A Comprehensive Review on Cancer Vaccines and Vaccine Strategies in Hepatocellular Carcinoma
Abstract
:1. Introduction
2. Hepatocellular Carcinoma (HCC)
3. Cancer Vaccine
3.1. Preventive Neoplasia Targeting Vaccines
3.2. Therapeutic Neoplasia Targeting Vaccines
3.2.1. Peptide-Based Vaccines
3.2.2. Dendritic Cell (DC) Vaccines
3.2.3. Viral Vector-Based Vaccines
3.2.4. DNA Vaccine
3.2.5. MRNA Vaccine
3.2.6. Cell Lysates in Cancer Vaccines
3.2.7. Adoptive Cell Therapy/Vaccines
Type of Vaccine | Mechanism | Advantages | Limitations | References |
---|---|---|---|---|
Peptide-based Vaccines | Peptides initiate a targeted immune response against tumor-associated antigens (TAAs) on cancer cell surfaces. | High specificity reduces the risk of off-target effects and autoimmune reactions. Simple production process. | Significant tumor clonal heterogeneity allows some cancer cells without the target antigen to escape immune detection. | [32,33,34,35,37,54] |
Dendritic Cell (DC) Vaccines | DCs capture and process antigens from tumor cells and present them to T cells. | Offers a promising approach to cancer immunotherapy with compelling clinical results. Can complement or enhance existing cancer therapies. | Challenges include identifying TAAs specific to individual tumors and improving DC migration to lymph nodes. The need to counteract tumor-induced immunosuppression is also a limitation. | [38,40] |
Viral vector-based Vaccines | Viral vectors transport cancer-related antigens to the immune system. | Has shown encouraging outcomes in preclinical and clinical studies. Demonstrates considerable potential in cancer immunotherapy. | Requires continued research and comprehensive clinical trials to fully understand their potential and assess their therapeutic effectiveness in different cancers. | [41,42,43,44,45,46,47,48,49,50] |
DNA Vaccines | DNA vaccines introduce plasmid DNA encoding TAAs into host cells. | Has potential efficacy in combating various types of cancer. | Ongoing research is required to optimize design, delivery methods, and adjuvant strategies. Integration with other immunotherapeutic approaches or traditional treatments may be necessary. | [34,53,54] |
mRNA Vaccines | mRNA-based vaccines instruct host cells to produce specific cancer-associated proteins or antigens. | Shows potential for preventing and treating various types of cancers. | Further investigation and clinical trials will be necessary to evaluate their safety, efficacy, and clinical applicability in different types of cancer patients. | [4,48,55,56] |
Cell Lysates in Cancer Vaccines | Cell lysates provide a wealth of tumor antigens and can stimulate an immune response when incorporated into a vaccine. | Can prevent cancer-induced exhaustion of T cells and NK cells. Whole tumor cell lysate may elicit stronger antigen-specific immune responses. | Need for careful preparation to ensure the antigens can trigger an immune response and are not destroyed in the process. | [59,60,61,62,64,65] |
Adoptive Cell Therapy/Vaccines | Patients’ immune cells are genetically altered to identify and combat specific cancer antigens. | Promising in the development of therapeutic cancer vaccines. Peptide-based vaccines are an innovative strategy within this approach. | Challenges include identifying the most effective antigens to target and the potential for off-target effects. | [66,67,68,69] |
Title | Intervention | Phase | Outcome | NCT | Number of Patients | Year |
---|---|---|---|---|---|---|
Personalized Cancer Vaccine in Egyptian Cancer Patients | Biological: Peptide cancer vaccine | 1 | •Assessment of the safety of the personalized cancer vaccine; •Assessment of immunological response; •Progression-free survival and overall survival time. | NCT05059821 [70] | 10 | 2021 |
