Deployment of Rotavirus Vaccine in Western Kenya Coincides with a Reduction in All-Cause Child Mortality: A Retrospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Setting
2.3. Variables
2.4. Data Sources and Measurement
2.5. Statistical Methods
2.6. Ethics
3. Results
3.1. Participants
3.2. Outcome Data
3.3. All-Cause Child Mortality
3.4. Diarrhea-Specific Child Mortality
3.5. Diarrhea Incidence
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tate, J.E.; Burton, A.H.; Boschi-Pinto, C.; Parashar, U.D.; for the World Health Organization–Coordinated Global Rotavirus Surveillance Network; Agocs, M.; Serhan, F.; de Oliveira, L.; Mwenda, J.M.; Mihigo, R.; et al. Global, Regional, and National Estimates of Rotavirus Mortality in Children < 5 Years of Age, 2000–2013. Clin. Infect. Dis. 2016, 62, S96–S105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Troeger, C.; Forouzanfar, M.; Rao, P.C.; Khalil, I.; Brown, A.; Reiner, R.C.; Fullman, N.; Thompson, R.L.; Abajobir, A.; Ahmed, M.; et al. Estimates of Global, Regional, and National Morbidity, Mortality, and Aetiologies of Diarrhoeal Diseases: A Systematic Analysis for the Global Burden of Disease Study 2015. Lancet Infect. Dis. 2017, 17, 909–948. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Rotavirus vaccines: An update. Wkly. Epidemiol. Rec. Relev. Épidémiologique Hebd. 2009, 84, 533–540. [Google Scholar]
- Rotavirus Vaccines WHO Position Paper: January 2013—Recommendations. Vaccine 2013, 31, 6170–6171. [CrossRef]
- Platts-Mills, J.A.; Steele, A.D. Rotavirus Vaccine Impact in Africa: Greater than the Sum of Its Parts? Lancet Glob. Health 2018, 6, e948–e949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armah, G.E.; Sow, S.O.; Breiman, R.F.; Dallas, M.J.; Tapia, M.D.; Feikin, D.R.; Binka, F.N.; Steele, A.D.; Laserson, K.F.; Ansah, N.A.; et al. Efficacy of Pentavalent Rotavirus Vaccine against Severe Rotavirus Gastroenteritis in Infants in Developing Countries in Sub-Saharan Africa: A Randomised, Double-Blind, Placebo-Controlled Trial. Lancet 2010, 376, 606–614. [Google Scholar] [CrossRef] [PubMed]
- Burnett, E.; Jonesteller, C.L.; Tate, J.E.; Yen, C.; Parashar, U.D. Global Impact of Rotavirus Vaccination on Childhood Hospitalizations and Mortality from Diarrhea. J. Infect. Dis. 2017, 215, 1666–1672. [Google Scholar] [CrossRef]
- De Oliveira, L.H.; Giglio, N.; Ciapponi, A.; Martí, S.G.; Kuperman, M.; Sanwogou, N.J.; Ruiz-Matus, C.; Marinho de Sousa, M.F. Temporal Trends in Diarrhea-Related Hospitalizations and Deaths in Children under Age 5 before and after the Introduction of the Rotavirus Vaccine in Four Latin American Countries. Vaccine 2013, 31, C99–C108. [Google Scholar] [CrossRef]
- Groome, M.J.; Page, N.; Cortese, M.M.; Moyes, J.; Zar, H.J.; Kapongo, C.N.; Mulligan, C.; Diedericks, R.; Cohen, C.; Fleming, J.A.; et al. Effectiveness of Monovalent Human Rotavirus Vaccine against Admission to Hospital for Acute Rotavirus Diarrhoea in South African Children: A Case-Control Study. Lancet Infect. Dis. 2014, 14, 1096–1104. [Google Scholar] [CrossRef]
- Karafillakis, E.; Hassounah, S.; Atchison, C. Effectiveness and Impact of Rotavirus Vaccines in Europe, 2006–2014. Vaccine 2015, 33, 2097–2107. [Google Scholar] [CrossRef] [Green Version]
