Safety and Immunogenicity of Intranasal Razi Cov Pars as a COVID-19 Booster Vaccine in Adults: Promising Results from a Groundbreaking Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Trial Design
2.2. Participants
2.3. Randomization and Masking
2.4. Procedure
2.5. Outcomes
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ciotti, M.; Ciccozzi, M.; Terrinoni, A.; Jiang, W.-C.; Wang, C.-B.; Bernardini, S. The COVID-19 pandemic. Crit. Rev. Clin. Lab. Sci. 2020, 57, 365–388. [Google Scholar] [CrossRef] [PubMed]
- Bagchi, B.; Chatterjee, S.; Ghosh, R.; Dandapat, D. Impact of COVID-19 on global economy. In Coronavirus Outbreak and the Great Lockdown: Impact on Oil Prices and Major Stock Markets Across the Globe; Springer: Singapore, 2020; pp. 15–26. [Google Scholar]
- Evans, S.J.; Jewell, N.P. Vaccine effectiveness studies in the field. N. Engl. J. Med. 2021, 385, 650–651. [Google Scholar] [CrossRef] [PubMed]
- Al-Kassmy, J.; Pedersen, J.; Kobinger, G. Vaccine candidates against coronavirus infections. Where does COVID-19 stand? Viruses 2020, 12, 861. [Google Scholar] [CrossRef] [PubMed]
- Focosi, D.; Maggi, F.; Casadevall, A. Mucosal vaccines, sterilizing immunity, and the future of SARS-CoV-2 virulence. Viruses 2022, 14, 187. [Google Scholar] [CrossRef]
- Shah, S.M.; Alsaab, H.O.; Rawas-Qalaji, M.M.; Uddin, M.N. A review on current COVID-19 vaccines and evaluation of particulate vaccine delivery systems. Vaccines 2021, 9, 1086. [Google Scholar] [CrossRef]
- Alu, A.; Chen, L.; Lei, H.; Wei, Y.; Tian, X.; Wei, X. Intranasal COVID-19 vaccines: From bench to bed. EBioMedicine 2022, 76, 103841. [Google Scholar] [CrossRef]
- Banihashemi, S.R.; Es-Haghi, A.; Fallah Mehrabadi, M.H.; Nofeli, M.; Mokarram, A.R.; Ranjbar, A.; Salman, M.; Hajimoradi, M.; Razaz, S.H.; Taghdiri, M.; et al. Safety and efficacy of combined intramuscular/intranasal RAZI-COV PARS vaccine candidate against SARS-CoV-2: A preclinical study in several animal models. Front. Immunol. 2022, 13, 836745. [Google Scholar] [CrossRef]
- Dodaran, M.S.; Banihashemi, S.R.; Es-Haghi, A.; Mehrabadi, M.H.F.; Nofeli, M.; Mokarram, A.R.; Mokhberalsafa, L.; Sadeghi, F.; Ranjbar, A.; Ansarifar, A.; et al. Immunogenicity and Safety of a Combined Intramuscular/Intranasal Recombinant Spike Protein COVID-19 Vaccine (RCP) in Healthy Adults Aged 18 to 55 Years Old: A Randomized, Double-Blind, Placebo-Controlled, Phase I Trial. Vaccines 2023, 11, 455. [Google Scholar] [CrossRef]
- Mohazzab, A.; Mehrabadi, M.H.F.; Es-Haghi, A.; Kalantari, S.; Mokhberalsafa, L.; Setarehdan, S.A.; Sadeghi, F.; Mokarram, A.R.; Moradi, M.H.; Razaz, S.H.; et al. Phase II, Safety and Immunogenicity of RAZI Cov Pars (RCP) SARS Cov-2 Vaccine in Adults Aged 18–70 Years; A Randomized, Double-Blind Clinical Trial. J. Pharm. Sci. 2023, 112, 3012–3021. [Google Scholar] [CrossRef]
- Solaymani-Dodaran, M.K.S.; Banihashemi, S.R.; Es-Haghi, A.; Nofeli, M.; Mohazzab, A.; Mokhberalsafa, L.; Sadeghi, F.; Mokaram, A.R.; Moradi, M.H.; Razaz, S.H.; et al. Safety and efficacy of RCP recombinant spike protein covid-19 vaccine compared to Sinopharm BBIBP: A phase III, non-inferiority trial. Heliyon 2024, 10, e27370. [Google Scholar] [CrossRef]
- Malamud, D.; Bau, H.; Goharian, E. Salivary diagnostics in periodontal disease: Current status and future directions. Periodontology 2000, 55, 52–64. [Google Scholar]
- Mestecky, J.; Russell, M.W. Specific secretory immune responses and immunoglobulin A (IgA). Mucosal Immunol. 2005, 1, 304–315. [Google Scholar]
- Navazesh, M. Methods for collecting saliva. Ann. N. Y. Acad. Sci. 1993, 694, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Guidance for Industry: Toxicity Grading Scale for Healthy Adult and Adolescent Volunteers Enrolled in Preventive Vaccine Clinical Trials. 2007. Available online: http://www.fda.gov/downloads/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/Vaccines/ucm091977.pdf (accessed on 15 December 2022).