DNAJB1-PRKACA Fusion Kinase Peptide Vaccine Combined With Nivolumab and Ipilimumab for Patients With Fibrolamellar Hepatocellular Carcinoma | •Drug: DNAJB1-PRKACA peptide vaccine •Drug: Nivolumab •Drug: Ipilimumab | 1 | •Number of participants experiencing study drug-related toxicities; •Fold change in interferon-producing DNAJB1-PRKACA-specific cluster of differentiation 8 (CD8) T cells at 10 weeks; •Fold change in interferon-producing DNAJB1-PRKACA-specific cluster of differentiation 4 (CD4) T cells at 10 weeks. | NCT04248569 [71] | 56 | 2020 |
Application of mRNA Immunotherapy Technology in Hepatitis B Virus-related Refractory Hepatocellular Carcinoma | •Biological: HBV mRNA vaccine | 1 | •Adverse events; •Objective response rate; •Progress-Free Survival; •Overall Survival. | NCT05738447 [57] | 9 | 2023 |
Clinical Study of mRNA Vaccine in Patients With Liver Cancer After Operation | •Drug: Neoantigen mRNA Personalised Cancer vaccine in combination with Stintilimab I injection | •One-year recurrence-free survival rate (RFS); •Overall survival (OS) after initial administration. | NCT05761717 [58] | 67 | 2023 | |
Neoantigen Dendritic Cell Vaccine and Nivolumab in HCC and Liver Metastases From CRC | •Biological: Neoantigen Dendritic Cell Vaccine •Drug: Nivolumab | 2 | •24-month Relapse Free Survival •Induced immune response against vaccinated NAs; •Frequency and severity of treatment-emergent adverse events (AE); •Overall Survival. | NCT04912765 [72] | 60 | 2021 |
GNOS-PV02 Personalized Neoantigen Vaccine, INO-9012 and Pembrolizumab in Subjects With Advanced HCC | •Biological: GNOS-PV02 •Biological: INO-9012 •Drug: Pembrolizumab •Device: CELLECTRA®2000 EP Device | 1&2 | •Adverse events as graded by CTCAE v5.0; •Immunogenicity of a personalized neoantigen DNA vaccine as measured by interferon-γ secreting T lymphocytes in peripheral blood mononuclear cells (PBMCs) using ELISpot; •Immunogenicity of a personalized neoantigen DNA vaccine as measured by T-cell activation and cytolytic cell phenotype in PBMCs using Flow Cytometry. | NCT04912765 [73] | 60 | 2020 |
“Cocktail” Therapy for Hepatitis B Related Hepatocellular Carcinoma | •Drug: Cyclophosphamide •Biological: Multiple Signals loaded Dendritic Cells Vaccine | 2 | •Progression-Free-Survival (PFS) month; •serum AFP (alpha fetoprotein, ng/mL); •serum PIVKA-II (Protein Induced by Vitamin K Absence or Antagonist-II), μg/L. | NCT04317248 [74] | 600 | 2020 |
Personalized Neoantigen Peptide-Based Vaccine in Combination With Pembrolizumab for the Treatment of Advanced Solid Tumors, The PNeoVCA Study | •Drug: Cyclophosphamide •Biological: Neoantigen Peptide Vaccine •Biological: Pembrolizumab •Biological: Sargramostim | 1 | •Incidence of adverse events; •The number and percentage of participants who completed the sequencing with satisfactory data quality registration and identified at least 10 actionable peptides, meet the eligibility criteria for registration, and were able to initiate vaccine production; •Immunogenicity responders. | NCT05269381 [75] | 36 | 2022 |
FusionVAC22_01: DNAJB1-PRKACA Fusion Transcript-based Peptide Vaccine Combined With Immune Checkpoint Inhibition for Fibrolamellar Hepatocellular Carcinoma and Other Tumor Entities Carrying the Oncogenic Driver Fusion | Biological: DNAJB1-PRKACA Fusion Transcript-based Peptide Vaccine | Not specified | Not specified. | NCT05937295 [76] | 20 | 2023 |
An Open Label, Single-arm, Phase II Neoantigen (NA) Dendritic Cell (DC) Vaccine and Anti-PD1 (Nivolumab) as Adjuvant Treatment in Resected Hepatocellular Carcinoma (HCC) (Group A) and Liver Metastases From Colorectal Cancer (CRLM) (Group B) | Biological: Neoantigen Dendritic Cell Vaccine | Phase II | Not specified. | NCT04912765 [72] | 60 | 2021 |
Phase 1 Trial of Intravenous Administration of TAEK-VAC-HerBy Vaccine Alone and in Combination With HER2 Antibodies in Patients With Advanced Cancer. | Biological: TAEK-VAC-HerBy Vaccine | Phase I | Not specified. | NCT04246671 [77] | 55 | 2020 |
Phase I Clinical Trial of Alfa-Fetoprotein,Glypican-3 Based Personalized Cancer Vaccine in Egyptian Patients With Hepatocellular Carcinoma: Pilot Study | Biological: Alfa-Fetoprotein,Glypican-3 Based Personalized Cancer Vaccine | Phase I | Not specified. | NCT05059821 [70] | 10 | 2021 |