- Parashar, U.D.; Johnson, H.; Steele, A.D.; Tate, J.E. Health Impact of Rotavirus Vaccination in Developing Countries: Progress and Way Forward. Clin. Infect. Dis. 2016, 62, S91–S95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paternina-Caicedo, A.; Parashar, U.D.; Alvis-Guzmán, N.; De Oliveira, L.H.; Castaño-Zuluaga, A.; Cotes-Cantillo, K.; Gamboa-Garay, O.; Coronell-Rodríguez, W.; De la Hoz-Restrepo, F. Effect of Rotavirus Vaccine on Childhood Diarrhea Mortality in Five Latin American Countries. Vaccine 2015, 33, 3923–3928. [Google Scholar] [CrossRef] [PubMed]
- Santos, V.S.; Marques, D.P.; Martins-Filho, P.R.S.; Cuevas, L.E.; Gurgel, R.Q. Effectiveness of Rotavirus Vaccines against Rotavirus Infection and Hospitalization in Latin America: Systematic Review and Meta-Analysis. Infect. Dis. Poverty 2016, 5, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sifuna, P.; Oyugi, M.; Ogutu, B.; Andagalu, B.; Otieno, A.; Owira, V.; Otsyula, N.; Oyieko, J.; Cowden, J.; Otieno, L.; et al. Health and Demographic Surveillance System Profile: The Kombewa Health and Demographic Surveillance System (Kombewa HDSS). Int. J. Epidemiol. 2014, 43, 1097–1104. [Google Scholar] [CrossRef] [Green Version]
- Bar-Zeev, N.; King, C.; Phiri, T.; Beard, J.; Mvula, H.; Crampin, A.C.; Heinsbroek, E.; Lewycka, S.; Tate, J.E.; Parashar, U.D.; et al. Impact of Monovalent Rotavirus Vaccine on Diarrhoea-Associated Post-Neonatal Infant Mortality in Rural Communities in Malawi: A Population-Based Birth Cohort Study. Lancet Glob. Health 2018, 6, e1036–e1044. [Google Scholar] [CrossRef] [Green Version]
- Nokes, D.J.; Peenze, I.; Netshifhefhe, L.; Abwao, J.; De Beer, M.C.; Seheri, M.; Williams, T.N.; Page, N.; Steele, D. Rotavirus Genetic Diversity, Disease Association, and Temporal Change in Hospitalized Rural Kenyan Children. J. Infect. Dis. 2010, 202, S180–S186. [Google Scholar] [CrossRef] [Green Version]
- Omore, R.; Khagayi, S.; Ogwel, B.; Onkoba, R.; Ochieng, J.B.; Juma, J.; Munga, S.; Tabu, C.; Kibet, S.; Nuorti, J.P.; et al. Rates of Hospitalization and Death for All-Cause and Rotavirus Acute Gastroenteritis before Rotavirus Vaccine Introduction in Kenya, 2010–2013. BMC Infect. Dis. 2019, 19, 47. [Google Scholar] [CrossRef] [Green Version]
- Tate, J.E.; Rheingans, R.D.; O’Reilly, C.E.; Obonyo, B.; Burton, D.C.; Tornheim, J.A.; Adazu, K.; Jaron, P.; Ochieng, B.; Kerin, T.; et al. Rotavirus Disease Burden and Impact and Cost-Effectiveness of a Rotavirus Vaccination Program in Kenya. J. Infect. Dis. 2009, 200, S76–S84. [Google Scholar] [CrossRef] [Green Version]
- Wandera, E.A.; Mohammad, S.; Bundi, M.; Nyangao, J.; Galata, A.; Kathiiko, C.; Odoyo, E.; Guyo, S.; Miring’u, G.; Komoto, S.; et al. Impact of Rotavirus Vaccination on Rotavirus Hospitalisation Rates among a Resource-Limited Rural Population in Mbita, Western Kenya. Trop. Med. Int. Health 2018, 23, 425–432. [Google Scholar] [CrossRef] [Green Version]
- Ye, Y.; Wamukoya, M.; Ezeh, A.; Emina, J.B.O.; Sankoh, O. Health and Demographic Surveillance Systems: A Step towards Full Civil Registration and Vital Statistics System in Sub-Sahara Africa? BMC Public Health 2012, 12, 741. [Google Scholar] [CrossRef] [Green Version]
