; Nakajima, R.; Jasinskas, A.; Khan, S.; Palma, A.; Parker, D.M.; Chau, A.; Hosseinian, S.; Vasudev, M.; et al. Distinct SARS-CoV-2 antibody reactivity patterns elicited by natural infection and mRNA vaccination. Npj Vaccines 2021, 6, 132. [Google Scholar] [CrossRef]
- Wratil, P.R.; Stern, M.; Priller, A.; Willmann, A.; Almanzar, G.; Vogel, E.; Feuerherd, M.; Cheng, C.-C.; Yazici, S.; Christa, C.; et al. Three exposures to the spike protein of SARS-CoV-2 by either infection or vaccination elicit superior neutralizing immunity to all variants of concern. Nat. Med. 2022, 28, 496–503. [Google Scholar] [CrossRef]
- Salleh, M.Z.; Norazmi, M.N.; Deris, Z.Z. Immunogenicity mechanism of mRNA vaccines and their limitations in promoting adaptive protection against SARS-CoV-2. PeerJ 2022, 10, e13083. [Google Scholar] [CrossRef]
- Spinardi, J.R.; Srivastava, A. Hybrid Immunity to SARS-CoV-2 from Infection and Vaccination—Evidence Synthesis and Implications for New COVID-19 Vaccines. Biomedicines 2023, 11, 370. [Google Scholar] [CrossRef] [PubMed]
- Gaebler, C.; Wang, Z.; Lorenzi, J.C.; Muecksch, F.; Finkin, S.; Tokuyama, M.; Cho, A.; Jankovic, M.; Schaefer-Babajew, D.; Oliveira, T.Y. Evolution of antibody immunity to SARS-CoV-2. Nature 2021, 591, 639–644. [Google Scholar] [PubMed]
- Moriyama, S.; Adachi, Y.; Sato, T.; Tonouchi, K.; Sun, L.; Fukushi, S.; Yamada, S.; Kinoshita, H.; Nojima, K.; Kanno, T.; et al. Temporal maturation of neutralizing antibodies in COVID-19 convalescent individuals improves potency and breadth to circulating SARS-CoV-2 variants. Immunity 2021, 54, 1841–1852. [Google Scholar] [PubMed]
- Ramos, A.; Cardoso, M.J.; Ribeiro, L.; Guimarães, J.T. Assessing SARS-CoV-2 Neutralizing Antibodies after BNT162b2 Vaccination and Their Correlation with SARS-CoV-2 IgG Anti-S1, Anti-RBD and Anti-S2 Serological Titers. Diagnostics 2022, 12, 205. [Google Scholar] [CrossRef]
- Liao, B.; Chen, Z.; Zheng, P.; Li, L.; Zhuo, J.; Li, F.; Li, S.; Chen, D.; Wen, C.; Cai, W.; et al. Detection of Anti-SARS-CoV-2-S2 IgG Is More Sensitive Than Anti-RBD IgG in Identifying Asymptomatic COVID-19 Patients. Front. Immunol. 2021, 12, 724763. [Google Scholar] [CrossRef]
- Ma, M.-L.; Shi, D.-W.; Li, Y.; Hong, W.; Lai, D.-Y.; Xue, J.-B.; Jiang, H.-W.; Zhang, H.-N.; Qi, H.; Meng, Q.-F.; et al. Systematic profiling of SARS-CoV-2-specific IgG responses elicited by an inactivated virus vaccine identifies peptides and proteins for predicting vaccination efficacy. Cell Discov. 2021, 7, 67. [Google Scholar] [CrossRef]
- Shah, P.; Canziani, G.A.; Carter, E.P.; Chaiken, I. The Case for S2: The Potential Benefits of the S2 Subunit of the SARS-CoV-2 Spike Protein as an Immunogen in Fighting the COVID-19 Pandemic. Front. Immunol. 2021, 12, 637651. [Google Scholar] [CrossRef]
- Halfmann, P.J.; Frey, S.J.; Loeffler, K.; Kuroda, M.; Maemura, T.; Armbrust, T.; Yang, J.E.; Hou, Y.J.; Baric, R.; Wright, E.R.; et al. Multivalent S2-based vaccines provide broad protection against SARS-CoV-2 variants of concern and pangolin coronaviruses. EBioMedicine 2022, 86, 104341. [Google Scholar] [CrossRef]
- Ko, S.-H.; Chen, W.-Y.; Su, S.-C.; Lin, H.-T.; Ke, F.-Y.; Liang, K.-H.; Hsu, F.-F.; Kumari, M.; Fu, C.-Y.; Wu, H.-C. Monoclonal antibodies against S2 subunit of spike protein exhibit broad reactivity toward SARS-CoV-2 variants. J. Biomed. Sci. 2022, 29, 108. [Google Scholar] [CrossRef]