Study of Intratumoral Injection of Dendritic Cells After High-Dose Conformal External Beam Radiotherapy in Patients With Unresectable Liver Cancer | Biological: Dendritic Cells | Not specified | Not specified. | NCT03942328 [78] | 54 | 2023 |
An Exploratory Study on the Safety and Effectiveness of Autoimmune Cell Therapy Sensitized With Liver Cancer Neoantigen in Patients With High Risk of Recurrence After Surgical Resection of Primary Hepatocellular Carcinoma | Biological: Autoimmune Cell Therapy | Not specified | Not specified. | NCT05105815 [79] | 23 | 2021 |
A Phase I Pilot Study of Personalized Neoantigen Peptide-Based Vaccine in Combination With Pembrolizumab in Advanced Solid Tumors (PNeoVCA) | Biological: Neoantigen Peptide-Based Vaccine | Phase I | Not specified. | NCT05269381 [75] | 36 | 2022 |
A Phase I Study of mRNA Vaccine for Patients With HBV-positive Advanced Hepatocellular Carcinoma | Biological: mRNA Vaccine | Phase I | Not specified. | NCT05738447 [57] | 9 | 2023 |
4. Immunization Approach for Regulating the Tumor Immune Microenvironment (TIME) in Hepatic Cellular Carcinoma
5. Exploring the Synergistic Potential of Cancer Vaccines and Other Immunotherapies in Hepatocellular Carcinoma
6. Future Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Forner, A.; Reig, M. carcinoma Bruix JHepatocellular. Lancet 2018, 391, 1301–1314. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Montal, R.; Sia, D.; Finn, R.S. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 2018, 15, 599–616. [Google Scholar] [CrossRef]
- Sahin, U.; Türeci, Ö. Personalized vaccines for cancer immunotherapy. Science 2018, 359, 1355–1360. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, M.S.; Kan-Mitchell, J.; Kempf, R.A.; Harel, W.; Shau, H.; Lind, S. Active specific immunotherapy for melanoma: Phase I trial of allogeneic lysates and a novel adjuvant. Cancer Res. 1988, 48, 5883–5893. [Google Scholar]
- Sondak, V.K.; Sosman, J.A. Results of clinical trials with an allogeneic melanoma tumor cell lysate vaccine: Melacine®. Semin. Cancer Biol. 2003, 13, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Banchereau, J.; Palucka, A.K. Dendritic cells as therapeutic vaccines against cancer. Nat. Rev. Immunol. 2005, 5, 296–306. [Google Scholar] [CrossRef]
- Cheever, M.A.; Higano, C.S. PROVENGE (Sipuleucel-T) in Prostate Cancer: The First FDA-Approved Therapeutic Cancer VaccineTherapeutic Prostate Cancer Vaccine. Clin. Cancer Res. 2011, 17, 3520–3526. [Google Scholar] [CrossRef] [Green Version]
- McGlynn, K.A.; Petrick, J.L.; London, W.T. Global Epidemiology of Hepatocellular Carcinoma: An Emphasis on Demographic and Regional Variability. Clin. Liver Dis. 2015, 19, 223–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Younossi, Z.; Tacke, F.; Arrese, M.; Chander Sharma, B.; Mostafa, I.; Bugianesi, E.; Wai-Sun Wong, V.; Yilmaz, Y.; George, J.; Fan, J.; et al. Global Perspectives on Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis. Hepatology 2019, 69, 2672–2682. [Google Scholar] [CrossRef]
- Lurje, I.; Czigany, Z.; Bednarsch, J.; Roderburg, C.; Isfort, P.; Neumann, U.P.; Lurje, G. Treatment Strategies for Hepatocellular Carcinoma—A Multidisciplinary Approach. Int. J. Mol. Sci. 2019, 20, 1465. [Google Scholar] [CrossRef] [Green Version]
- Czigany, Z.; Lurje, I.; Tolba, R.H.; Neumann, U.P.; Tacke, F.; Lurje, G. Machine perfusion for liver transplantation in the era of marginal organs—New kids on the block. Liver Int. 2019, 39, 228–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roncalli, M.; Park, Y.N.; Di Tommaso, L. Histopathological classification of hepatocellular carcinoma. Dig. Liver Dis. 2010, 42, S228–S234. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Brú, C.; Bruix, J. Prognosis of hepatocellular carcinoma: The BCLC staging classification. Semin Liver Dis 1999, 19, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, H.; Xia, Y.; Yang, T.; Gao, Y.; Li, J.; Wu, Y.; Shen, F. Impact of clinically significant portal hypertension on outcomes after partial hepatectomy for hepatocellular carcinoma: A systematic review and meta-analysis. HPB 2019, 21, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Yan, L.; Cheng, Z.; Wu, H.; Du, L.; Wang, J.; Xu, Y.; Zeng, Y. A randomized trial comparing radiofrequency ablation and surgical resection for HCC conforming to the Milan criteria. Ann. Surg. 2010, 252, 903–912. [Google Scholar] [CrossRef]
