Comparative Evaluation of Recombinant and Acellular Pertussis Vaccines in a Murine Model
Abstract
:1. Introduction
2. Methods
2.1. Vaccines
2.2. Mouse Vaccination
2.3. ELISA Assay
2.4. PTx CHO Cell Neutralization Assay
2.5. Bacterial Clearance
2.6. Cytokine ELISA
2.7. T Cell Surface Staining via Flow Cytometry
2.8. Statistical Analysis
3. Results
3.1. Humoral Immunity to PT, FHA, and PRN Antigens
3.2. PTx CHO Cell Neutralization Assay
3.3. Nasal Lavage IgA
3.4. Bacterial Clearance
3.5. Cytokine Response
3.6. Tissue-Resident Memory T Cell
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Hewlett, E.L.; Edwards, K.M. Clinical practice. Pertussis–not just for kids. N. Engl. J. Med. 2005, 352, 1215–1222. [Google Scholar] [CrossRef] [PubMed]
- Mattoo, S.; Cherry, J.D. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin. Microbiol. Rev. 2005, 18, 326–382. [Google Scholar] [CrossRef] [PubMed]
- Choe, Y.J.; Choe, Y.J.; Park, Y.J.; Jung, C.; Bae, G.R.; Lee, D.H. National pertussis surveillance in South Korea 1955–2011: Epidemiological and clinical trends. Int. J. Infect. Dis. 2012, 16, e850–e854. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Sato, H. Development of acellular pertussis vaccines. Biologicals 1999, 27, 61–69. [Google Scholar] [CrossRef] [PubMed]
- WHO (World Health Organization). Pertussis vaccines: WHO position paper, August 2015–Recommendations. Vaccine 2016, 34, 1423–1425. [Google Scholar] [CrossRef]
- Celentano, L.P.; Massari, M.; Paramatti, D.; Salmaso, S.; Tozzi, A.E. Resurgence of pertussis in Europe. Pediatr. Infect. Dis. J. 2005, 24, 761–765. [Google Scholar] [CrossRef]
- Chiappini, E.; Stival, A.; Galli, L.; de Martino, M. Pertussis re-emergence in the post-vaccination era. BMC Infect. Dis. 2013, 13, 151. [Google Scholar] [CrossRef]
- Sealey, K.L.; Belcher, T.; Preston, A. Bordetella pertussis epidemiology and evolution in the light of pertussis resurgence. Infect. Genet. Evol. 2016, 40, 136–143. [Google Scholar] [CrossRef]
- Caution, K.; Yount, K.; Deora, R.; Dubey, P. Evaluation of Host-Pathogen Responses and Vaccine Efficacy in Mice. J. Vis. Exp. 2019, 144, e58930. [Google Scholar]
- Lee, S.Y.; Han, S.B.; Kang, J.H.; Kim, J.S. Pertussis Prevalence in Korean Adolescents and Adults with Persistent Cough. J. Korean Med. Sci. 2015, 30, 988–990. [Google Scholar] [CrossRef]
- Cherry, J.D. Epidemic pertussis in 2012–the resurgence of a vaccine-preventable disease. N. Engl. J. Med. 2012, 367, 785–787. [Google Scholar] [CrossRef] [PubMed]
- Klein, N.P.; Bartlett, J.; Fireman, B.; Baxter, R. Waning Tdap Effectiveness in Adolescents. Pediatrics 2016, 137, e20153326. [Google Scholar] [CrossRef] [PubMed]
- Klein, N.P.; Bartlett, J.; Rowhani-Rahbar, A.; Fireman, B.; Baxter, R. Waning protection after fifth dose of acellular pertussis vaccine in children. N. Engl. J. Med. 2012, 367, 1012–1019. [Google Scholar] [CrossRef] [PubMed]
- Kmietowicz, Z. Pertussis cases rise 10-fold among older children and adults in England and Wales. BMJ 2012, 345, e5008. [Google Scholar] [CrossRef] [PubMed]
- Wendelboe, A.M.; Van Rie, A.; Salmaso, S.; Englund, J.A. Duration of immunity against pertussis after natural infection or vaccination. Pediatr. Infect. Dis. J. 2005, 24 (Suppl. S5), S58–S61. [Google Scholar] [CrossRef] [PubMed]