- Hu, J.; Chen, X.; Lu, X.; Wu, L.; Yin, L.; Zhu, L.; Liang, H.; Xu, F.; Zhou, Q. A spike protein S2 antibody efficiently neutralizes the Omicron variant. Cell. Mol. Immunol. 2022, 19, 644–646. [Google Scholar] [CrossRef]
- Van Ert, H.A.; Bohan, D.W.; Rogers, K.; Fili, M.; Rojas Chávez, R.A.; Qing, E.; Han, C.; Dempewolf, S.; Hu, G.; Schwery, N.; et al. Limited Variation between SARS-CoV-2-Infected Individuals in Domain Specificity and Relative Potency of the Antibody Response against the Spike Glycoprotein. Microbiol. Spectr. 2022, 10, e0267621. [Google Scholar] [CrossRef]
- Fröberg, M.; Hassan, S.S.; Pimenoff, V.N.; Akterin, S.; Lundgren, K.C.; Elfström, K.M.; Dillner, J. Risk for SARS-CoV-2 infection in healthcare workers outside hospitals: A real-life immuno-virological study during the first wave of the COVID-19 epidemic. PLoS ONE 2021, 16, e0257854. [Google Scholar] [CrossRef]
- Poon, Y.-S.R.; Lin, Y.P.; Griffiths, P.; Yong, K.K.; Seah, B.; Liaw, S.Y. A global overview of healthcare workers’ turnover intention amid COVID-19 pandemic: A systematic review with future directions. Hum. Resour. Health 2022, 20, 70. [Google Scholar] [CrossRef]
- Li, Q.; Xiong, L.; Cao, X.; Xiong, H.; Zhang, Y.; Fan, Y.; Tang, L.; Jin, Y.; Xia, J.; Hu, Y. Age at SARS-CoV-2 infection and psychological and physical recovery among Chinese health care workers with severe COVID-19 at 28 months after discharge: A cohort study. Front. Public Health 2023, 11, 1086830. [Google Scholar] [CrossRef]
- Tani, Y.; Takita, M.; Kobashi, Y.; Wakui, M.; Zhao, T.; Yamamoto, C.; Saito, H.; Kawashima, M.; Sugiura, S.; Nishikawa, Y.; et al. Varying Cellular Immune Response against SARS-CoV-2 after the Booster Vaccination: A Cohort Study from Fukushima Vaccination Community Survey, Japan. Vaccines 2023, 11, 920. [Google Scholar] [CrossRef]
- Lanz, T.V.; Brewer, R.C.; Jahanbani, S.; Robinson, W.H. Limited Neutralization of Omicron by Antibodies from the BNT162b2 Vaccination against SARSCoV-2. 2022. Available online: https://www.researchsquare.com/article/rs-1518378/v1 (accessed on 13 December 2022).
- Matula, Z.; Gönczi, M.; Bekő, G.; Kádár, B.; Ajzner, É.; Uher, F.; Vályi-Nagy, I. Antibody and T Cell Responses against SARS-CoV-2 Elicited by the Third Dose of BBIBP-CorV (Sinopharm) and BNT162b2 (Pfizer- BioNTech) Vaccines Using a Homologous or Heterologous Booster Vaccination Strategy. Vaccines 2022, 10, 539. [Google Scholar] [CrossRef]
- Celikgil, A.; Massimi, A.B.; Nakouzi, A.; Herrera, N.G.; Morano, N.C.; Lee, J.H.; Yoon, H.A.; Garforth, S.J.; Almo, S.C. SARS-CoV-2 multi-antigen protein microarray for detailed characterization of antibody responses in COVID-19 patients. PLoS ONE 2023, 18, e0276829. [Google Scholar] [CrossRef]
- Rothberg, M.B.; Kim, P.; Shrestha, N.K.; Kojima, L.; Tereshchenko, L.G. Protection against the Omicron variant offered by previous SARS-CoV-2 infection: A retrospective cohort study. Clin. Infect. Dis. 2022, 76, e142–e147. [Google Scholar] [CrossRef]
- Rashedi, R.; Samieefar, N.; Masoumi, N.; Mohseni, S.; Rezaei, N. COVID-19 vaccines mix-and-match: The concept, the efficacy and the doubts. J. Med. Virol. 2022, 94, 1294–1299. [Google Scholar] [CrossRef]
