Analysis of COVID-19 Incidence and Protective Potential of Persisting IgG Class Antibodies against SARS-CoV-2 Infection in Hospital Staff in Poland
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harith, A.A.; Ab Gani, M.H.; Griffiths, R.; Abdul Hadi, A.; Abu Bakar, N.A.; Myers, J.; Mahjom, M.; Robat, R.M.; Zubir, M.Z. Incidence, Prevalence, and Sources of COVID-19 Infection among Healthcare Workers in Hospitals in Malaysia. Int. J. Environ. Res. Public Health 2022, 19, 12485. [Google Scholar] [CrossRef] [PubMed]
- Duradoni, M.; Fiorenza, M.; Guazzini, A. When Italians Follow the Rules against COVID Infection: A Psychological Profile for Compliance. COVID 2021, 1, 246–262. [Google Scholar] [CrossRef]
- Moran, K.R.; Valle, S.Y.D. A meta-analysis of the association between gender and protective behaviors in response to respiratory epidemics and pandemics. PLoS ONE 2016, 11, e0164541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, Q.; Cowling, B.; Lam, W.T.; Ng, M.W.; Fielding, R. Situational awareness and health protective responses to pandemic influenza A (H1N1) in Hong Kong: A cross-sectional study. PLoS ONE 2010, 5, e13350. [Google Scholar] [CrossRef] [Green Version]
- Susło, R.; Pobrotyn, P.; Mierzecki, A.; Drobnik, J. Fear of Illness and Convenient Access to Vaccines Appear to Be the Missing Keys to Successful Vaccination Campaigns: Analysis of the Factors Influencing the Decisions of Hospital Staff in Poland concerning Vaccination against Influenza and COVID-19. Vaccines 2022, 10, 1026. [Google Scholar] [CrossRef] [PubMed]
- Baldner, C.; Di Santo, D.; Viola, M.; Pierro, A. Perceived COVID-19 Threat and Reactions to Noncompliant Health-Protective Behaviors: The Mediating Role of Desired Cultural Tightness and the Moderating Role of Age. Int. J. Environ. Res. Public Health 2022, 19, 2364. [Google Scholar] [CrossRef]
- Galende, N.; Redondo, I.; Dosil-Santamaria, M.; Ozamiz-Etxebarria, N. Factors Influencing Compliance with COVID-19 Health Measures: A Spanish Study to Improve Adherence Campaigns. Int. J. Environ. Res. Public Health 2022, 19, 4853. [Google Scholar] [CrossRef]
- Żółtowska, B.; Barańska, I.; Szczerbińska, K.; Różańska, A.; Mydel, K.; Sydor, W.; Heczko, P.B.; Jachowicz, E.; Wójkowska-Mach, J. Preparedness of Health Care Workers and Medical Students in University Hospital in Krakow for COVID-19 Pandemic within the CRACoV Project. J. Clin. Med. 2021, 10, 3487. [Google Scholar] [CrossRef]
- Shahrabani, S.; Bord, S.; Admi, H.; Halberthal, M. Physicians’ Compliance with COVID-19 Regulations: The Role of Emotions and Trust. Healthcare 2022, 10, 582. [Google Scholar] [CrossRef]
- Drobnik, J.; Susło, R.; Pobrotyn, P.; Fabich, E.; Magiera, V.; Diakowska, D.; Uchmanowicz, I. COVID-19 among Healthcare Workers in the University Clinical Hospital in Wroclaw, Poland. Int. J. Environ. Res. Public Health 2021, 18, 5600. [Google Scholar] [CrossRef]
- Lakoh, S.; Firima, E.; Williams, C.E.E.; Conteh, S.K.; Jalloh, M.B.; Sheku, M.G.; Adekanmbi, O.; Sevalie, S.; Kamara, S.A.; Kamara, M.A.S.; et al. An Intra-COVID-19 Assessment of Hand Hygiene Facility, Policy and Staff Compliance in Two Hospitals in Sierra Leone: Is There a Difference between Regional and Capital City Hospitals? Trop. Med. Infect. Dis. 2021, 6, 204. [Google Scholar] [CrossRef] [PubMed]