- Zou, W.Y.; Temple, S.; Sada, Y.H.; El-Serag, H.B.; May, S.B.; Kanwal, F.; Richardson, P.; Anaya, D.A.; Davila, J. Tu1489-Improved Treatment Delivery and Overall Survival Associated with Multidisciplinary Tumor Board Evaluation of Patients with Advanced Hepatocellular Carcinoma. Gastroenterology 2018, 154, S-1236. [Google Scholar] [CrossRef]
- Lin, S.; Hoffmann, K.; Schemmer, P. Treatment of Hepatocellular Carcinoma: A Systematic Review. Liver Cancer 2012, 1, 144–158. [Google Scholar] [CrossRef]
- Palmer, D.H.; Midgley, R.S.; Mirza, N.; Torr, E.E.; Ahmed, F.; Steele, J.C.; Steven, N.M.; Kerr, D.J.; Young, L.S.; Adams, D.H. A phase II study of adoptive immunotherapy using dendritic cells pulsed with tumor lysate in patients with hepatocellular carcinoma. Hepatology 2009, 49, 124–132. [Google Scholar] [CrossRef]
- Chen, C.; Ma, Y.-H.; Zhang, Y.-T.; Zhang, F.A.N.; Zhou, N.; Wang, X.; Liu, T.A.O.; Li, Y.-M. Effect of dendritic cell–based immunotherapy on hepatocellular carcinoma: A systematic review and meta-analysis. Cytotherapy 2018, 20, 975–989. [Google Scholar] [CrossRef]
- Sprooten, J.; Ceusters, J.; Coosemans, A.; Agostinis, P.; De Vleeschouwer, S.; Zitvogel, L.; Kroemer, G.; Galluzzi, L.; Garg, A.D. Trial watch: Dendritic cell vaccination for cancer immunotherapy. OncoImmunology 2019, 8, 1638212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, N.; Hutchinson, K.; Marron, T.U.; Aleynick, M.; Hammerich, L.; Upadhyay, R.; Svensson-Arvelund, J.; Brown, B.D.; Merad, M.; Brody, J.D. Antitumor T-cell Homeostatic Activation Is Uncoupled from Homeostatic Inhibition by Checkpoint Blockade. Cancer Discov. 2019, 9, 1520–1537. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, J.; Yakoub-Agha, I. Chimeric antigen-receptor T-cell therapy for hematological malignancies and solid tumors: Clinical data to date, current limitations and perspectives. Curr. Res. Transl. Med. 2017, 65, 93–102. [Google Scholar] [CrossRef]
- Schiller, J.T.; Lowy, D.R. Understanding and learning from the success of prophylactic human papillomavirus vaccines. Nat. Rev. Microbiol. 2012, 10, 681–692. [Google Scholar] [CrossRef] [PubMed]
- Velin, D.; Straubinger, K.; Gerhard, M. Inflammation, immunity, and vaccines for Helicobacter pylori infection. Helicobacter 2016, 21, 26–29. [Google Scholar] [CrossRef] [PubMed]
- Weiner, L.M.; Surana, R.; Murray, J. Vaccine prevention of cancer: Can endogenous antigens be targeted? Cancer Prev Res (Phila) 2010, 3, 410–415. [Google Scholar] [CrossRef] [Green Version]
- Meko’o, J.L.; Xing, Y.; Zhang, H.; Lu, Y.; Wu, J.; Cao, R. Immunopreventive effects against murine H22 hepatocellular carcinoma in vivo by a DNA vaccine targeting a gastrin- releasing peptide. Asian Pac. J. Cancer Prev. 2014, 15, 9039–9043. [Google Scholar] [CrossRef]
- Hochnadel, I.; Hoenicke, L.; Petriv, N.; Neubert, L.; Reinhard, E.; Hirsch, T.; Alfonso, J.C.L.; Suo, H.; Longerich, T.; Geffers, R.; et al. Safety and efficacy of prophylactic and therapeutic vaccine based on live-attenuated Listeria monocytogenes in hepatobiliary cancers. Oncogene 2022, 41, 2039–2053. [Google Scholar] [CrossRef]
- Kwon, S.; Kim, D.; Park, B.K.; Wu, G.; Park, M.C.; Ha, Y.W.; Kwon, H.J.; Lee, Y. Induction of immunological memory response by vaccination with TM4SF5 epitope-CpG-DNA-liposome complex in a mouse hepatocellular carcinoma model. Oncol. Rep. 2013, 29, 735–740. [Google Scholar] [CrossRef] [Green Version]
- Cai, Z.; Su, X.; Qiu, L.; Li, Z.; Li, X.; Dong, X.; Wei, F.; Zhou, Y.; Luo, L.; Chen, G.; et al. Personalized neoantigen vaccine prevents postoperative recurrence in hepatocellular carcinoma patients with vascular invasion. Mol. Cancer 2021, 20, 164. [Google Scholar] [CrossRef]