- Hegerle, N.; Paris, A.S.; Brun, D.; Dore, G.; Njamkepo, E.; Guillot, S.; Guiso, N. Evolution of French Bordetella pertussis and Bordetella parapertussis isolates: Increase of Bordetellae not expressing pertactin. Clin. Microbiol. Infect. 2012, 18, E340–E346. [Google Scholar] [CrossRef] [PubMed]
- Lam, C.; Lam, C.; Octavia, S.; Ricafort, L.; Sintchenko, V.; Gilbert, G.L.; Wood, N.; McIntyre, P.; Marshall, H.; Guiso, N.; et al. Rapid increase in pertactin-deficient Bordetella pertussis isolates, Australia. Emerg. Infect. Dis. 2014, 20, 626–633. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.M.; Sen, K.; Weigand, M.R.; Skoff, T.H. Bordetella pertussis Strain Lacking Pertactin and Pertussis Toxin. Emerg. Infect. Dis. 2016, 22, 319–322. [Google Scholar] [CrossRef]
- Zeddeman, A.; van Gent, M.; Heuvelman, C.J.; van der Heide, H.G.; Bart, M.J.; Advani, A.; Hallander, H.O.; Wirsing von Konig, C.H.; Riffelman, M.; Storsaeter, J.; et al. Investigations into the emergence of pertactin-deficient Bordetella pertussis isolates in six European countries 1996 to 2012. Euro Surveill. 2014, 19. [Google Scholar] [CrossRef]
- Althouse, B.M.; Scarpino, S.V. Asymptomatic transmission and the resurgence of Bordetella pertussis. BMC Med. 2015, 13, 146. [Google Scholar] [CrossRef]
- Cherry, J.D.; Gornbein, J.; Heininger, U.; Stehr, K. A search for serologic correlates of immunity to Bordetella pertussis cough illnesses. Vaccine 1998, 16, 1901–1906. [Google Scholar] [CrossRef] [PubMed]
- Storsaeter, J.; Hallander, H.O.; Gustafsson, L.; Olin, P. Levels of anti-pertussis antibodies related to protection after household exposure to Bordetella pertussis. Vaccine 1998, 16, 1907–1916. [Google Scholar] [CrossRef] [PubMed]
- Boursaux-Eude, C.; Thiberge, S.; Carletti, G.; Guiso, N. Intranasal murine model of Bordetella pertussis infection: II. Sequence variation and protection induced by a tricomponent acellular vaccine. Vaccine 1999, 17, 2651–2660. [Google Scholar] [CrossRef] [PubMed]
- Bruss, J.B.; Siber, G.R. Protective effects of pertussis immunoglobulin (P-IGIV) in the aerosol challenge model. Clin. Diagn. Lab. Immunol. 1999, 6, 464–470. [Google Scholar] [CrossRef]
- Barbic, J.; Leef, M.F.; Burns, D.L.; Shahin, R.D. Role of gamma interferon in natural clearance of Bordetella pertussis infection. Infect. Immun. 1997, 65, 4904–4908. [Google Scholar] [CrossRef]
- Mahon, B.P.; Sheahan, B.J.; Griffin, F.; Murphy, G.; Mills, K.H. Atypical disease after Bordetella pertussis respiratory infection of mice with targeted disruptions of interferon-gamma receptor or immunoglobulin mu chain genes. J. Exp. Med. 1997, 186, 1843–1851. [Google Scholar] [CrossRef]
- Ross, P.J.; Sutton, C.E.; Higgins, S.; Allen, A.C.; Walsh, K.; Misiak, A.; Lavelle, E.C.; McLoughlin, R.M.; Mills, K.H. Relative contribution of Th1 and Th17 cells in adaptive immunity to Bordetella pertussis: Towards the rational design of an improved acellular pertussis vaccine. PLoS Pathog. 2013, 9, e1003264. [Google Scholar] [CrossRef]
- Warfel, J.M.; Zimmerman, L.I.; Merkel, T.J. Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in a nonhuman primate model. Proc. Natl. Acad. Sci. USA 2014, 111, 787–792. [Google Scholar] [CrossRef]
- Chapman, T.J.; Lambert, K.; Topham, D.J. Rapid reactivation of extralymphoid CD4 T cells during secondary infection. PLoS ONE 2011, 6, e20493. [Google Scholar] [CrossRef]