- Garg, I.; Sheikh, A.B.; Pal, S.; Shekhar, R. Mix-and-Match COVID-19 Vaccinations (Heterologous Boost): A Review. Infect. Dis. Rep. 2022, 14, 537–546. [Google Scholar] [CrossRef]
- Polyak, M.J.; Abrahamyan, L.; Bego, M.G. Editorial: Immune determinants of COVID-19 protection and disease: A focus on asymptomatic COVID and long COVID. Front. Immunol. 2023, 14, 1185693. [Google Scholar] [CrossRef] [PubMed]
- Yisimayi, A.; Song, W.; Wang, J.; Jian, F.; Yu, Y.; Chen, X.; Xu, Y.; Yang, S.; Niu, X.; Xiao, T.; et al. Repeated Omicron infection alleviates SARS-CoV-2 immune imprinting. bioRxiv 2023, arXiv:2023.05.01.538516. [Google Scholar] [CrossRef]
Parameters | Mean ± SD | Median (IQR) | Titers after Dilution Mean ± SD | Titers after Dilution Median (IQR) | % (N *) |
---|---|---|---|---|---|
Healthcare workers | 538 | ||||
Age | 43.7 ± 12.3 | 47 (33–53) | - | - | - |
Gender | |||||
Male | - | - | - | - | 49.4% (266) |
Female | - | - | - | - | 50.6% (272) |
anti-N IgG (U/mL) | |||||
<10 | 1.7 ± 1.9 | 0.99 (0.99–0.99) | - | - | 65.5% (352) |
[10, 100] | 34.3 ± 22.8 | 26 (16–45) | - | - | 31.0% (167) |
>100 | - | - | 440.4 ± 338.8 | 306 (201.75–625) | 3.5% (19) |
anti-RBD IgG (U/mL) | |||||
<10 | 5.0 ± 2.8 | 5 (4, 6) | - | - | 0.4% (2) |
[10, 100] | 49.8 ± 34.2 | 40 (25.75–76) | - | - | 1.1% (6) |
>100 | - | - | 1485.04 ± 311.10 | 1600 (1600–1600) | 98.5% (530) |
anti-S1 IgG (U/mL) | |||||
<10 | 5.0 | - | - | - | 0.2% (1) |
[10, 100] | - | - | - | - | 0.0% (0) |
>100 | - | - | 1357.2 ± 434.8 | 1600 (1284.75–1600) | 99.8% (537) |
anti-S2 IgG (U/mL) | |||||
<10 | 5.2 ± 2.4 | 5(3–7) | - | - | 13.5% (73) |
[10, 100] | 40.0 ± 24.9 | 33.5(19–54) | - | - | 70.3% (378) |
>100 | - | - | 156.8 ± 148.7 | 125 (80–189) | 16.2% (87) |
Parameters | COVID-19 V Anti-N IgG < 10 U/mL | COVID-19 H Anti-N IgG ≥ 10 U/mL | COVID-19 H vs. COVID-19 V p-Value (Test) |
---|---|---|---|
Healthcare workers (HCWs) | 65.4% (352) | 34.6% (186) | |
Age | 45.2 ± 12.2 | 40.9 ± 12.1 | |
48 [38, 55] | 43 [30, 51] | 0.0001 * (MW) | |
Gender %Male %Female | 52% (183) 48% (169) | 44.6% (83) 55.4% (103) | 0.10 (C) |
anti-RBD IgG (U/mL) | (1N, 351P) | (1N, 185P) | p = 1.0 (F) |
<10 | 7.0 ± 0.0 (n = 1) | 3.0 ± 0.0(n = 1) | - |
[10, 100] | 49.8 ± 34.2 (n = 6) | - | - |
>100 | 1600 [1600, 1600] (n = 345) | 1600 [1600, 1600] (n = 185) | p < 0.0001 * (MW) |
anti-S1 IgG (U/mL) | (0 N, 352 P) | (1N, 185 P) | p = 0.35 (F) |
<10 | - | 5.0 ± 0.0(n = 1) | - |
[10, 100] | - | - | - |
>100 | 1600 [872.5, 1600] (n = 352) | 1600 [1600, 1600] (n = 185) | p < 0.0001 * (MW) |
anti-S2 IgG (U/mL) | (63 N, 289 P) | (9 N, 176 P) | <0.0001 * (C) |
<10 | 4 [3, 7] (n = 63) | 6 [4.75, 8.25] (n = 9) | p = 0.19 (MW) |
[10, 100] | 28 [17, 47.75] (n = 243) | 47 [27.25, 64] (n = 135) | p < 0.0001 * (MW) |
>100 | 114 [82, 213] (n = 46) | 133 [77.75, 180.5] (n = 41) | p = 0.93 (MW) |
Logistic Regression | Coefficient | Standard Error | OR | 95% CI | p-Value |
---|---|---|---|---|---|
Null model vs. full model | <0.0001 (C) | ||||
anti-N IgG/Age | −0.03 | 0.01 | 0.97 | 0.96–0.99 | 0.0001 * |
anti-N IgG/anti-RBD IgG | 19.2 | 11,207.8 | >100,000 | - | 1.0 |
anti-N IgG/anti-S1 IgG | −38.5 | 14,133.1 | <0.00001 | - | 1.0 |