- Chou, J.; Thomas, P.G.; Randolph, A.G. Immunology of SARS-CoV-2 infection in children. Nat. Immunol. 2022, 23, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Azzolino, D.; Spolidoro, G.C.I.; Mazzocchi, A.; Agostoni, C.; Cesari, M. When the Pandemic Will Be Over: Lots of Hope and Some Concerns. Geriatrics 2022, 7, 116. [Google Scholar] [CrossRef] [PubMed]
- Gómez de la Torre, J.C.; Cáceres-DelAguila, J.A.; Muro-Rojo, C.; De La Cruz-Escurra, N.; Copaja-Corzo, C.; Hueda-Zavaleta, M.; Arenas Siles, D.; Benites-Zapata, V.A. Humoral Immune Response Induced by the BBIBP-CorV Vaccine (Sinopharm) in Healthcare Workers: A Cohort Study. Trop. Med. Infect. Dis. 2022, 7, 66. [Google Scholar] [CrossRef]
- Okba, N.M.A.; Müller, M.A.; Li, W.; Wang, C.; Geurtsvan-Kessel, C.H.; Corman, V.M.; Lamers, M.M.; Sikkema, R.S.; Bruin, E.D.; Chandler, F.D. Severe Acute Respiratory Syndrome Coronavirus 2−Specific Antibody Responses in Coronavirus Disease Patients. Emerg. Infect. Dis. 2020, 26, 478–1488. [Google Scholar] [CrossRef]
- Meyer, B.; Reimerink, J.; Torriani, G.; Brouwer, F.; Godeke, G.-J.; Yerly, S.; Hoogerwerf, M.; Vuilleumier, N.; Kaiser, L.; Eckerle, I. Validation and Clinical Evaluation of a SARS-CoV-2 Surrogate Virus Neutralisation Test (SVNT). Emerg. Microbes Infect. 2020, 9, 2394–2403. [Google Scholar] [CrossRef]
- Trougakos, I.P.; Terpos, E.; Zirou, C.; Sklirou, A.D.; Apostolakou, F.; Gumeni, S.; Charitaki, I.; Papanagnou, E.-D.; Bagratuni, T.; Liacos, C.-I. Comparative Kinetics of SARS-CoV-2 Anti-Spike Protein RBD IgGs and Neutralizing Antibodies in Convalescent and Naïve Recipients of the BNT162b2 MRNA Vaccine versus COVID-19 Patients. BMC Med. 2021, 19, 208. [Google Scholar] [CrossRef]
- Murin, C.D.; Wilson, I.A.; Ward, A.B. Antibody Responses to Viral Infections: A Structural Perspective across Three Different Enveloped Viruses. Nat. Microbiol. 2019, 4, 734–747. [Google Scholar] [CrossRef]
- Susło, R.; Pobrotyn, P.; Brydak, L.; Rypicz, Ł.; Grata-Borkowska, U.; Drobnik, J. Seasonal Influenza and Low Flu Vaccination Coverage as Important Factors Modifying the Costs and Availability of Hospital Services in Poland: A Retrospective Comparative Study. Int. J. Environ. Res. Public Health 2021, 18, 5173. [Google Scholar] [CrossRef]
- Summary of Product Characteristics Comirnaty. Available online: https://ec.europa.eu/health/documents/community-register/2022/20220916157154/anx_157154_en.pdf (accessed on 21 October 2022).
- Summary of Product Characteristics Spikevax. Available online: https://ec.europa.eu/health/documents/community-register/2022/20220901156977/anx_156977_en.pdf (accessed on 21 October 2022).
- Summary of Product Characteristics Vaxzevria. Available online: https://ec.europa.eu/health/documents/community-register/2022/20220808156682/anx_156682_en.pdf (accessed on 21 October 2022).
- Summary of Product Characteristics Jcovden. Available online: https://ec.europa.eu/health/documents/community-register/2022/20220525155949/anx_155949_en.pdf (accessed on 21 October 2022).
- Summary of Product Characteristics Nuvoxoid. Available online: https://ec.europa.eu/health/documents/community-register/2022/20220906156980/anx_156980_en.pdf (accessed on 21 October 2022).
- Summary of Product Characteristics Valneva. Available online: https://ec.europa.eu/health/documents/community-register/2022/20220927157104/anx_157104_en.pdf (accessed on 21 October 2022).