- Misiak, A.; Wilk, M.M.; Raverdeau, M.; Mills, K.H. IL-17-Producing Innate and Pathogen-Specific Tissue Resident Memory γδ T Cells Expand in the Lungs of Bordetella pertussis-Infected Mice. J. Immunol. 2017, 198, 363–374. [Google Scholar] [CrossRef]
- Wilk, M.M.; Misiak, A.; McManus, R.M.; Allen, A.C.; Lynch, M.A.; Mills, K.H.G. Lung CD4 Tissue-Resident Memory T Cells Mediate Adaptive Immunity Induced by Previous Infection of Mice with Bordetella pertussis. J. Immunol. 2017, 199, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Goodman, Y.E.; Wort, A.J.; Jackson, F.L. Enzyme-linked immunosorbent assay for detection of pertussis immunoglobulin A in nasopharyngeal secretions as an indicator of recent infection. J. Clin. Microbiol. 1981, 13, 286–292. [Google Scholar] [CrossRef]
- Solans, L.; Debrie, A.S.; Borkner, L.; Aguiló, N.; Thiriard, A.; Coutte, L.; Uranga, S.; Trottein, F.; Martín, C.; Mills, K.H.G.; et al. IL-17-dependent SIgA-mediated protection against nasal Bordetella pertussis infection by live attenuated BPZE1 vaccine. Mucosal Immunol. 2018, 11, 1753–1762. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.I.; Ryu, K.; Seong, B.L. RNA-mediated chaperone type for de novo protein folding. RNA Biol. 2009, 6, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Hwang, B.J.; Jang, Y.; Kwon, S.B.; Yu, J.E.; Lim, J.; Roh, Y.H.; Seong, B.L. RNA-assisted self-assembly of monomeric antigens into virus-like particles as a recombinant vaccine platform. Biomaterials 2021, 269, 120650. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-S.; Son, A.; Kim, J.; Kwon, S.B.; Kim, M.H.; Kim, P.; Kim, J.; Byun, Y.H.; Sung, J.; Lee, J. Chaperna-mediated assembly of ferritin-based Middle East respiratory syndrome-coronavirus nanoparticles. Front. Immunol. 2018, 9, 1093. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Lim, J.; Sung, J.; Cheong, Y.; Lee, E.Y.; Kim, J.; Oh, H.; Kim, Y.S.; Cho, N.H. Choi, SBuilt-in RNA-mediated chaperone (chaperna) for antigen folding tailored to immunized hosts. Biotechnol. Bioeng. 2020, 117, 1990–2007. [Google Scholar] [CrossRef]
- Yang, S.W.; Jang, Y.H.; Kwon, S.B.; Lee, Y.J.; Chae, W.; Byun, Y.H.; Kim, P.; Park, C.; Lee, Y.J.; Kim, C. KHarnessing an RNA-mediated chaperone for the assembly of influenza hemagglutinin in an immunologically relevant conformation. FASEB J. 2018, 32, 2658. [Google Scholar] [CrossRef]
- Leininger, E.; Bowen, S.; Renauld-Mongénie, G.; Rouse, J.H.; Menozzi, F.D.; Locht, C.; Heron, I.; Brennan, M.J. Immunodominant domains present on the Bordetella pertussis vaccine component filamentous hemagglutinin. J. Infect. Dis. 1997, 175, 1423–1431. [Google Scholar] [CrossRef]
- Choi, G.S.; Huh, D.H.; Han, S.B.; Ahn, D.H.; Kang, K.; Kim, J.A.; Choi, B.M.; Kim, H.R.; Kang, J.H. Enzyme-linked immunosorbent assay for detecting anti-pertussis toxin antibody in mouse. Clin. Exp. Vaccine Res. 2019, 8, 64–69. [Google Scholar] [CrossRef]
