Assessment of Enterovirus Excretion and Identification of VDPVs in Patients with Primary Immunodeficiency in India: Outcome of ICMR–WHO Collaborative Study Phase-I
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stool Sample Collection, Transportation and Storage
2.2. Processing of Samples and Enterovirus Isolation
2.3. Intratypic Differentiation and Molecular Typing
2.4. Micro-Neutralization Assay for Poliovirus Neutralizing Antibody Titre
2.5. Multiplex Cytokine Assay
2.6. Statistical Analysis
3. Results
3.1. Poliovirus Detection
3.2. Non Polio Enterovirus Detection
3.3. Enterovirus Excretion among IVIg Recipients and Non-Recipients
3.4. Immunodeficiency Category Wise Distribution of PID Cases
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bigouette, J.P.; Wilkinson, A.L.; Tallis, G.; Burns, C.C.; Wassilak, S.G.F.; Vertefeuille, J.F. Progress toward Polio Eradication—Worldwide, January 2019–June 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 1129–1135. [Google Scholar] [CrossRef]
- WHO Detection of Circulating Vaccine Derived Polio Virus 2 (cVDPV2) in Environmental Samples—The United Kingdom of Great Britain and Northern Ireland and the United States of America. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON408 (accessed on 20 January 2023).
- Guo, J.; Bolivar-Wagers, S.; Srinivas, N.; Holubar, M.; Maldonado, Y. Immunodeficiency-related vaccine-derived poliovirus (iVDPV) cases: A systematic review and implications for polio eradication. Vaccine 2015, 33, 1235–1242. [Google Scholar] [CrossRef] [Green Version]
- Macklin, G.; Diop, O.M.; Humayun, A.; Shahmahmoodi, S.; El-Sayed, Z.A.; Triki, H.; Rey, G.; Avagyan, T.; Grabovac, V.; Jorba, J.; et al. Update on Immunodeficiency-Associated Vaccine-Derived Polioviruses—Worldwide, July 2018–December 2019. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 913–917. [Google Scholar] [CrossRef] [PubMed]
- Tangye, S.G.; Al-Herz, W.; Bousfiha, A.; Cunningham-Rundles, C.; Franco, J.L.; Holland, S.M.; Klein, C.; Morio, T.; Oksenhendler, E.; Picard, C.; et al. Human Inborn Errors of Immunity: 2022 Update on the Classification from the International Union of Immunological Societies Expert Committee. J. Clin. Immunol. 2022, 42, 1473–1507. [Google Scholar] [CrossRef]
- Galal, N.M.; Meshaal, S.; ElHawary, R.; Nasr, E.; Bassiouni, L.; Ashghar, H.; Farag, N.H.; Mach, O.; Burns, C.; Iber, J.; et al. Poliovirus excretion following vaccination with live poliovirus vaccine in patients with primary immunodeficiency disorders: Clinicians’ perspectives in the endgame plan for polio eradication. BMC Res. Notes 2018, 11, 717. [Google Scholar] [CrossRef] [Green Version]
- Yao, N.; Liu, Y.; Xu, J.-W.; Wang, Q.; Yin, Z.-D.; Wen, N.; Yang, H.; Rodewald, L.E.; Zhang, Z.-Y. Detection of a Highly Divergent Type 3 Vaccine-Derived Poliovirus in a Child with a Severe Primary Immunodeficiency Disorder—Chongqing, China, 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 1148–1150. [Google Scholar] [CrossRef] [PubMed]
