Modelling the Relative Vaccine Efficacy of ARCT-154, a Self-Amplifying mRNA COVID-19 Vaccine, versus BNT162b2 Using Immunogenicity Data
Abstract
:1. Introduction
2. Methods
2.1. Phase 3 Study Design
2.2. Modelling the Relationship between Neutralizing Antibody Titers and Efficacy against SARS-CoV-2 Infection
2.3. Sensitivity Analysis: Severe COVID-19 Disease
3. Results
3.1. Immunogenicity of ARCT-154 and BNT162b2 by Age Group in the Phase 3 Trial
3.2. Vaccine Efficacy and rVE against Symptomatic COVID-19 Disease
3.3. Vaccine Efficacy and rVE against Severe COVID-19 Disease
3.4. Sensitivity Analysis: rVE against Severe COVID-19
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Centers for Disease Control and Prevention. Trends in United States COVID-19 Hospitalizations, Deaths, Emergency Department (ED) Visits, and Test Positivity by Geographic Area. Centers for Disease Control and Prevention. Available online: https://covid.cdc.gov/covid-data-tracker (accessed on 15 April 2024).
- UKHSA. UKHSA Data Dashboard: COVID-19. Available online: https://ukhsa-dashboard.data.gov.uk/topics/covid-19#healthcare (accessed on 25 June 2024).
- Chakraborty, C.; Bhattacharya, M.; Dhama, K. SARS-CoV-2 Vaccines, Vaccine Development Technologies, and Significant Efforts in Vaccine Development during the Pandemic: The Lessons Learned Might Help to Fight against the Next Pandemic. Vaccines 2023, 11, 682. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Interim Clinical Considerations for Use of COVID-19 Vaccines in the United States. Available online: https://www.cdc.gov/vaccines/covid-19/clinical-considerations/interim-considerations-us.html (accessed on 12 February 2024).
- Brice, Y.; Morgan, L.; Kirmani, M.; Kirmani, M.; Udeh, M.C. COVID-19 Vaccine Evolution and Beyond. Neurosci. Insights 2023, 18, 26331055231180543. [Google Scholar] [CrossRef] [PubMed]
- National Institutes of Health. Decades in the Making: mRNA COVID-19 Vaccines. Available online: https://covid19.nih.gov/nih-strategic-response-covid-19/decades-making-mrna-covid-19-vaccines (accessed on 7 May 2024).
- Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. mRNA vaccines—A new era in vaccinology. Nat. Rev. Drug Discov. 2018, 17, 261–279. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Tang, T.; Chen, Y.; Huang, X.; Liang, T. mRNA vaccines in disease prevention and treatment. Signal Transduct. Target. Ther. 2023, 8, 365. [Google Scholar] [CrossRef]
- Comes, J.D.G.; Pijlman, G.P.; Hick, T.A.H. Rise of the RNA machines—Self-amplification in mRNA vaccine design. Trends Biotechnol. 2023, 41, 1417–1429. [Google Scholar] [CrossRef]
- Low, J.G.; de Alwis, R.; Chen, S.; Kalimuddin, S.; Leong, Y.S.; Mah, T.K.L.; Yuen, N.; Tan, H.C.; Zhang, S.L.; Sim, J.X.Y.; et al. A phase I/II randomized, double-blinded, placebo-controlled trial of a self-amplifying COVID-19 mRNA vaccine. NPJ Vaccines 2022, 7, 161. [Google Scholar] [CrossRef] [PubMed]
- Hồ, N.T.; Hughes, S.G.; Ta, V.T.; Phan, L.T.; Đỗ, Q.; Nguyễn, T.V.; Phạm, A.T.V.; Thị Ngọc Đặng, M.; Nguyễn, L.V.; Trịnh, Q.V.; et al. Safety, immunogenicity and efficacy of the self-amplifying mRNA ARCT-154 COVID-19 vaccine: Pooled phase 1, 2, 3a and 3b randomized, controlled trials. Nat. Commun. 2024, 15, 4081. [Google Scholar] [CrossRef]
- Oda, Y.; Kumagai, Y.; Kanai, M.; Iwama, Y.; Okura, I.; Minamida, T.; Yagi, Y.; Kurosawa, T.; Greener, B.; Zhang, Y.; et al. Immunogenicity and safety of a booster dose of a self-amplifying RNA COVID-19 vaccine (ARCT-154) versus BNT162b2 mRNA COVID-19 vaccine: A double-blind, multicentre, randomised, controlled, phase 3, non-inferiority trial. Lancet Infect. Dis. 2024, 24, 351–360. [Google Scholar] [CrossRef]