- Gaines Das, R.; Xing, D.; Rigsby, P.; Newland, P.; Corbel, M. International collaborative study: Evaluation of proposed International Reference Reagent of pertussis antiserum (mouse) 97/642. Biologicals 2001, 29, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Isacson, J.; Trollfors, B.; Lagergrd, T.; Taranger, J. Comparison of a toxin neutralization assay and ELISA for determination of pertussis toxin antibodies. Serodiagn. Immunother. Infect. Dis. 1997, 8, 163–167. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Chen, Z.; Liu, X.; Peng, X.; He, Q. Determination of serum neutralizing antibodies reveals important difference in quality of antibodies against pertussis toxin in children after infection. Vaccine 2021, 39, 1826–1830. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.R.; Huh, D.H.; Kim, J.A.; Kang, J.H. Immunogenicity of a new enhanced tetanus-reduced dose diphtheria-acellular pertussis (Tdap) vaccine against Bordetella pertussis in a murine model. BMC Immunol. 2021, 22, 68. [Google Scholar] [CrossRef] [PubMed]
- Rouleau, N.; Proust, E.; Chabaud-Riou, M. A Novel Outbred Mouse Model to Study Lung Memory Immunological Response Induced by Pertussis Vaccines. Immunohorizons 2020, 4, 762–773. [Google Scholar] [CrossRef]
- Bechini, A.; Tiscione, E.; Boccalini, S.; Levi, M.; Bonanni, P. Acellular pertussis vaccine use in risk groups (adolescents, pregnant women, newborns and health care workers): A review of evidences and recommendations. Vaccine 2012, 30, 5179–5190. [Google Scholar] [CrossRef]
- Mazzilli, S.; Tavoschi, L.; Lopalco, P.L. Tdap vaccination during pregnancy to protect newborns from pertussis infection. Ann. Ig. 2018, 30, 346–363. [Google Scholar]
- Winter, K.; Nickell, S.; Powell, M.; Harriman, K. Effectiveness of Prenatal Versus Postpartum Tetanus, Diphtheria, and Acellular Pertussis Vaccination in Preventing Infant Pertussis. Clin. Infect. Dis. 2017, 64, 3–8. [Google Scholar] [CrossRef]
- Kaplan, C.; Valdez, J.C.; Chandrasekaran, R.; Eibel, H.; Mikecz, K.; Glant, T.T.; Finnegan, A. Th1 and Th2 cytokines regulate proteoglycan-specific autoantibody isotypes and arthritis. Arthritis Res. 2002, 4, 54–58. [Google Scholar] [CrossRef]
- Raeven, R.H.; van der Maas, L.; Tilstra, W.; Uittenbogaard, J.P.; Bindels, T.H.; Kuipers, B.; van der Ark, A.; Pennings, J.L.; van Riet, E.; Jiskoot, W.; et al. Immunoproteomic Profiling of Bordetella pertussis Outer Membrane Vesicle Vaccine Reveals Broad and Balanced Humoral Immunogenicity. J. Proteome Res. 2015, 14, 2929–2942. [Google Scholar] [CrossRef]
- Bossie, A.; Vitetta, E.S. IFN-gamma enhances secretion of IgG2a from IgG2a-committed LPS-stimulated murine B cells: Implications for the role of IFN-gamma in class switching. Cell Immunol. 1991, 135, 95–104. [Google Scholar] [CrossRef]
- Zhang, Z.; Goldschmidt, T.; Salter, H. Possible allelic structure of IgG2a and IgG2c in mice. Mol. Immunol. 2012, 50, 169–171. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.B.; Severinson, E.; Heusser, C.; Johansson, S.G.; Möller, G. Persson, U Regulation of IgG1 and IgE synthesis by interleukin 4 in mouse B cells. Scand. J. Immunol. 1989, 30, 355–361. [Google Scholar] [CrossRef]
- Hendrikx, L.H.; Schure, R.M.; Oztürk, K.; de Rond, L.G.; de Greeff, S.C.; Sanders, E.A.; Berbers, G.A.; Buisman, A.M. Different IgG-subclass distributions after whole-cell and acellular pertussis infant primary vaccinations in healthy and pertussis infected children. Vaccine 2011, 29, 6874–6880. [Google Scholar] [CrossRef] [PubMed]