- European Medicines Agency—Committee for Medicinal Products for Human Use. EMA Recommends Approval of Comirnaty and Spikevax COVID-19 Vaccines for Children from 6 Months of Age. 2022. Available online: https://www.ema.europa.eu/en/news/ema-recommends-approval-comirnaty-spikevax-COVID-19-vaccines-children-6-months-age (accessed on 21 October 2022).
- Ng, D.L.C.; Gan, G.G.; Chai, C.S. The willingness of parents to vaccinate their children younger than 12 years against COVID-19: A cross-sectional study in Malaysia. BMC Public Health 2022, 22, 1265. [Google Scholar] [CrossRef]
- Smith, P.J.; Chu, S.Y.; Barker, L.E. Children Who Have Received No Vaccines: Who Are They and Where Do They Live? Pediatrics 2004, 114, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Reiss, D.R. The law and vaccine resistance. Science 2019, 363, 795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faucette, A.N.; Pawlitz, M.D.; Pei, B.; Yao, F.; Chen, K. Hum. Immunization of pregnant women: Future of early infant protection. Vaccin. Immunother. 2015, 11, 2549–2555. [Google Scholar] [CrossRef] [Green Version]
- Proveaux, T.; Lambach, P.; Ortiz, J.R.; Hombach, J.; Halsey, N.A. Review of prescribing information for influenza vaccines for pregnant and lactating women. Vaccine 2016, 34, 5406–5409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kfouri Rde, Á.; Richtmann, R. Influenza vaccine in pregnant women: Immunization coverage and associated factors. Einstein 2013, 11, 53–57. [Google Scholar] [CrossRef] [Green Version]
- Brydak, L.B.; Nitsch-Osuch, A. Vaccination against influenza in pregnant women. Acta Biochim. Pol. 2014, 61, 589–591. Available online: http://www.actabp.pl/pdf/3_2014/589.pdf (accessed on 21 October 2022). [CrossRef] [Green Version]
- Nitsch-Osuch, A.; Woźniak Kosek, A.; Brydak, L.B. Szczepienia przeciwko grypie u kobiet ciezarnych—Bezpieczeństwo i efektywność [Vaccination against influenza in pregnant women—Safety and effectiveness]. Ginekol. Pol. 2013, 84, 56–61. (In Polish) [Google Scholar] [CrossRef]
- Ilska, M.; Kołodziej-Zaleska, A.; Brandt-Salmeri, A.; Preis, H.; Lobel, M. Pandemic Stress and Its Correlates among Pregnant Women during the Second Wave of COVID-19 in Poland. Int. J. Environ. Res. Public Health 2021, 18, 11140. [Google Scholar] [CrossRef]
- Chen, S.; Murphy, E.A.; Pendergrass, A.G.; Sukhu, A.C.; Eng, D.; Jurkiewicz, M.; Mohammed, I.; Rand, S.; White, L.J.; Hupert, N.; et al. Estimating the Effectiveness of Shielding during Pregnancy against SARS-CoV-2 in New York City during the First Year of the COVID-19 Pandemic. Viruses 2022, 14, 2408. [Google Scholar] [CrossRef]
- Hasibuan, A.S.; Koesnoe, S.; Widhani, A.; Muhadi, M.; Shatri, H.; Ginanjar, E.; Yunihastuti, E.; Soewondo, P.; Aman Nasution, S.; Djauzi, S.; et al. Incidence and Associated Factors of SARS-CoV-2 Infection Post-mRNA-1273 Booster Vaccination in Health-Care Workers. Vaccines 2023, 11, 481. [Google Scholar] [CrossRef]