- Khoury, D.S.; Cromer, D.; Reynaldi, A.; Schlub, T.E.; Wheatley, A.K.; Juno, J.A.; Subbarao, K.; Kent, S.J.; Triccas, J.A.; Davenport, M.P. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 2021, 27, 1205–1211. [Google Scholar] [CrossRef]
- Oda, Y.; Kumagai, Y.; Kanai, M.; Iwama, Y.; Okura, I.; Minamida, T.; Yagi, Y.; Kurosawa, T.; Chivukula, P.; Zhang, Y.; et al. Persistence of immune responses of a self-amplifying RNA COVID-19 vaccine (ARCT-154) versus BNT162b2. Lancet Infect. Dis. 2024, 24, 341–343. [Google Scholar] [CrossRef]
- Morales-Núñez, J.J.; Muñoz-Valle, J.F.; Torres-Hernández, P.C.; Hernández-Bello, J. Overview of Neutralizing Antibodies and Their Potential in COVID-19. Vaccines 2021, 9, 1376. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Beltran, W.F.; Lam, E.C.; Astudillo, M.G.; Yang, D.; Miller, T.E.; Feldman, J.; Hauser, B.M.; Caradonna, T.M.; Clayton, K.L.; Nitido, A.D.; et al. COVID-19-neutralizing antibodies predict disease severity and survival. Cell 2021, 184, 476–488.e411. [Google Scholar] [CrossRef]
- Feng, S.; Phillips, D.J.; White, T.; Sayal, H.; Aley, P.K.; Bibi, S.; Dold, C.; Fuskova, M.; Gilbert, S.C.; Hirsch, I.; et al. Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection. Nat. Med. 2021, 27, 2032–2040. [Google Scholar] [CrossRef]
- Gilbert, P.B.; Montefiori, D.C.; McDermott, A.B.; Fong, Y.; Benkeser, D.; Deng, W.; Zhou, H.; Houchens, C.R.; Martins, K.; Jayashankar, L.; et al. Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial. Science 2022, 375, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Earle, K.A.; Ambrosino, D.M.; Fiore-Gartland, A.; Goldblatt, D.; Gilbert, P.B.; Siber, G.R.; Dull, P.; Plotkin, S.A. Evidence for antibody as a protective correlate for COVID-19 vaccines. Vaccine 2021, 39, 4423–4428. [Google Scholar] [CrossRef]
- Khoury, D.S.; Schlub, T.E.; Cromer, D.; Steain, M.; Fong, Y.; Gilbert, P.B.; Subbarao, K.; Triccas, J.A.; Kent, S.J.; Davenport, M.P. Correlates of Protection, Thresholds of Protection, and Immunobridging among Persons with SARS-CoV-2 Infection. Emerg. Infect. Dis. 2023, 29, 381–388. [Google Scholar] [CrossRef]
- Almendro-Vázquez, P.; Laguna-Goya, R.; Paz-Artal, E. Defending against SARS-CoV-2: The T cell perspective. Front. Immunol. 2023, 14, 1107803. [Google Scholar] [CrossRef]
- Le Bert, N.; Tan, A.T.; Kunasegaran, K.; Tham, C.Y.L.; Hafezi, M.; Chia, A.; Chng, M.H.Y.; Lin, M.; Tan, N.; Linster, M.; et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 2020, 584, 457–462. [Google Scholar] [CrossRef]
- Hermens, J.M.; Kesmir, C. Role of T cells in severe COVID-19 disease, protection, and long term immunity. Immunogenetics 2023, 75, 295–307. [Google Scholar] [CrossRef]
- Maruggi, G.; Ulmer, J.B.; Rappuoli, R.; Yu, D. Self-amplifying mRNA-Based Vaccine Technology and Its Mode of Action. Curr. Top. Microbiol. Immunol. 2022, 440, 31–70. [Google Scholar] [CrossRef]
- de Alwis, R.; Gan, E.S.; Chen, S.; Leong, Y.S.; Tan, H.C.; Zhang, S.L.; Yau, C.; Low, J.G.H.; Kalimuddin, S.; Matsuda, D.; et al. A single dose of self-transcribing and replicating RNA-based SARS-CoV-2 vaccine produces protective adaptive immunity in mice. Mol. Ther. 2021, 29, 1970–1983. [Google Scholar] [CrossRef] [PubMed]