- Macklin, G.; Liao, Y.; Takane, M.; Dooling, K.; Gilmour, S.; Mach, O.; Kew, O.M.; Sutter, R.W.; The iVDPV Working Group; Diop, O.; et al. Prolonged Excretion of Poliovirus among Individuals with Primary Immunodeficiency Disorder: An Analysis of the World Health Organization Registry. Front. Immunol. 2017, 8, 1103. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, M.C.; Madkaikar, M.R.; Desai, M.; Taur, P.; Nalavade, U.P.; Sharma, D.K.; Gupta, M.; Dalvi, A.; Shabrish, S.; Kulkarni, M.; et al. Poliovirus Excretion in Children with Primary Immunodeficiency Disorders, India. Emerg. Infect. Dis. 2017, 23, 1664–1670. [Google Scholar] [CrossRef] [PubMed]
- Lickness, J.S.; Gardner, T.; Diop, O.M.; Chavan, S.; Jorba, J.; Ahmed, J.; Gumede, N.; Johnson, T.; Butt, O.; Asghar, H.; et al. Surveillance to Track Progress toward Polio Eradication—Worldwide, 2018–2019. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 623–629. [Google Scholar] [CrossRef]
- WHO. Polio Laboratory Manual, 4th ed.; WHO: Geneva, Switzerland, 2004. [Google Scholar]
- Weldon, W.C.; Oberste, M.S.; Pallansch, M.A. Standardized Methods for Detection of Poliovirus Antibodies. Methods Mol. Biol. 2016, 1387, 145–176. [Google Scholar] [CrossRef]
- Moffett, D.B.; Llewellyn, A.; Singh, H.; Saxentoff, E.; Partridge, J.; Boualam, L.; Pallansch, M.; Wassilak, S.; Asghar, H.; Roesel, S.; et al. Progress toward Poliovirus Containment Implementation—Worldwide, 2019–2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 1330–1333. [Google Scholar] [CrossRef]
- Team, W. Meeting of the Strategic Advisory Group of Experts on Immunization, April 2019: Conclusions and Recommendations. Wkly. Epidemiol. Rec. 2019, 94, 261–279. [Google Scholar]
- Inactivated Polio Vaccine Now Introduced Worldwide. Available online: https://polioeradication.org/news-post/inactivated-polio-vaccine-now-introduced-worldwide/ (accessed on 20 January 2023).
- Aghamohammadi, A.; Abolhassani, H.; Kutukculer, N.; Wassilak, S.G.; Pallansch, M.A.; Kluglein, S.; Quinn, J.; Sutter, R.W.; Wang, X.; Sanal, O.; et al. Patients with Primary Immunodeficiencies Are a Reservoir of Poliovirus and a Risk to Polio Eradication. Front. Immunol. 2017, 8, 685. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, M.C.; Madkaikar, M.R.; Desai, M.; Aluri, J.; Varose, S.Y.; Taur, P.; Sharma, D.K.; Nalavade, U.P.; Rane, S.V.; Gupta, M.; et al. Natural Clearance of Prolonged VDPV Infection in a Child with Primary Immunodeficiency Disorder. Front. Immunol. 2019, 10, 1567. [Google Scholar] [CrossRef] [Green Version]
- França, T.T.; Barreiros, L.A.; Al-Ramadi, B.K.; Ochs, H.D.; Cabral-Marques, O.; Condino-Neto, A. CD40 ligand deficiency: Treatment strategies and novel therapeutic perspectives. Expert Rev. Clin. Immunol. 2019, 15, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Lougaris, V.; Badolato, R.; Ferrari, S.; Plebani, A. Hyper immunoglobulin M syndrome due to CD40 deficiency: Clinical, molecular, and immunological features. Immunol. Rev. 2005, 203, 48–66. [Google Scholar] [CrossRef]
- Baggen, J.; Thibaut, H.J.; Strating, J.; Van Kuppeveld, F.J.M. The life cycle of non-polio enteroviruses and how to target it. Nat. Rev. Genet. 2018, 16, 368–381. [Google Scholar] [CrossRef]
- Dyrdak, R.; Grabbe, M.; Hammas, B.; Ekwall, J.; E Hansson, K.; Luthander, J.; Naucler, P.; Reinius, H.; Rotzén-Östlund, M.; Albert, J. Outbreak of enterovirus D68 of the new B3 lineage in Stockholm, Sweden, August to September 2016. Eurosurveillance 2016, 21, 30403. [Google Scholar] [CrossRef] [Green Version]