- Mills, K.H.; Ryan, M.; Ryan, E.; Mahon, B.P. A murine model in which protection correlates with pertussis vaccine efficacy in children reveals complementary roles for humoral and cell-mediated immunity in protection against Bordetella pertussis. Infect. Immun. 1998, 66, 594–602. [Google Scholar] [CrossRef] [PubMed]
- Klein, N.P.; Bartlett, J.; Fireman, B.; Rowhani-Rahbar, A.; Baxter, R. Comparative effectiveness of acellular versus whole-cell pertussis vaccines in teenagers. Pediatrics 2013, 131, e1716–e1722. [Google Scholar] [CrossRef] [PubMed]
- Hellwig, S.M.; van Oirschot, H.F.; Hazenbos, W.L.; van Spriel, A.B.; Mooi, F.R.; van De Winkel, J.G. Targeting to Fcgamma receptors, but not CR3 (CD11b/CD18), increases clearance of Bordetella pertussis. J. Infect. Dis. 2001, 183, 871–879. [Google Scholar] [CrossRef] [PubMed]
- Higgs, R.; Higgins, S.C.; Ross, P.J.; Mills, K.H. Immunity to the respiratory pathogen Bordetella pertussis. Mucosal Immunol. 2012, 5, 485–500. [Google Scholar] [CrossRef]
- Carbonetti, N.H.; Artamonova, G.V.; Mays, R.M.; Worthington, Z.E. Pertussis toxin plays an early role in respiratory tract colonization by Bordetella pertussis. Infect. Immun. 2003, 71, 6358–6366. [Google Scholar] [CrossRef]
- Connelly, C.E.; Sun, Y.; Carbonetti, N.H. Pertussis toxin exacerbates and prolongs airway inflammatory responses during Bordetella pertussis infection. Infect. Immun. 2012, 80, 4317–4332. [Google Scholar] [CrossRef]
- Fedele, G.; Cassone, A.; Ausiello, C.M. T-cell immune responses to Bordetella pertussis infection and vaccination. Pathog. Dis. 2015, 73, ftv051. [Google Scholar] [CrossRef] [PubMed]
- Warfel, J.M.; Merkel, T.J. Bordetella pertussis infection induces a mucosal IL-17 response and long-lived Th17 and Th1 immune memory cells in nonhuman primates. Mucosal Immunol. 2013, 6, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, F.; Verscheure, V.; Damis, E.; Vermeylen, D.; Leloux, G.; Dirix, V.; Locht, C.; Mascart, F. Cellular immune responses of preterm infants after vaccination with whole-cell or acellular pertussis vaccines. Clin. Vaccine Immunol. 2010, 17, 258–262. [Google Scholar] [CrossRef] [PubMed]
- Harcourt, G.C.; Garrard, S.; Davenport, M.P.; Edwards, A.; Phillips, R.E. HIV-1 variation diminishes CD4 T lymphocyte recognition. J. Exp. Med. 1998, 188, 1785–1793. [Google Scholar] [CrossRef] [PubMed]
- Lees, J.R.; Farber, D.L. Generation, persistence and plasticity of CD4 T-cell memories. Immunology 2010, 130, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Stockinger, B.; Bourgeois, C.; Kassiotis, G. CD4+ memory T cells: Functional differentiation and homeostasis. Immunol. Rev. 2006, 211, 39–48. [Google Scholar] [CrossRef]
- da Silva Antunes, R.; Babor, M.; Carpenter, C.; Khalil, N.; Cortese, M.; Mentzer, A.J.; Seumois, G.; Petro, C.D.; Purcell, L.A.; Vijayanand, P.; et al. Th1/Th17 polarization persists following whole-cell pertussis vaccination despite repeated acellular boosters. J. Clin. Investig. 2018, 128, 3853–3865. [Google Scholar] [CrossRef]
- van der Lee, S.; Hendrikx, L.H.; Sanders, E.A.M.; Berbers, G.A.M.; Buisman, A.M. Whole-Cell or Acellular Pertussis Primary Immunizations in Infancy Determines Adolescent Cellular Immune Profiles. Front. Immunol. 2018, 9, 51. [Google Scholar] [CrossRef]