- Bogogiannidou, Z.; Speletas, M.; Vontas, A.; Nikoulis, D.J.; Dadouli, K.; Kyritsi, M.A.; Mouchtouri, V.A.; Mina, P.; Anagnostopoulos, L.; Koureas, M.; et al. Repeated Leftover Serosurvey of SARS-CoV-2 IgG Antibodies in Greece, May to August 2020. Vaccines 2021, 9, 504. [Google Scholar] [CrossRef]
- Esquivel-Chirino, C.; Valero-Princet, Y.; Gaitán-Cepeda, L.A.; Hernández-Hernández, C.; Hernández, A.M.; Laparra-Escareño, H.; Ventura-Gallegos, J.L.; Montes-Sánchez, D.; Lopéz-Macay, A.; Hernández-Sánchez, F.; et al. The Effects of COVID-19 on Healthcare Workers and Non-Healthcare Workers in Mexico: 14 Months into the Pandemic. Medicina 2021, 57, 1353. [Google Scholar] [CrossRef] [PubMed]
- Novelli, V.; Fassio, F.; Resani, G.; Bussa, M.; Durbano, A.; Meloni, A.; Oliva, G.; Cutti, S.; Girardi, D.; Odone, A.; et al. Clinical Characteristics and Potential Risk Factors Associated with the SARS-CoV-2 Infection: Survey on a Health Care Workers (HCWs) Population in Northern Italy. Int. J. Environ. Res. Public Health 2022, 19, 8194. [Google Scholar] [CrossRef] [PubMed]
- Paduano, S.; Galante, P.; Berselli, N.; Ugolotti, L.; Modenese, A.; Poggi, A.; Malavolti, M.; Turchi, S.; Marchesi, I.; Vivoli, R.; et al. Seroprevalence Survey of Anti-SARS-CoV-2 Antibodies in a Population of Emilia-Romagna Region, Northern Italy. Int. J. Environ. Res. Public Health 2022, 19, 7882. [Google Scholar] [CrossRef]
- Lorent, D.; Nowak, R.; Roxo, C.; Lenartowicz, E.; Makarewicz, A.; Zaremba, B.; Nowak, S.; Kuszel, L.; Stefaniak, J.; Kierzek, R.; et al. Prevalence of Anti-SARS-CoV-2 Antibodies in Poznań, Poland, after the First Wave of the COVID-19 Pandemic. Vaccines 2021, 9, 541. [Google Scholar] [CrossRef] [PubMed]
- Mazzatenta, A.; Berardi, A.; Novarria, G.A.; Neri, G. Unmasking the ‘Asymptomatic’ COVID-19: A Nose Question. Life 2022, 12, 1248. [Google Scholar] [CrossRef]
- Polvere, I.; Parrella, A.; Casamassa, G.; D’Andrea, S.; Tizzano, A.; Cardinale, G.; Voccola, S.; Porcaro, P.; Stilo, R.; Vito, P.; et al. Seroprevalence of Anti-SARS-CoV-2 IgG and IgM among Adults over 65 Years Old in the South of Italy. Diagnostics 2021, 11, 483. [Google Scholar] [CrossRef]
- Huynh, A.; Arnold, D.M.; Smith, J.W.; Moore, J.C.; Zhang, A.; Chagla, Z.; Harvey, B.J.; Stacey, H.D.; Ang, J.C.; Clare, R.; et al. Characteristics of Anti-SARS-CoV-2 Antibodies in Recovered COVID-19 Subjects. Viruses 2021, 13, 697. [Google Scholar] [CrossRef]
- Wang, J.; Chen, C.; Li, Q. COVID-19 confirmed patients with negative antibodies results. BMC Infect. Dis. 2020, 20, 698. [Google Scholar] [CrossRef]
- Karachaliou, M.; Moncunill, G.; Espinosa, A. SARS-CoV-2 infection, vaccination, and antibody response trajectories in adults: A cohort study in Catalonia. BMC Med. 2022, 20, 347. [Google Scholar] [CrossRef]
- Israel, A.; Shenhar, Y.; Green, I.; Merzon, E.; Golan-Cohen, A.; Schäffer, A.A.; Ruppin, E.; Vinker, S.; Magen, E. Large-Scale Study of Antibody Titer Decay following BNT162b2 mRNA Vaccine or SARS-CoV-2 Infection. Vaccines 2022, 10, 64. [Google Scholar] [CrossRef] [PubMed]