- Patel, M.M.; Parashar, U.D. Assessing the Effectiveness and Public Health Impact of Rotavirus Vaccines after Introduction in Immunization Programs. J. Infect. Dis. 2009, 200, S291–S299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Generic Protocol for Monitoring Impact of Rotavirus Vaccination on Gastroenteritis Disease Burden and Viral Strains; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Byass, P. Who Needs Cause-of-Death Data? PLoS Med. 2007, 4, e333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byass, P.; Chandramohan, D.; Clark, S.J.; D’Ambruoso, L.; Fottrell, E.; Graham, W.J.; Herbst, A.J.; Hodgson, A.; Hounton, S.; Kahn, K.; et al. Strengthening Standardised Interpretation of Verbal Autopsy Data: The New InterVA-4 Tool. Glob. Health Action 2012, 5, 19281. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, R.; Omollo, R.; Ongecha, M.; Sifuna, P.; Othieno, C.; Ongeri, L.; Kingora, J.; Ogutu, B. Prevalence of Malaria Parasites in Adults and Its Determinants in Malaria Endemic Area of Kisumu County, Kenya. Malar. J. 2015, 14, 263. [Google Scholar] [CrossRef] [Green Version]
- Sifuna, P.; Otieno, L.; Ogwang, S.; Ogutu, B.; Andagalu, B.; Owuoth, J.; Singoei, V.; Cowden, J.; Otieno, W. Cause-Specific Mortality in the Kombewa Health and Demographic Surveillance Systems Site, Rural Western Kenya from 2011–2015. Glob. Health Action 2018, 11, 1442959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammitt, L.L.; Etyang, A.O.; Morpeth, S.C.; Ojal, J.; Mutuku, A.; Mturi, N.; Moisi, J.C.; Adetifa, I.M.; Karani, A.; Akech, D.O.; et al. Effect of Ten-Valent Pneumococcal Conjugate Vaccine on Invasive Pneumococcal Disease and Nasopharyngeal Carriage in Kenya: A Longitudinal Surveillance Study. Lancet 2019, 393, 2146–2154. [Google Scholar] [CrossRef] [Green Version]
- Maina, L.C.; Karanja, S.; Kombich, J. Immunization Coverage and Its Determinants among Children Aged 12–23 Months in a Peri-Urban Area of Kenya. Pan Afr. Med. J. 2013, 14, 3. [Google Scholar] [CrossRef]
- King, C.; Bar-Zeev, N.; Phiri, T.; Beard, J.; Mvula, H.; Crampin, A.; Heinsbroek, E.; Hungerford, D.; Lewycka, S.; Verani, J.; et al. Population Impact and Effectiveness of Sequential 13-Valent Pneumococcal Conjugate and Monovalent Rotavirus Vaccine Introduction on Infant Mortality: Prospective Birth Cohort Studies from Malawi. BMJ Glob. Health 2020, 5, e002669. [Google Scholar] [CrossRef]
- McLorg, A.; Omolo, K.; Sifuna, P.; Shaw, A.; Walia, B.; Larsen, D.A. Examining Wealth Trends in Kombewa, Kenya. Soc. Indic. Res. 2021, 157, 631–651. [Google Scholar] [CrossRef]
- Khagayi, S.; Omore, R.; Otieno, G.P.; Ogwel, B.; Ochieng, J.B.; Juma, J.; Apondi, E.; Bigogo, G.; Onyango, C.; Ngama, M.; et al. Effectiveness of Monovalent Rotavirus Vaccine Against Hospitalization with Acute Rotavirus Gastroenteritis in Kenyan Children. Clin. Infect. Dis. 2020, 70, 2298–2305. [Google Scholar] [CrossRef]
- Kim, T.H.; Johnstone, J.; Loeb, M. Vaccine Herd Effect. Scand. J. Infect. Dis. 2011, 43, 683–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Payne, D.C.; Staat, M.A.; Edwards, K.M.; Szilagyi, P.G.; Weinberg, G.A.; Hall, C.B.; Chappell, J.; Curns, A.T.; Wikswo, M.; Tate, J.E.; et al. Direct and Indirect Effects of Rotavirus Vaccination Upon Childhood Hospitalizations in 3 US Counties, 2006–2009. Clin. Infect. Dis. 2011, 53, 245–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hull, B.P.; Menzies, R.; Macartney, K.; McIntyre, P.B. Impact of the Introduction of Rotavirus Vaccine on the Timeliness of Other Scheduled Vaccines: The Australian Experience. Vaccine 2013, 31, 1964–1969. [Google Scholar] [CrossRef]