- Wilk, M.M.; Borkner, L.; Misiak, A.; Curham, L.; Allen, A.C.; Mills, K.H.G. Immunization with whole cell but not acellular pertussis vaccines primes CD4 T(RM) cells that sustain protective immunity against nasal colonization with Bordetella pertussis. Emerg. Microbes Infect. 2019, 8, 169–185. [Google Scholar] [CrossRef]
- Fry, S.R.; Chen, A.Y.; Daggard, G.; Mukkur, T.K.S. Parenteral immunization of mice with a genetically inactivated pertussis toxin DNA vaccine induces cell-mediated immunity and protection. J. Med. Microbiol. 2008, 57 Pt 1, 28–35. [Google Scholar] [CrossRef]
- Raeven, R.H.M.; Rockx-Brouwer, D.; Kanojia, G.; van der Maas, L.; Bindels, T.H.E.; Ten Have, R.; van Riet, E.; Metz, B.; Kersten, G.F.A. Intranasal immunization with outer membrane vesicle pertussis vaccine confers broad protection through mucosal IgA and Th17 responses. Sci. Rep. 2020, 10, 7396. [Google Scholar] [CrossRef] [PubMed]
- Edwards, K.M. Overview of pertussis: Focus on epidemiology, sources of infection, and long term protection after infant vaccination. Pediatr. Infect. Dis. J. 2005, 24 (Suppl. S6), S104–S108. [Google Scholar] [CrossRef] [PubMed]
- King, A.J.; van der Lee, S.; Mohangoo, A.; van Gent, M.; van der Ark, A.; van de Waterbeemd, B. Genome-wide gene expression analysis of Bordetella pertussis isolates associated with a resurgence in pertussis: Elucidation of factors involved in the increased fitness of epidemic strains. PLoS ONE 2013, 8, e66150. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Lee, J.; Sung, H.Y.; Yu, J.Y.; Kim, S.H.; Park, M.S.; Jung, S.O. Recent trends of antigenic variation in Bordetella pertussis isolates in Korea. J. Korean Med. Sci. 2014, 29, 328–333. [Google Scholar] [CrossRef]
- Mooi, F.R.; He, Q.; van Oirschot, H.; Mertsola, J. Variation in the Bordetella pertussis virulence factors pertussis toxin and pertactin in vaccine strains and clinical isolates in Finland. Infect. Immun. 1999, 67, 3133–3134. [Google Scholar] [CrossRef]
- Prygiel, M.; Mosiej, E.; Wdowiak, K.; Górska, P.; Polak, M.; Lis, K.; Krysztopa-Grzybowska, K.; Zasada, A. AEffectiveness of experimental and commercial pertussis vaccines in the elimination of Bordetella pertussis isolates with different genetic profiles in murine model. Med. Microbiol. Immunol. 2021, 210, 251–262. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, K.-R.; Kim, J.-A.; Cho, G.-W.; Kang, H.-U.; Kang, H.-M.; Kang, J.-H.; Seong, B.-L.; Lee, S.-Y. Comparative Evaluation of Recombinant and Acellular Pertussis Vaccines in a Murine Model. Vaccines 2024, 12, 108. https://doi.org/10.3390/vaccines12010108
Kang K-R, Kim J-A, Cho G-W, Kang H-U, Kang H-M, Kang J-H, Seong B-L, Lee S-Y. Comparative Evaluation of Recombinant and Acellular Pertussis Vaccines in a Murine Model. Vaccines. 2024; 12(1):108. https://doi.org/10.3390/vaccines12010108
Chicago/Turabian StyleKang, Kyu-Ri, Ji-Ahn Kim, Gyu-Won Cho, Han-Ul Kang, Hyun-Mi Kang, Jin-Han Kang, Baik-Lin Seong, and Soo-Young Lee. 2024. "Comparative Evaluation of Recombinant and Acellular Pertussis Vaccines in a Murine Model" Vaccines 12, no. 1: 108. https://doi.org/10.3390/vaccines12010108
APA StyleKang, K. -R., Kim, J. -A., Cho, G. -W., Kang, H. -U., Kang, H. -M., Kang, J. -H., Seong, B. -L., & Lee, S. -Y. (2024). Comparative Evaluation of Recombinant and Acellular Pertussis Vaccines in a Murine Model. Vaccines, 12(1), 108. https://doi.org/10.3390/vaccines12010108