- Finn, O.J. Cancer vaccines: Between the idea and the reality. Nat. Rev. Immunol. 2003, 3, 630–641. [Google Scholar] [CrossRef] [PubMed]
- Melief, C.J.; van Hall, T.; Arens, R.; Ossendorp, F.; van der Burg, S.H. Therapeutic cancer vaccines. J. Clin. Investig. 2015, 125, 3401–3412. [Google Scholar] [CrossRef]
- Wang, N.; Qian, R.; Liu, T.; Wu, T.; Wang, T. Nanoparticulate carriers used as vaccine adjuvant delivery systems. Crit. Rev. ™ Ther. Drug Carr. Syst. 2019, 36, 449–484. [Google Scholar] [CrossRef]
- Sawada, Y.; Yoshikawa, T.; Nobuoka, D.; Shirakawa, H.; Kuronuma, T.; Motomura, Y.; Mizuno, S.; Ishii, H.; Nakachi, K.; Konishi, M. Phase I Trial of a Glypican-3–Derived Peptide Vaccine for Advanced Hepatocellular Carcinoma: Immunologic Evidence and Potential for Improving Overall SurvivalPhase I Trial of GPC3 Peptide Vaccine in HCC Patients. Clin. Cancer Res. 2012, 18, 3686–3696. [Google Scholar] [CrossRef] [Green Version]
- Greten, T.F.; Forner, A.; Korangy, F.; N’Kontchou, G.; Barget, N.; Ayuso, C.; Ormandy, L.A.; Manns, M.P.; Beaugrand, M.; Bruix, J. A phase II open label trial evaluating safety and efficacy of a telomerase peptide vaccination in patients with advanced hepatocellular carcinoma. BMC Cancer 2010, 10, 209. [Google Scholar] [CrossRef] [Green Version]
- Rimassa, L.; Porta, C.; Borbath, I.; Daniele, B.; Finn, R.S.; Raoul, J.L.; Schwartz, L.H.; He, A.R.; Trojan, J.; Peck-Radosavljevic, M.; et al. Tivantinib in MET-high hepatocellular carcinoma patients and the ongoing Phase III clinical trial. Hepat Oncol 2014, 1, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Daniel, S.; Ira, M. Elements of cancer immunity and the cancer–immune 485 set point. Nature 2017, 541, 321. [Google Scholar]
- Galluzzi, L.; Buque, A.; Kepp, O.; Zitvogel, L.; Kroemer, G. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 2015, 28, 690–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizell, M. Phase I Safety Study of Dendritic Cell Vaccine to Treat Patients With Hepatocellular Carcinoma; Sahlgrenska University Hospital: Göteborg, Sweden, 2013. [Google Scholar]
- Palucka, K.; Banchereau, J. Dendritic-Cell-Based Therapeutic Cancer Vaccines. Immunity 2013, 39, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, H.L.; Kohlhapp, F.J.; Zloza, A. Oncolytic viruses: A new class of immunotherapy drugs. Nat. Rev. Drug Discov. 2015, 14, 642–662. [Google Scholar] [CrossRef]
- Draper, S.J.; Heeney, J.L. Viruses as vaccine vectors for infectious diseases and cancer. Nat. Rev. Microbiol. 2010, 8, 62–73. [Google Scholar] [CrossRef]
- Melief, C.J.; Van Der Burg, S.H.; Toes, R.E.; Ossendorp, F.; Offringa, R. Effective therapeutic anticancer vaccines based on precision guiding of cytolytic T lymphocytes. Immunol. Rev. 2002, 188, 177–182. [Google Scholar] [CrossRef]
- Ghaffari-Nazari, H.; Tavakkol-Afshari, J.; Jaafari, M.R.; Tahaghoghi-Hajghorbani, S.; Masoumi, E.; Jalali, S.A. Improving multi-epitope long peptide vaccine potency by using a strategy that enhances CD4+ T help in BALB/c mice. PLoS ONE 2015, 10, e0142563. [Google Scholar] [CrossRef]
- Lichty, B.D.; Breitbach, C.J.; Stojdl, D.F.; Bell, J.C. Going viral with cancer immunotherapy. Nat. Rev. Cancer 2014, 14, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Naso, M.F.; Tomkowicz, B.; Perry III, W.L.; Strohl, W.R. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs 2017, 31, 317–334. [Google Scholar] [CrossRef] [Green Version]
- Nwanegbo, E.; Vardas, E.; Gao, W.; Whittle, H.; Sun, H.; Rowe, D.; Robbins, P.D.; Gambotto, A. Prevalence of neutralizing antibodies to adenoviral serotypes 5 and 35 in the adult populations of The Gambia, South Africa, and the United States. Clin. Vaccine Immunol. 2004, 11, 351–357. [Google Scholar] [CrossRef] [Green Version]
- Ott, P.A.; Hu, Z.; Keskin, D.B.; Shukla, S.A.; Sun, J.; Bozym, D.J.; Zhang, W.; Luoma, A.; Giobbie-Hurder, A.; Peter, L. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 2017, 547, 217–221. [Google Scholar] [CrossRef] [Green Version]