- Keshavarz, B.; Richards, N.; Workman, L.; Patel, J.; Muehling, L.; Canderan, G.; Murphy, D.; Brovero, S.; Ailsworth, S.; Eschenbacher, W.; et al. Trajectory of IgG to SARS-CoV-2 After Vaccination with BNT162b2 or mRNA-1273 in an Employee Cohort and Comparison With Natural Infection. Front. Immunol. 2022, 13, 850987. [Google Scholar] [CrossRef]
- Tretyn, A.; Szczepanek, J.; Skorupa, M.; Jarkiewicz-Tretyn, J.; Sandomierz, D.; Dejewska, J.; Ciechanowska, K.; Jarkiewicz-Tretyn, A.; Koper, W.; Pałgan, K. Differences in the Concentration of Anti-SARS-CoV-2 IgG Antibodies Post-COVID-19 Recovery or Post-Vaccination. Cells 2021, 10, 1952. [Google Scholar] [CrossRef] [PubMed]
- Owsianka, I.; Pac, A.; Jachowicz, E.; Gutkowska, K.; Szczuciński, W.; Maziarz, B.; Sochacka-Tatara, E.; Heczko, P.; Sydor, W.; Żółtowska, B.; et al. SARS-CoV-2 antibody response after mRNA vaccination in healthcare workers with and without previous COVID-19, a follow-up study from the University Hospital in Krakow, Poland. Front. Immunol. 2023, 13, 1071204. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, S.; Mansatta, K.; Mallett, G.; Harris, V.; Emary, K.; Pollard, A. What defines an efficacious COVID-19 vaccine? A review of the challenges assessing the clinical efficacy of vaccines against SARS-CoV02. Lancet Infect. Dis. 2021, 21, e26–e35. [Google Scholar] [CrossRef] [PubMed]
Sex | Phase 1 n (%) | Phase 2 n (%) | Phase 3 n (%) | Phase 4 n (%) |
---|---|---|---|---|
F | 559 (79.55) | 559 (79.55) | 559 (79.55) | 60 (81.08) |
M | 144 (20.45) | 144 (20.45) | 144 (20.45) | 14 (18.92) |
Total | 703 (100.0) | 703 (100.0) | 703 (100.0) | 74 (100.0) |
Age (Years) | Phase 1 n (%) | Phase 2 n (%) | Phase 3 n (%) | Phase 4 n (%) |
---|---|---|---|---|
20–29 | 23 (3.27) | 23 (3.27) | 23 (3.27) | 1 (1.35) |
30–39 | 66 (9.39) | 66 (9.39) | 66 (9.39) | 5 (6.76) |
40–49 | 154 (21.91) | 154 (21.91) | 154 (21.91) | 30 (40.54) |
50–59 | 289 (41.11) | 289 (41.11) | 289 (41.11) | 33 (44.59) |
60–69 | 153 (21.76) | 153 (21.76) | 153 (21.76) | 5 (6.76) |
70–79 | 11 (1.56) | 11 (1.56) | 11 (1.56) | 0 (0.0) |
80 or more | 7 (1.00) | 7 (1.00) | 7 (1.00) | 0 (0.0) |
Total | 703 (100.0) | 703 (100.0) | 703 (100.0) | 74 (100.0) |
Sex | PCR+ n (%) | PCR− n (%) | Test |
---|---|---|---|
F | 116 (82.3) | 443 (78.8) | Fisher’s |
Total | 141 (100.0) | 562 (100.0) |
Age | PCR+ n (%) | PCR− n (%) | Test |
---|---|---|---|
20–29 | 2 (1.4) | 21(3.7) | Fisher’s |
30–39 | 18 (12.8) | 48 (8.5) | p = 0.091 |
40–49 | 36 (25.5) | 118 (21.0) | |
50–59 | 62 (44.0) | 227 (40.4) | |
60–69 | 21 (14.9) | 132 (23.5) | |
70–79 | 2 (1.4) | 9 (1.6) | |
80 or more | 0 (0.0) | 7 (1.2) | |
Total | 141 (100.0) | 562 (100.0) |
Age | PCR+ n (%) | PCR− n (%) | Participants in Age Group n (%) |
---|---|---|---|
20–29 | 2 (8.7) | 21 (91.3) | 23 (100.0) |
30–39 | 18 (27.3) | 48 (72.7) | 66 (100.0) |
40–49 | 36 (23.4) | 118 (76.6) | 154 (100.0) |
50–59 | 62 (21.5) | 227 (78.5) | 289 (100.0) |
60–69 | 21 (13.7) | 132 (86.3) | 153 (100.0) |
70–79 | 2 (18.2) | 9 (81.8) | 11 (100.0) |
80 or more | 0 (0.0) | 7 (100.0) | 7 (100.0) |