- Cromer, D.; Reynaldi, A.; Hie, A.; Schlub, T.E.; Juno, J.A.; Wheatley, A.K.; Kent, S.J.; Khoury, D.S.; Davenport, M.P. Predicting COVID-19 booster immunogenicity against future SARS-CoV-2 variants and the benefits of vaccine updates. Nat. Commun. 2024, 15, 8395. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, C.; Saha, A.; Bhattacharya, M.; Dhama, K.; Agoramoorthy, G. Natural selection of the D614G mutation in SARS-CoV-2 Omicron (B.1.1.529) variant and its subvariants. Mol. Ther. Nucleic Acids 2023, 31, 437–439. [Google Scholar] [CrossRef] [PubMed]
- Korber, B.; Fischer, W.M.; Gnanakaran, S.; Yoon, H.; Theiler, J.; Abfalterer, W.; Hengartner, N.; Giorgi, E.E.; Bhattacharya, T.; Foley, B.; et al. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell 2020, 182, 812–827.e819. [Google Scholar] [CrossRef]
- Fong, Y.; Huang, Y.; Benkeser, D.; Carpp, L.N.; Áñez, G.; Woo, W.; McGarry, A.; Dunkle, L.M.; Cho, I.; Houchens, C.R.; et al. Immune correlates analysis of the PREVENT-19 COVID-19 vaccine efficacy clinical trial. Nat. Commun. 2023, 14, 331. [Google Scholar] [CrossRef]
Day | ARCT-154 N = 385 | BNT162b2 N = 374 | GMT Ratio ARCT-154 vs. BNT162b2 |
---|---|---|---|
Age < 60 years | |||
Wuhan-Hu-1 | |||
1 | 828 (724, 948) n = 352 | 886 (767, 1022) n = 339 | 0.93 |
29 | 5461 (4937, 6040) n = 345 | 3782 (3469, 4125) n = 333 | 1.44 |
91 | 5970 (5425, 6569) n = 337 | 2933 (2666, 3226) n = 325 | 2.04 |
181 | 4135 (3717, 4600) n = 302 | 1880 (1676, 2109) n = 287 | 2.20 |
Omicron BA.4/5 | |||
1 | 281 (229, 344) n = 352 | 302 (242, 377) n = 339 | 0.93 |
29 | 2171 (1874, 2515) n = 345 | 1656 (1435, 1912) n = 333 | 1.31 |
91 | 1894 (1637, 2191) n = 337 | 905 (773, 1060) n = 325 | 2.09 |
181 | 1105 (942, 1295) n = 302 | 508 (419, 615) n = 287 | 2.18 |
Age ≥ 60 years | |||
Wuhan-Hu-1 | |||
1 | 668 (450, 992) n = 33 | 695 (430, 1123) n = 35 | 0.96 |
29 | 4708 (3478, 6372) n = 33 | 3332 (2510, 4424) n = 34 | 1.41 |
91 | 5506 (4091, 7409) n = 32 | 2573 (1881, 3519) n = 31 | 2.14 |
181 | 3967 (2818, 5555) n = 30 | 1665 (1092, 2538) n = 26 | 2.38 |
Omicron BA.4/5 | |||
1 | 226 (117, 438) n = 33 | 210 (107, 412) n = 35 | 1.08 |
29 | 1702 (928, 3121) n = 33 | 1336 (886, 2013) n = 34 | 1.27 |
91 | 1867 (1124, 3104) n = 32 | 721 (443, 1173) n = 31 | 2.59 |
181 | 1276 (704, 2313) n = 30 | 378 (200, 716) n = 26 | 3.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, V.H.; Crépey, P.; Pivette, J.M.; Settembre, E.; Rajaram, S.; Youhanna, J.; Ferraro, A.; Chang, C.; van Boxmeer, J.; Mould-Quevedo, J.F. Modelling the Relative Vaccine Efficacy of ARCT-154, a Self-Amplifying mRNA COVID-19 Vaccine, versus BNT162b2 Using Immunogenicity Data. Vaccines 2024, 12, 1161. https://doi.org/10.3390/vaccines12101161
Nguyen VH, Crépey P, Pivette JM, Settembre E, Rajaram S, Youhanna J, Ferraro A, Chang C, van Boxmeer J, Mould-Quevedo JF. Modelling the Relative Vaccine Efficacy of ARCT-154, a Self-Amplifying mRNA COVID-19 Vaccine, versus BNT162b2 Using Immunogenicity Data. Vaccines. 2024; 12(10):1161. https://doi.org/10.3390/vaccines12101161
Chicago/Turabian StyleNguyen, Van Hung, Pascal Crépey, Jean Marie Pivette, Ethan Settembre, Sankarasubramanian Rajaram, John Youhanna, Aimee Ferraro, Cheng Chang, Josephine van Boxmeer, and Joaquin F. Mould-Quevedo. 2024. "Modelling the Relative Vaccine Efficacy of ARCT-154, a Self-Amplifying mRNA COVID-19 Vaccine, versus BNT162b2 Using Immunogenicity Data" Vaccines 12, no. 10: 1161. https://doi.org/10.3390/vaccines12101161
APA StyleNguyen, V. H., Crépey, P., Pivette, J. M., Settembre, E., Rajaram, S., Youhanna, J., Ferraro, A., Chang, C., van Boxmeer, J., & Mould-Quevedo, J. F. (2024). Modelling the Relative Vaccine Efficacy of ARCT-154, a Self-Amplifying mRNA COVID-19 Vaccine, versus BNT162b2 Using Immunogenicity Data. Vaccines, 12(10), 1161. https://doi.org/10.3390/vaccines12101161