- Sahin, U.; Derhovanessian, E.; Miller, M.; Kloke, B.-P.; Simon, P.; Löwer, M.; Bukur, V.; Tadmor, A.D.; Luxemburger, U.; Schrörs, B. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 2017, 547, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Tai, P.W.; Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 2019, 18, 358–378. [Google Scholar] [CrossRef]
- Cavalcante, L.; Chowdhary, A.; Sosman, J.A.; Chandra, S. Combining tumor vaccination and oncolytic viral approaches with checkpoint inhibitors: Rationale, pre-clinical experience, and current clinical trials in malignant melanoma. Am. J. Clin. Dermatol. 2018, 19, 657–670. [Google Scholar] [CrossRef] [PubMed]
- Hecht, J.R.; Pless, M.; Cubillo, A.; Calvo, A.; Chon, H.J.; Liu, C.; Snyder, W.; Chan, E.; Chaney, M.F.; Chesney, J.A.; et al. Early safety from a phase I, multicenter, open-label clinical trial of talimogene laherparepvec (T-VEC) injected (inj) into liver tumors in combination with pembrolizumab (pem). J. Clin. Oncol. 2020, 38, 3015. [Google Scholar] [CrossRef]
- Kreiter, S.; Vormehr, M.; Van de Roemer, N.; Diken, M.; Löwer, M.; Diekmann, J.; Boegel, S.; Schrörs, B.; Vascotto, F.; Castle, J.C. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 2015, 520, 692–696. [Google Scholar] [CrossRef] [PubMed]
- Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef] [Green Version]
- Jain, K.K. Textbook of Personalized Medicine; Springer Nature: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Pardi, N.; Hogan, M.J.; Pelc, R.S.; Muramatsu, H.; Andersen, H.; DeMaso, C.R.; Dowd, K.A.; Sutherland, L.L.; Scearce, R.M.; Parks, R. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature 2017, 543, 248–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pen, X. Application of mRNA Immunotherapy Technology in Hepatitis B Virus-related Refractory Hepatocellular Carcinoma; West China Hospital, Sichuan University: Chengdu, China, 2023. [Google Scholar]
- Fan, J. Clinical Study of mRNA Vaccine in Patients with Liver Cancer After Operation; Shanghai Zhongshan Hospital: Shanghai, China, 2023. [Google Scholar]
- Chen, H.; Tan, J.; Li, X.; Li, H.; Wu, W.; Wu, Y.; Zhang, J.; Gu, L. Myeloid and plasmacytoid dendritic cell combined vaccines loaded with heat-treated tumor cell lysates enhance antitumor activity in murine lung cancer. Oncol. Lett. 2021, 21, 90. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.F.; Zhong, C.H.; Chen, J.; Guo, Q.W.; Kuang, J.; Zhang, J.H. [Anti-lung cancer effect of myeloid and plasmacytoid dendritic cell combined vaccines loaded with tumor cell lysates in vitro]. Zhonghua Zhong Liu Za Zhi 2019, 41, 501–507. [Google Scholar] [CrossRef]
- Flores, I.; Hevia, D.; Tittarelli, A.; Soto, D.; Rojas-Sepúlveda, D.; Pereda, C.; Tempio, F.; Fuentes, C.; Falcón-Beas, C.; Gatica, J.; et al. Dendritic Cells Loaded with Heat Shock-Conditioned Ovarian Epithelial Carcinoma Cell Lysates Elicit T Cell-Dependent Antitumor Immune Responses In Vitro. J. Immunol. Res. 2019, 2019, 9631515. [Google Scholar] [CrossRef] [Green Version]
- Han, Q.; Wang, Y.; Pang, M.; Zhang, J. STAT3-blocked whole-cell hepatoma vaccine induces cellular and humoral immune response against HCC. J. Exp. Clin. Cancer Res. 2017, 36, 156. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Bayer, M.E.; Chen, X.; Fredrickson, C.; Cornforth, A.N.; Liang, G.; Cannon, J.; He, J.; Fu, Q.; Liu, J.; et al. Phase I trial of active specific immunotherapy with autologous dendritic cells pulsed with autologous irradiated tumor stem cells in hepatitis B-positive patients with hepatocellular carcinoma. J Surg Oncol 2015, 111, 862–867. [Google Scholar] [CrossRef]
- Si, C.; Xu, M.; Lu, M.; Yu, Y.; Yang, M.; Yan, M.; Zhou, L.; Yang, X. In vivo antitumor activity evaluation of cancer vaccines prepared by various antigen forms in a murine hepatocellular carcinoma model. Oncol. Lett. 2017, 14, 7391–7397. [Google Scholar] [CrossRef] [Green Version]