Study Phase | Positive n (%) | Negative n (%) | Total Participants n (%) |
---|---|---|---|
SARS-CoV-2 PCR result April–May 2020 or October 2020 to January 2021. | 141 (20.0) | 562 (80.0) | 703 (100.0) |
SARS-CoV-2 PCR result April–May 2020. | 28 (4.0) | 675 (96.0) | 703 (100.0) |
SARS-CoV-2 PCR result October 2020 to January 2021. | 113 (16.1) | 590 (83.9) | 703 (100.0) |
SARS-CoV-2 IgG result June 2020. | 51 (7.25) | 652 (92.5) | 703 (100.0) |
SARS-CoV-2 IgG result February 2021. | 69 (93.2) | 5 (6.8) | 74 (100.0) |
April–May 2020 SARS-CoV-2 PCR Positive n (%) | April–May 2020 SARS-CoV-2 PCR Negative n (%) | Test | |
---|---|---|---|
June 2020 SARS-CoV-2 IgG positive | 23 (88.5) | 28 (4.3) | Fisher’s p < 0.001 |
June 2020 SARS-CoV-2 IgG negative | 3 (11.5) | 629 (95.7) | |
TOTAL | 26 (100.0) | 657 (100.0) |
Variable | n | Mean | SD | Median | Min | Max |
---|---|---|---|---|---|---|
IgG class anti-SARS-Co-2 antibody levels about 2 months after confirmed COVID-19 disease in April–May 2020 | 11 | 53.6 | 53.7 | 24.3 | 3.8 | 158.0 |
IgG class anti-SARS-CoV-2 antibody levels after COVID-19 vaccination in February 2021 | 68 | 245.7 | 162.9 | 315.5 | 8.3 | 401.0 |
October 2020 to January 2021 SARS-CoV-2 PCR Positive n (%) | October 2020 to January 2021 SARS-CoV-2 PCR Negative n (%) | Test | |
---|---|---|---|
April–May 2020 SARS-CoV-2 PCR positive | 0 (0.0) | 28 (100.0) | Fisher’s p = 0.015 |
April–May 2020 SARS-CoV-2 PCR negative | 113 (16.7) | 563 (83.3) |
October 2020 to January 2021 SARS-CoV-2 PCR Positive n (%) | October 2020 to January 2021 SARS-CoV-2 PCR Negative n (%) | Test | |
---|---|---|---|
June 2020 SARS-CoV-2 IgG positive | 4 (14.3) | 24 (85.7) | Fisher’s p = 1 |
June 2020 SARS-CoV-2 IgG negative | 103 (16.4) | 526 (83.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radziejewska, J.; Arkowski, J.; Susło, R.; Kędzierski, K.; Wawrzyńska, M. Analysis of COVID-19 Incidence and Protective Potential of Persisting IgG Class Antibodies against SARS-CoV-2 Infection in Hospital Staff in Poland. Vaccines 2023, 11, 1198. https://doi.org/10.3390/vaccines11071198
Radziejewska J, Arkowski J, Susło R, Kędzierski K, Wawrzyńska M. Analysis of COVID-19 Incidence and Protective Potential of Persisting IgG Class Antibodies against SARS-CoV-2 Infection in Hospital Staff in Poland. Vaccines. 2023; 11(7):1198. https://doi.org/10.3390/vaccines11071198
Chicago/Turabian StyleRadziejewska, Jadwiga, Jacek Arkowski, Robert Susło, Kamil Kędzierski, and Magdalena Wawrzyńska. 2023. "Analysis of COVID-19 Incidence and Protective Potential of Persisting IgG Class Antibodies against SARS-CoV-2 Infection in Hospital Staff in Poland" Vaccines 11, no. 7: 1198. https://doi.org/10.3390/vaccines11071198
APA StyleRadziejewska, J., Arkowski, J., Susło, R., Kędzierski, K., & Wawrzyńska, M. (2023). Analysis of COVID-19 Incidence and Protective Potential of Persisting IgG Class Antibodies against SARS-CoV-2 Infection in Hospital Staff in Poland. Vaccines, 11(7), 1198. https://doi.org/10.3390/vaccines11071198