- Bar-Zeev, N.; Jere, K.C.; Bennett, A.; Pollock, L.; Tate, J.E.; Nakagomi, O.; Iturriza-Gomara, M.; Costello, A.; Mwansambo, C.; Parashar, U.D.; et al. Population Impact and Effectiveness of Monovalent Rotavirus Vaccination in Urban Malawian Children 3 Years After Vaccine Introduction: Ecological and Case-Control Analyses. Clin. Infect. Dis. 2016, 62, S213–S219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enane, L.A.; Gastañaduy, P.A.; Goldfarb, D.M.; Pernica, J.M.; Mokomane, M.; Moorad, B.; Masole, L.; Tate, J.E.; Parashar, U.D.; Steenhoff, A.P. Impact of Rotavirus Vaccination on Hospitalizations and Deaths from Childhood Gastroenteritis in Botswana. Clin. Infect. Dis. 2016, 62, S168–S174. [Google Scholar] [CrossRef] [Green Version]
- Richardson, V.; Hernandez-Pichardo, J.; Quintanar-Solares, M.; Esparza-Aguilar, M.; Johnson, B.; Gomez-Altamirano, C.M.; Parashar, U.; Patel, M. Effect of Rotavirus Vaccination on Death from Childhood Diarrhea in Mexico. N. Engl. J. Med. 2010, 362, 299–305. [Google Scholar] [CrossRef] [Green Version]
- Pindyck, T.; Tate, J.E.; Parashar, U.D. A Decade of Experience with Rotavirus Vaccination in the United States—Vaccine Uptake, Effectiveness, and Impact. Expert Rev. Vaccines 2018, 17, 593–606. [Google Scholar] [CrossRef]
- Dorleans, F.; Falkenhorst, G.; Böttiger, B.; Howitz, M.; Midgley, S.; Nielsen, J.; Mølbak, K.; Ethelberg, S. A Case-Control Study of Risk Factors for Rotavirus Infections in Adults, Denmark, 2005–2009. Epidemiol. Infect. 2016, 144, 560–566. [Google Scholar] [CrossRef]
- Mast, T.C.; Walter, E.B.; Bulotsky, M.; Khawaja, S.S.; DiStefano, D.J.; Sandquist, M.K.; Straus, W.L.; Allen Staat, M. Burden of Childhood Rotavirus Disease on Health Systems in the United States: Results from Active Surveillance Before Rotavirus Vaccine Introduction. Pediatr. Infect. Dis. J. 2010, 29, e19–e25. [Google Scholar] [CrossRef]
- Wikswo, M.E.; Parashar, U.D.; Lopman, B.; Selvarangan, R.; Harrison, C.J.; Azimi, P.H.; Boom, J.A.; Sahni, L.C.; Englund, J.A.; Klein, E.J.; et al. Evidence for Household Transmission of Rotavirus in the United States, 2011–2016. J. Pediatr. Infect. Dis. Soc. 2020, 9, 181–187. [Google Scholar] [CrossRef]
- Lopman, B.; Vicuña, Y.; Salazar, F.; Broncano, N.; Esona, M.D.; Sandoval, C.; Gregoricus, N.; Bowen, M.D.; Payne, D.; Vaca, M.; et al. Household Transmission of Rotavirus in a Community with Rotavirus Vaccination in Quininde, Ecuador. PLoS ONE 2013, 8, e67763. [Google Scholar] [CrossRef]
- Lamberti, L.M.; Ashraf, S.; Walker, C.L.F.; Black, R.E. A Systematic Review of the Effect of Rotavirus Vaccination on Diarrhea Outcomes Among Children Younger Than 5 Years. Pediatr. Infect. Dis. J. 2016, 35, 992–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Troeger, C.; Khalil, I.A.; Rao, P.C.; Cao, S.; Blacker, B.F.; Ahmed, T.; Armah, G.; Bines, J.E.; Brewer, T.G.; Colombara, D.V.; et al. Rotavirus Vaccination and the Global Burden of Rotavirus Diarrhea Among Children Younger Than 5 Years. JAMA Pediatr. 2018, 172, 958–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anker, M. The Effect of Misclassification Error on Reported Cause-Specific Mortality Fractions from Verbal Autopsy. Int. J. Epidemiol. 1997, 26, 1090–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No Rotavirus Vaccine (%) | Rotavirus Vaccine (%) | No Vaccine Information (%) | ||
---|---|---|---|---|
Number of children | 20,620 (54%) | 5940 (15%) | 11,903 (31%) | |
Deaths | 519 (2.5%) | 99 (1.7%) | 319 (2.7%) | |
Sex | Female | 9839 (48%) | 3047 (51%) | 6871 (58%) |