- Tomić, S.; Petrović, A.; Puač, N.; Škoro, N.; Bekić, M.; Petrović, Z.L.; Čolić, M. Plasma-Activated Medium Potentiates the Immunogenicity of Tumor Cell Lysates for Dendritic Cell-Based Cancer Vaccines. Cancers 2021, 13, 1626. [Google Scholar] [CrossRef]
- Walsh, S.R.; Simovic, B.; Chen, L.; Bastin, D.; Nguyen, A.; Stephenson, K.; Mandur, T.S.; Bramson, J.L.; Lichty, B.D.; Wan, Y. Endogenous T cells prevent tumor immune escape following adoptive T cell therapy. J. Clin. Investig. 2019, 129, 5400–5410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Löffler, M.W.; Gori, S.; Izzo, F.; Mayer-Mokler, A.; Ascierto, P.A.; Königsrainer, A.; Ma, Y.T.; Sangro, B.; Francque, S.; Vonghia, L.; et al. Phase I/II Multicenter Trial of a Novel Therapeutic Cancer Vaccine, HepaVac-101, for Hepatocellular Carcinoma. Clin. Cancer Res. 2022, 28, 2555–2566. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Chen, J.; Lan, R.; Wang, Z.; Chen, R.; Lin, J.; Zhang, L.; Fu, L. δ-Catenin peptide vaccines repress hepatocellular carcinoma growth via CD8(+) T cell activation. Oncoimmunology 2018, 7, e1450713. [Google Scholar] [CrossRef] [Green Version]
- Charneau, J.; Suzuki, T.; Shimomura, M.; Fujinami, N.; Nakatsura, T. Peptide-Based Vaccines for Hepatocellular Carcinoma: A Review of Recent Advances. J. Hepatocell. Carcinoma 2021, 8, 1035–1054. [Google Scholar] [CrossRef]
- Ringelhan, M.; Pfister, D.; O’Connor, T.; Pikarsky, E.; Heikenwalder, M. The immunology of hepatocellular carcinoma. Nat. Immunol. 2018, 19, 222–232. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, Y.; Wang, F.; Moyer, M.-P.; Wei, Q.; Zhang, P.; Yang, Z.; Liu, W.; Zhang, H.; Chen, N. Long non-coding RNA CCAL regulates colorectal cancer progression by activating Wnt/β-catenin signalling pathway via suppression of activator protein 2α. Gut 2016, 65, 1494–1504. [Google Scholar] [CrossRef] [PubMed]
- Finkelmeier, F.; Canli, Ö.; Tal, A.; Pleli, T.; Trojan, J.; Schmidt, M.; Kronenberger, B.; Zeuzem, S.; Piiper, A.; Greten, F.R. High levels of the soluble programmed death-ligand (sPD-L1) identify hepatocellular carcinoma patients with a poor prognosis. Eur. J. Cancer 2016, 59, 152–159. [Google Scholar] [CrossRef]
- Chen, D.S.; Mellman, I. Oncology meets immunology: The cancer-immunity cycle. Immunity 2013, 39, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bankhead, P.; Loughrey, M.B.; Fernández, J.A.; Dombrowski, Y.; McArt, D.G.; Dunne, P.D.; McQuaid, S.; Gray, R.T.; Murray, L.J.; Coleman, H.G. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017, 7, 16878. [Google Scholar] [CrossRef] [Green Version]
- Izreig, S.; Alzahrani, F.; Earles, J.; Mehra, S.; Judson, B.L.; Pan, Z.; Rahmati, R.W. Hyperprogression of a Sinonasal Squamous Cell Carcinoma Following Programmed Cell Death Protein-1 Checkpoint Blockade. JAMA Otolaryngol.–Head Neck Surg. 2020, 146, 1176–1178. [Google Scholar] [CrossRef] [PubMed]
- Zou, W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat. Rev. Cancer 2005, 5, 263–274. [Google Scholar] [CrossRef]
- Gabrilovich, D.I.; Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 2009, 9, 162–174. [Google Scholar] [CrossRef] [Green Version]
- Lee, N.-R.; Ban, J.; Lee, N.-J.; Yi, C.-M.; Choi, J.-Y.; Kim, H.; Lee, J.K.; Seong, J.; Cho, N.-H.; Jung, J.U. Activation of RIG-I-mediated antiviral signaling triggers autophagy through the MAVS-TRAF6-Beclin-1 signaling axis. Front. Immunol. 2018, 9, 2096. [Google Scholar] [CrossRef] [Green Version]
- Sallusto, F.; Lanzavecchia, A.; Araki, K.; Ahmed, R. From vaccines to memory and back. Immunity 2010, 33, 451–463. [Google Scholar] [CrossRef] [Green Version]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 2015, 373, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Andtbacka, R.H.; Kaufman, H.L.; Collichio, F.; Amatruda, T.; Senzer, N.; Chesney, J.; Delman, K.A.; Spitler, L.E.; Puzanov, I.; Agarwala, S.S. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J. Clin. Oncol. 2015, 33, 2780–2788. [Google Scholar] [CrossRef] [PubMed]