anti-N IgG/anti-S2 IgG | 1.5 | 0.37 | 4.5 | 2.2–9.3 | 0.0001 * |
Constant | 18.6 | 8609.8 | - | - | 1.0 |
Variable | Positive % (n) | Multi-comparison Cochran’s Q Test p-Value |
---|---|---|
(1) anti-N IgG | 34.6 (186) | p < 0.001 * (Q) |
(2) anti-RBD IgG | 99.6 (536) | |
(3) anti-S1 IgG | 99.8 (537) | 1 < 2, p < 0.05 *, MRD |
(4) anti-S2 IgG | 86.6 (466) | 1 < 3, p < 0.05 *, MRD |
1 < 4, p < 0.05 *, MRD | ||
4 < 2, p < 0.05 *, MRD | ||
4 < 3, p < 0.05 *, MRD |
Anti-N IgG | Anti-RBD IgG | Anti-S1 IgG | Anti-S2 IgG | p-Value (Test) |
---|---|---|---|---|
Negative | p < 0.0001 * (KW) | |||
Mean ± SD | 1432.6 ± 360.8 | 1242.3 ± 491.7 | 178.2 ± 190.9 | anti-S2 vs. anti-RBD, p < 0.05 * (Co) |
Median (IRQ) | 1600 [1600, 1600] | 1600 [872.5, 1600] | 114 [82, 213] | anti-S2 vs. anti-S1, p < 0.05* (Co) |
Mean rank | 433.4 | 355.2 | 40.3 | anti-S1 vs. anti-RBD, p < 0.05 * (Co) |
Positive | p < 0.0001 * (KW) | |||
Mean ± SD | 1582.2 ± 141.6 | 1575.7 ± 127.9 | 132.9 ± 73.7 | |
Median (IRQ) | 1600 [1600, 1600] | 1600 [1600, 1600] | 133 [77.75, 180.5] | anti-S2 vs. anti-RBD, p < 0.05 * (Co) |
Mean rank | 226.7 | 220.2 | 22.0 | anti-S2 vs. anti-S1, p < 0.05 * (Co) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serra, N.; Andriolo, M.; Butera, I.; Mazzola, G.; Sergi, C.M.; Fasciana, T.M.A.; Giammanco, A.; Gagliano, M.C.; Cascio, A.; Di Carlo, P. A Serological Analysis of the Humoral Immune Responses of Anti-RBD IgG, Anti-S1 IgG, and Anti-S2 IgG Levels Correlated to Anti-N IgG Positivity and Negativity in Sicilian Healthcare Workers (HCWs) with Third Doses of the mRNA-Based SARS-CoV-2 Vaccine: A Retrospective Cohort Study. Vaccines 2023, 11, 1136. https://doi.org/10.3390/vaccines11071136
Serra N, Andriolo M, Butera I, Mazzola G, Sergi CM, Fasciana TMA, Giammanco A, Gagliano MC, Cascio A, Di Carlo P. A Serological Analysis of the Humoral Immune Responses of Anti-RBD IgG, Anti-S1 IgG, and Anti-S2 IgG Levels Correlated to Anti-N IgG Positivity and Negativity in Sicilian Healthcare Workers (HCWs) with Third Doses of the mRNA-Based SARS-CoV-2 Vaccine: A Retrospective Cohort Study. Vaccines. 2023; 11(7):1136. https://doi.org/10.3390/vaccines11071136
Chicago/Turabian StyleSerra, Nicola, Maria Andriolo, Ignazio Butera, Giovanni Mazzola, Consolato Maria Sergi, Teresa Maria Assunta Fasciana, Anna Giammanco, Maria Chiara Gagliano, Antonio Cascio, and Paola Di Carlo. 2023. "A Serological Analysis of the Humoral Immune Responses of Anti-RBD IgG, Anti-S1 IgG, and Anti-S2 IgG Levels Correlated to Anti-N IgG Positivity and Negativity in Sicilian Healthcare Workers (HCWs) with Third Doses of the mRNA-Based SARS-CoV-2 Vaccine: A Retrospective Cohort Study" Vaccines 11, no. 7: 1136. https://doi.org/10.3390/vaccines11071136
APA StyleSerra, N., Andriolo, M., Butera, I., Mazzola, G., Sergi, C. M., Fasciana, T. M. A., Giammanco, A., Gagliano, M. C., Cascio, A., & Di Carlo, P. (2023). A Serological Analysis of the Humoral Immune Responses of Anti-RBD IgG, Anti-S1 IgG, and Anti-S2 IgG Levels Correlated to Anti-N IgG Positivity and Negativity in Sicilian Healthcare Workers (HCWs) with Third Doses of the mRNA-Based SARS-CoV-2 Vaccine: A Retrospective Cohort Study. Vaccines, 11(7), 1136. https://doi.org/10.3390/vaccines11071136