- Pogka, V.; Labropoulou, S.; Emmanouil, M.; Voulgari-Kokota, A.; Vernardaki, A.; Georgakopoulou, T.; Mentis, A.F. Laboratory Surveillance of Polio and Other Enteroviruses in High-Risk Populations and Environmental Samples. Appl. Environ. Microbiol. 2017, 83, e02872-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez-Garcia, M.D.; Kebe, O.; Fall, A.D.; Ndiaye, K. Identification and molecular characterization of non-polio enteroviruses from children with acute flaccid paralysis in West Africa, 2013–2014. Sci. Rep. 2017, 7, 3808. [Google Scholar] [CrossRef] [PubMed]
- Benschop, K.S.M.; van der Avoort, H.G.; Jusic, E.; Vennema, H.; van Binnendijk, R.; Duizer, E. Polio and Measles Down the Drain: Environmental Enterovirus Surveillance in the Netherlands, 2005 to 2015. Appl. Environ. Microbiol. 2017, 83, e00558-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majumdar, M.; Sharif, S.; Klapsa, D.; Wilton, T.; Alam, M.M.; Garcia, M.D.F.; Rehman, L.; Mujtaba, G.; McAllister, G.; Harvala, H.; et al. Environmental Surveillance Reveals Complex Enterovirus Circulation Patterns in Human Populations. Open Forum Infect. Dis. 2018, 5, ofy250. [Google Scholar] [CrossRef]
- Fischer, T.K.; Simmonds, P.; Harvala, H. The importance of enterovirus surveillance in a post-polio world. Lancet Infect. Dis. 2022, 22, e35–e40. [Google Scholar] [CrossRef] [PubMed]
- Chouikha, A.; Rezig, D.; Driss, N.; Abdelkhalek, I.; Ben Yahia, A.; Touzi, H.; Meddeb, Z.; Ben Farhat, E.; Yahyaoui, M.; Triki, H. Circulation and Molecular Epidemiology of Enteroviruses in Paralyzed, Immunodeficient and Healthy Individuals in Tunisia, a Country with a Polio-Free Status for Decades. Viruses 2021, 13, 380. [Google Scholar] [CrossRef]
- Razafindratsimandresy, R.; Joffret, M.-L.; Andriamandimby, S.F.; Andriamamonjy, S.; Rabemanantsoa, S.; Richard, V.; Delpeyroux, F.; Heraud, J.-M.; Bessaud, M. Enterovirus detection in different regions of Madagascar reveals a higher abundance of enteroviruses of species C in areas where several outbreaks of vaccine-derived polioviruses occurred. BMC Infect. Dis. 2022, 22, 821. [Google Scholar] [CrossRef]
- Laassri, M.; Zagorodnyaya, T.; Hassin-Baer, S.; Handsher, R.; Sofer, D.; Weil, M.; Karagiannis, K.; Simonyan, V.; Chumakov, K.; Shulman, L. Evolution of echovirus 11 in a chronically infected immunodeficient patient. PLoS Pathog. 2018, 14, e1006943. [Google Scholar] [CrossRef] [Green Version]
- Arora, R.; Kaplan, M.; Nelson, M. Enterovirus-specific IgG in intravenous immunoglobulin preparations. Ann. Allergy Asthma Immunol. 2011, 106, 544–545. [Google Scholar] [CrossRef]
- Costa-Carvalho, B.T.; Sullivan, K.E.; Fontes, P.M.; Aimé-Nobre, F.; Gonzales, I.G.S.; Lima, E.S.; Granato, C.; de Moraes-Pinto, M.I. Low Rates of Poliovirus Antibodies in Primary Immunodeficiency Patients on Regular Intravenous Immunoglobulin Treatment. J. Clin. Immunol. 2018, 38, 628–634. [Google Scholar] [CrossRef]
- Fanaroff, A.A.; Korones, S.B.; Wright, L.L.; Wright, E.C.; Poland, R.L.; Bauer, C.B.; Tyson, J.E.; Philips, J.B.; Edwards, W.; Lucey, J.F.; et al. A Controlled Trial of Intravenous Immune Globulin to Reduce Nosocomial Infections in Very-Low-Birth-Weight Infants. N. Engl. J. Med. 1994, 330, 1107–1113. [Google Scholar] [CrossRef] [PubMed]