Male | 10,781 (52%) | 2893 (49%) | 5032 (42%) | |
Water source | Improved | 11,432 (55%) | 3522 (59%) | 7054 (59%) |
Unimproved | 9188 (45%) | 2418 (41%) | 4849 (41%) | |
Sanitation access | Improved | 5828 (28%) | 1531 (26%) | 3883 (33%) |
Unimproved | 14,792 (72%) | 4409 (74%) | 8020 (67%) | |
Cooking fuel | Improved | 516 (3%) | 168 (3%) | 371 (3%) |
Unimproved | 20,104 (97%) | 5772 (97%) | 11,532 (97%) | |
Electricity | Yes | 1223 (6%) | 409 (7%) | 932 (8%) |
None | 19,397 (94%) | 5531 (93%) | 10,971 (92%) | |
Housing | Adequate | 192 (1%) | 82 (1%) | 175 (1%) |
Inadequate | 20,428 (99%) | 5858 (99%) | 11,728 (99%) | |
Assets | Adequate | 13,537 (66%) | 3941 (66%) | 8355 (70%) |
Inadequate | 7083 (34%) | 1999 (34%) | 3548 (30%) | |
Immunizations | Fully immunized | 7601 (37%) | 4381 (74%) | -- |
Inadequately immunized | 13,019 (63%) | 1559 (26%) | -- |
Among All Children < 3 Years of Age N = 38,463 Children; 62,856 Person Years at Risk; 937 Deaths | Among Children < 3 Years of Age with Vaccine Information N = 26,560 Children; 50,396 Person Years at Risk; 618 Deaths | ||
---|---|---|---|
Measure | Factor | Hazard Ratio (95% Confidence Interval) | Hazard Ratio (95% Confidence Interval) |
Period | Pre-rotavirus vaccination | Reference | Reference |
Post-rotavirus vaccination | 0.84 (0.65–1.09) p = 0.190 | 0.77 (0.57–1.04) p = 0.090 | |
Post-vaccination time | Months from January 2015 (continuous) | 0.98 (0.97–0.99) p = 0.002 | 0.98 (0.96–0.99) p = 0.010 |
Time | Months from January 2012 (continuous) | 1.01 (1.00–1.01) p = 0.159 | 1.02 (1.02–1.04) p < 0.001 |
Child’s age | Months (continuous) | 0.45 (0.41–0.50) p < 0.001 | 0.35 (0.33–0.37) p < 0.001 |
Months (quadratic) | 1.01 (1.01–1.02) p < 0.001 | 1.02 (1.02–1.02) p < 0.001 | |
Water source | Improved | Reference | Reference |
Unimproved | 1.20 (1.05–1.36) p = 0.006 | 1.11 (0.94–1.30) p = 0.214 | |
Sanitation access | Improved | Reference | Reference |
Unimproved | 1.19 (1.03–1.38) p = 0.019 | 1.36 (1.13–1.64) p = 0.001 | |
Wealth (cooking fuel) | Improved cooking fuel | Reference | Reference |
Carbon-based cooking fuel | 1.54 (0.87–2.73) p = 0.140 | 1.40 (0.69–2.84) p = 0.347 | |
Wealth (key assets) | At least 2 key assets | Reference | Reference |
Fewer than 2 key assets | 1.31 (1.14–1.49) p < 0.001 | 1.50 (1.27–1.76) p < 0.001 | |
Wealth (electricity) | Electricity | Reference | Reference |
No electricity | 3.03 (1.86–4.93) p < 0.001 | 2.71 (1.48–4.97) p = 0.001 | |
Rotavirus immunization | None | Not included | Reference |
At least one dose | Not included | 0.56 (0.43–0.74) p < 0.001 | |
Immunization status | None | Not included | Reference |
Partial or late | Not included | 0.51 (0.32–0.82) p = 0.006 | |
Full | Not included | 0.26 (0.15–0.44) p < 0.001 |
Among All Children < 3 Years of Age N = 38,463 Children; 62,856 Person Years at Risk; 57 Diarrhea-Specific Deaths | Among Children with Vaccine Information < 3 Years of Age N = 26,560 Children; 50,245 Person Years at Risk; 37 Diarrhea-Specific Deaths | ||
---|---|---|---|
Measure | Factor | Hazard Ratio (95% Confidence Interval) | Hazard Ratio (95% Confidence Interval) |
Period | Pre-rotavirus vaccination | Reference | Reference |
Post-rotavirus vaccination | 0.68 (0.22–2.10) p = 0.497 | 0.63 (0.18–2.22) p = 0.473 | |
Post-vaccination time | Months from January 2015 (continuous) | 0.95 (0.88–1.02) p = 0.125 | 0.95 (0.88–1.03) p = 0.217 |