- Butterfield, L.H. Cancer vaccines. BMJ 2015, 350, h988. [Google Scholar] [CrossRef] [PubMed]
- Ashour, Z.A.; Ebeid, F.; El-Sayed, M. Personalized Cancer Vaccine in Egyptian Cancer Patients; Ain Shams University: Cairo, Egypt, 2021. [Google Scholar]
- Bauer, J.; Köhler, N.; Maringer, Y.; Bucher, P.; Bilich, T.; Zwick, M.; Dicks, S.; Nelde, A.; Dubbelaar, M.; Scheid, J.; et al. The oncogenic fusion protein DNAJB1-PRKACA can be specifically targeted by peptide-based immunotherapy in fibrolamellar hepatocellular carcinoma. Nat Commun 2022, 13, 6401. [Google Scholar] [CrossRef]
- Koo, S.L.; Squibb, B.-M. 85. Si Lin Koo, National Cancer Center Singapore.; Squibb, B.-M. In Neoantigen Dendritic Cell Vaccine and Nivolumab in HCC and Liver Metastases From CRC; National Cancer Center Singapore: Singapore, 2021. [Google Scholar]
- Therapeutics, G. GNOS-PV02 Personalized Neoantigen Vaccine, INO-9012 and Pembrolizumab in Subjects With Advanced HCC; 2020. [Google Scholar]
- Huang, Y. “Cocktail” Therapy for Hepatitis B Related Hepatocellular Carcinoma; Third Affiliated Hospital, Sun Yat-Sen University: Guangzhou, China, 2020. [Google Scholar]
- Lou, Y. Personalized Neoantigen Peptide-Based Vaccine in Combination with Pembrolizumab for the Treatment of Advanced Solid Tumors, The PNeoVCA Study; Mayo Clinic: Jacksonville, FL, USA, 2022. [Google Scholar]
- Walz, J. FusionVAC22_01: Fusion Transcript-based Peptide Vaccine Combined With Immune Checkpoint Inhibition; University Hospital Tübingen,: Tübingen, Germany, 2023. [Google Scholar]
- Adams, T. TAEK-VAC-HerBy Vaccine for Brachyury and HER2 Expressing Cancer; USA, 2020. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT04246671 (accessed on 8 August 2023).
- Roberts, L.R. Modified Immune Cells (Autologous Dendritic Cells) and a Vaccine (Prevnar) After High-Dose External Beam Radiation Therapy in Treating Patients With Unresectable Liver Cancer; Mayo Clinic: Rochester, MN, USA.
- Zhang, H. Safety and Efficacy of Autoimmune Cell Therapy for Patients With Hepatocellular Carcinoma; Huashan Hospital Fudan University: Shanghai, China, 2021. [Google Scholar]
- Foerster, F.; Gairing, S.J.; Ilyas, S.I.; Galle, P.R. Emerging immunotherapy for HCC: A guide for hepatologists. Hepatology 2022, 75, 1604–1626. [Google Scholar] [CrossRef]
- Greten, T.F.; Abou-Alfa, G.K.; Cheng, A.L.; Duffy, A.G.; El-Khoueiry, A.B.; Finn, R.S.; Galle, P.R.; Goyal, L.; He, A.R.; Kaseb, A.O.; et al. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of hepatocellular carcinoma. J Immunother. Cancer 2021, 9. [Google Scholar] [CrossRef] [PubMed]
- Kusnick, J.; Bruneau, A.; Tacke, F.; Hammerich, L. Ferroptosis in Cancer Immunotherapy—Implications for Hepatocellular Carcinoma. Immuno 2022, 2, 185–217. [Google Scholar] [CrossRef]
- Li, H.; He, Q.; Zhou, G.-M.; Wang, W.-J.; Shi, P.-P.; Wang, Z.-H. Potential biomarkers for the prognosis and treatment of HCC immunotherapy. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 2027–2046. [Google Scholar] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tojjari, A.; Saeed, A.; Singh, M.; Cavalcante, L.; Sahin, I.H.; Saeed, A. A Comprehensive Review on Cancer Vaccines and Vaccine Strategies in Hepatocellular Carcinoma. Vaccines 2023, 11, 1357. https://doi.org/10.3390/vaccines11081357
Tojjari A, Saeed A, Singh M, Cavalcante L, Sahin IH, Saeed A. A Comprehensive Review on Cancer Vaccines and Vaccine Strategies in Hepatocellular Carcinoma. Vaccines. 2023; 11(8):1357. https://doi.org/10.3390/vaccines11081357
Chicago/Turabian StyleTojjari, Alireza, Ahmed Saeed, Meghana Singh, Ludimila Cavalcante, Ibrahim Halil Sahin, and Anwaar Saeed. 2023. "A Comprehensive Review on Cancer Vaccines and Vaccine Strategies in Hepatocellular Carcinoma" Vaccines 11, no. 8: 1357. https://doi.org/10.3390/vaccines11081357
APA StyleTojjari, A., Saeed, A., Singh, M., Cavalcante, L., Sahin, I. H., & Saeed, A. (2023). A Comprehensive Review on Cancer Vaccines and Vaccine Strategies in Hepatocellular Carcinoma. Vaccines, 11(8), 1357. https://doi.org/10.3390/vaccines11081357