- Sazzad, H.M.S.; Rainey, J.J.; Kahn, A.-L.; Mach, O.; Liyanage, J.B.L.; Alam, A.N.; Kawser, C.A.; Hossain, A.; Sutter, R.; Luby, S. Screening for Long-term Poliovirus Excretion Among Children with Primary Immunodeficiency Disorders: Preparation for the Polio Posteradication Era in Bangladesh. J. Infect. Dis. 2014, 210 (Suppl. S1), S373–S379. [Google Scholar] [CrossRef] [Green Version]
Total PID cases enrolled for the study | 157 |
Total PID cases enrolled and sample collection done | 154 |
Total cases enrolled but deceased before sample collection | 03 |
Total number of stool samples received | 535 |
Total deceased cases during the study period | 17 |
Total poliovirus (PV) positive cases | 04 |
Total non-poliovirus enterovirus (NPEV) positive cases | 29 |
Study Sites | Total Cases Tested | Total Samples Received | Enteroviruses Detected | |||
---|---|---|---|---|---|---|
PV Positive Cases | Types of PV Cases | NPEV Positive Cases | Types of NPEV Cases | |||
B.J.W.HC, Mumbai | 71 | 244 | 03 | iVDPV1, P3SL, P1SL | 14 | E30, E5, E14, E11, E20, EVB97, CVA11, E12, EVB75, E13, E3, E32, E7, E29 |
ICMR-NIIH, Mumbai | 21 | 67 | 00 | - | 05 | E18, E13 (2), CVA2, E21 |
SGPGIMS, Lucknow | 14 | 63 | 00 | - | 04 | E16, CVA2, EVB75, E21 |
GMC, Kozhikode | 14 | 52 | 00 | - | 01 | E3 |
ASTER CMI, Bangalore | 13 | 41 | 00 | - | 01 | CVA2 |
KMC, Mangalore | 12 | 36 | 01 | P3SL | 01 | CVA2 |
NIMS, Hyderabad | 09 | 32 | 00 | - | 03 | CVA8, E17, E29 |
Total | 154 | 535 | 04 | - | 29 | - |
PID Type | Age (Years)/Gender | IVIg Therapy | Months from Last OPV | Results by Sample Collection Day (D) | Isolated PV | No. of Mutations | Synonymous Mutation | Non-Synonymous Mutation | Amino Acid Changes | Final Status |
---|---|---|---|---|---|---|---|---|---|---|
Hyper IgM syndrome | 3 yrs/Male | Yes | 12 | D01: iVDPV1; D80: Neg; D110: Neg | iVDPV1 | 16 | G126A | A296C | Lys99Thr | Neg |
T207C | A316T | Thr106Ser | ||||||||
A213T | A503G | Glu168Gly | ||||||||
C243T | A641G | Lys214Arg | ||||||||
T345C | G892A | Asp298Asn | ||||||||
C450T | ||||||||||
C558T | ||||||||||
C711T | ||||||||||
A732T | ||||||||||
A849T | ||||||||||
G870A | ||||||||||
SCID | 1 mth/Female | No | 1 | D01: P1SL | P1SL | 4 | C258T | A299G | Asn100Ser | Deceased before next sample collection |
T364C | ||||||||||
A903G | ||||||||||
WAS | 5 mths/Male | Yes | 5 | D01: P3SL; D34: Neg; D104: Neg | P3SL | 3 | G99A | C161T | Ala54Val | Deceased |
G498A | ||||||||||
XLA | 4 yrs/Male | Yes | 1 | D01: P1SL + P3SL; D29: P3SL; D59: Neg; D91: Neg | P3SL | 0 | NA | NA | NA | Neg |
Sr. No. | PID Type | IVIg Prophylaxis | Result | Species | NPEV Excretion (In Days) | No. of Positive Samples | Final Status |
---|---|---|---|---|---|---|---|
1 | CVID | Yes | E16 | B | 304 | 5 | Negative |
2 | CVID | Yes | EVB75 | B | - | 1 | Negative |
3 | CVID | Yes | E21 | B | 507 | 12 | Positive |
4 | CVID | Yes | E13, E14 | B | - | 1, 1 | Positive |
5 | CVID | Yes | E13, E14 | B | - | 1, 1 | Positive |
6 | CVID | Yes | CVA2 | A | - | 1 | Negative |
7 | WAS | No | E20 | B | - | 1 | Deceased |
8 | WAS | Yes | E11, E18 | B | - | 1, 1 | Negative |
9 | WAS | Yes | E11, EVB97 | B | - | 2, 1 | Negative |
10 | WAS | Yes | E14, E3, CVA11 | C | 80 | 1, 1, 2 | Positive |