Time | Months from January 2012 (continuous) | 1.00 (0.98–1.03) p = 0.737 | 1.03 (0.99–1.07) p = 0.110 |
Child’s age | Months (continuous) | 0.76 (0.68–0.85) p < 0.001 | 0.80 (0.70–0.91) p = 0.001 |
Water source | Improved | Reference | Reference |
Unimproved | 2.36 (1.37–4.08) p = 0.002 | 1.51 (0.79–2.89) p = 0.215 | |
Sanitation access | Improved | Reference | Reference |
Unimproved | 1.47 (0.79–2.74) p = 0.222 | 1.52 (0.69–3.33) p = 0.297) | |
Wealth | At least 2 key assets | Reference | Reference |
Fewer than 2 key assets | 1.45 (0.85–2.46) p = 0.172 | 1.41 (0.3–2.72) p = 0.312 | |
Rotavirus immunization | None | Not included | Reference |
At least one dose | Not included | 0.59 (0.17–2.03) p = 0.401 |
Interrupted Time Series Model (Excluding Rotavirus Vaccine Measure) N = 26,469 Children; 81,541 Observations | Rotavirus Vaccine Model (Excluding Time Components) N = 26,469 Children; 81,541 Observations | ||
---|---|---|---|
Measure | Factor | Risk Ratio (95% Confidence Interval) | Risk Ratio (95% Confidence Interval) |
Post-vaccination time | Months from January 2015 (continuous) | 1.00 (0.99–1.01) p = 0.452 | Not included |
Time | Months from January 2012 (continuous) | 0.98 (0.98–0.99) p < 0.001 | Not included |
Rotavirus immunization | None | Not included | Reference |
At least one dose | Not included | 0.66 (0.57–0.76) p < 0.001 | |
Child’s age | Months (continuous) | 1.18 (1.15–1.20) p < 0.001 | 1.17 (1.15–1.19) p < 0.001 |
Months (quadratic) | 0.99 (0.99–1.00) p < 0.001 | 0.99 (0.99–1.00) p < 0.001 | |
Water source | Improved | Reference | Reference |
Unimproved | 1.18 (1.09–1.28) p < 0.001 | 1.17 (1.08–1.27) p < 0.001 | |
Sanitation access | Improved | Reference | Reference |
Unimproved | 1.20 (1.09–1.31) p < 0.001 | 1.19 (1.08–1.31) p < 0.001 | |
Wealth | Improved cooking fuel | Reference | Reference |
Carbon-based cooking fuel | 1.17 (0.87–1.57) p = 0.289 | 1.16 (0.86–1.55) p = 0.289 | |
Wealth | At least 2 key assets | Reference | Reference |
Fewer than 2 key assets | 1.09 (1.00–1.19) p = 0.050 | 1.10 (1.01–1.20) p = 0.033 | |
Wealth | Electricity | Reference | Reference |
No electricity | 1.05 (0.87–1.27) p = 0.609 | 1.07 (0.88–1.30) p = 0.479 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sifuna, P.; Shaw, A.V.; Lucas, T.; Ogutu, B.; Otieno, W.; Larsen, D.A. Deployment of Rotavirus Vaccine in Western Kenya Coincides with a Reduction in All-Cause Child Mortality: A Retrospective Cohort Study. Vaccines 2023, 11, 1299. https://doi.org/10.3390/vaccines11081299
Sifuna P, Shaw AV, Lucas T, Ogutu B, Otieno W, Larsen DA. Deployment of Rotavirus Vaccine in Western Kenya Coincides with a Reduction in All-Cause Child Mortality: A Retrospective Cohort Study. Vaccines. 2023; 11(8):1299. https://doi.org/10.3390/vaccines11081299
Chicago/Turabian StyleSifuna, Peter, Andrea V. Shaw, Tina Lucas, Bernards Ogutu, Walter Otieno, and David A. Larsen. 2023. "Deployment of Rotavirus Vaccine in Western Kenya Coincides with a Reduction in All-Cause Child Mortality: A Retrospective Cohort Study" Vaccines 11, no. 8: 1299. https://doi.org/10.3390/vaccines11081299
APA StyleSifuna, P., Shaw, A. V., Lucas, T., Ogutu, B., Otieno, W., & Larsen, D. A. (2023). Deployment of Rotavirus Vaccine in Western Kenya Coincides with a Reduction in All-Cause Child Mortality: A Retrospective Cohort Study. Vaccines, 11(8), 1299. https://doi.org/10.3390/vaccines11081299