11 | Hyper IgM syndrome | Yes | CVA2 | A | - | 1 | Negative |
12 | Hyper IgM Syndrome Type 2 + Hypogammaglobulinemia | Yes | E5 | B | - | 1 | Negative |
13 | Hyper IgM syndrome | Yes | EVB75 | B | - | 1 | Negative |
14 | Ataxia Telangiectasia with IgA deficiency | Yes | CVA8 | A | - | 1 | Deceased |
15 | Ataxia Telangiectasia with IgA deficiency | Yes | E17 | B | - | 1 | Positive |
16 | Ataxia Telangiectasia | No | E15, E29 | B | - | 3, 1 | Negative |
17 | Ataxia pancytopenia | No | E29 | B | - | 1 | Negative |
18 | TRNT1 Deficiency | Yes | E1, CVA2 | A | 77 | 2, 1 | Negative |
19 | TRNT1 Deficiency | Yes | E24, E32 | B | 93 | 1, 2 | Negative |
20 | Auto inflammatory disease | Yes | E12 | B | 65 | 2 | Negative |
21 | CHS + EBV Viremia | No | E30 | B | - | 1 | Negative |
22 | CMC-STAT1-GOF | No | E14 | B | 55 | 3 | Negative |
23 | DOCK-8 Deficiency | No | E11 | B | 91 | 3 | Positive |
24 | Hypogammaglobulinemia | No | E21 | B | - | 1 | Negative |
25 | MSMD | No | CVA2, E13, E3 | B | 47 | 1, 1, 2 | Negative |
26 | SCID | Yes | E3 | B | - | 1 | Negative |
27 | SPENCDI | No | E13 | B | - | 1 | Negative |
28 | XLA | Yes | CVA2 | A | - | 1 | Negative |
29 | ZBTB24 | Yes | E7 | B | - | 1 | Negative |
Patient Category | Total EV Positive | PV Positive | NPEV Positive |
---|---|---|---|
Alive and excreting virus | 4 | - | 4 |
Alive and stopped excretion of virus | 20 | 2 | 18 |
Patient deceased | 4 | 2 | 2 |
Patient lost to follow-up | 5 | - | 5 |
Total | 33 | 4 | 29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohanty, M.C.; Desai, M.; Mohammad, A.; Aggarwal, A.; Govindaraj, G.; Bhattad, S.; Lashkari, H.P.; Rajasekhar, L.; Verma, H.; Kumar, A.; et al. Assessment of Enterovirus Excretion and Identification of VDPVs in Patients with Primary Immunodeficiency in India: Outcome of ICMR–WHO Collaborative Study Phase-I. Vaccines 2023, 11, 1211. https://doi.org/10.3390/vaccines11071211
Mohanty MC, Desai M, Mohammad A, Aggarwal A, Govindaraj G, Bhattad S, Lashkari HP, Rajasekhar L, Verma H, Kumar A, et al. Assessment of Enterovirus Excretion and Identification of VDPVs in Patients with Primary Immunodeficiency in India: Outcome of ICMR–WHO Collaborative Study Phase-I. Vaccines. 2023; 11(7):1211. https://doi.org/10.3390/vaccines11071211
Chicago/Turabian StyleMohanty, Madhu Chhanda, Mukesh Desai, Ahmad Mohammad, Amita Aggarwal, Geeta Govindaraj, Sagar Bhattad, Harsha Prasada Lashkari, Liza Rajasekhar, Harish Verma, Arun Kumar, and et al. 2023. "Assessment of Enterovirus Excretion and Identification of VDPVs in Patients with Primary Immunodeficiency in India: Outcome of ICMR–WHO Collaborative Study Phase-I" Vaccines 11, no. 7: 1211. https://doi.org/10.3390/vaccines11071211
APA StyleMohanty, M. C., Desai, M., Mohammad, A., Aggarwal, A., Govindaraj, G., Bhattad, S., Lashkari, H. P., Rajasekhar, L., Verma, H., Kumar, A., Sawant, U., Varose, S. Y., Taur, P., Yadav, R. M., Tatkare, M., Fernandes, M., Bargir, U., Majumdar, S., Edavazhippurath, A., ... Madkaikar, M. R. (2023). Assessment of Enterovirus Excretion and Identification of VDPVs in Patients with Primary Immunodeficiency in India: Outcome of ICMR–WHO Collaborative Study Phase-I. Vaccines, 11(7), 1211. https://doi.org/10.3390/vaccines11071211