- WHO Pharmacovigilance (PVG) Team. The Use of the WHO-UMC System for Standardised case Causality Assessment. 2013. Available online: https://www.who.int/publications/m/item/WHO-causality-assessment (accessed on 1 February 2024).
- Zhu, F.; Huang, S.; Liu, X.; Chen, Q.; Zhuang, C.; Zhao, H.; Han, J.; Jaen, A.M.; Do, T.H.; Peter, J.G.; et al. Safety and efficacy of the intranasal spray SARS-CoV-2 vaccine dNS1-RBD: A multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir. Med. 2023, 11, 1075–1088. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Recommendations to Assure the Quality, Safety and Efficacy of Influenza Vaccines (Human, Live Attenuated) for Intranasal Administration; WHO Technical Report Series, N. 977; WHO: Geneva, Switzerland, 2013; pp. 156–227. [Google Scholar]
- Meissa Vaccines. Meissa Announces Positive Preliminary Clinical Data on Safety and Immunogenicity of Intranasal COVID; Meissa Vaccines: Redwood City, CA, USA, 2021. [Google Scholar]
- Rubin, R. Trying to Block SARS-CoV-2 Transmission With Intranasal Vaccines. JAMA 2021, 326, 1661–1663. [Google Scholar] [CrossRef]
- Xu, J.T.J.; Wang, J. Design and Application in Delivery System of Intranasal Antidepressants. Front. Bioeng. Biotechnol. 2020, 8, 626882. [Google Scholar] [CrossRef]
- Reynolds, H.Y. Immunoglobulin G and its function in the human respiratory tract. Mayo Clin. Proc. 1988, 63, 161–174. [Google Scholar] [CrossRef]
- Reynolds, H.Y.; Chretien, J. Respiratory tract fluids: Analysis of content and contemporary use in understanding lung diseases. Dis.-A-Mon. 1984, 30, 1–103. [Google Scholar] [CrossRef]
- Zost, S.J.C.J.; Parker, N. Contemporary Antibody-Mediated Neutralization Breadth to SARS-CoV-2. Cell 2021, 184, 5978–5993. [Google Scholar]
- Wolfel, R.; Corman, V.M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Muller, M.A.; Niemeyer, D.; Jones, T.C.; Vollmar, P.; Rothe, C.; et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020, 581, 465–469. [Google Scholar] [CrossRef]
- Scarpellini, P.P.V.; Campa, M. Salivary biomarkers for monitoring SARS-CoV-2 infection. J. Dent. Res. 2020, 99, 1445–1451. [Google Scholar]
- Wu, Y. Comparison of saliva, respiratory samples and serum in the surveillance of patients with COVID-19. Infect. Control. Hosp. Epidemiol. 2020, 41, 793–795. [Google Scholar]
- Matsuyama, S. The innate immune responses to SARS-CoV infection. Nat. Rev. Immunol. 2020, 20, 514–527. [Google Scholar]
- Van de Berg, P. IgA versus IgG antibody responses to respiratory syncytial virus fusion protein and whole virus in infants and children. J. Med. Virol. 2005, 75, 48–56. [Google Scholar]
- Long, Q.X.; Liu, B.Z.; Deng, H.J.; Wu, G.C.; Deng, K.; Chen, Y.K.; Liao, P.; Qiu, J.F.; Lin, Y.; Cai, X.F.; et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat. Med. 2020, 26, 845–848. [Google Scholar] [CrossRef] [PubMed]
Placebo n = 96 | Intranasal RCP n = 97 | Total n = 193 | |
---|---|---|---|
Sex, n (%) | |||
Male | 68 (70.8) | 73 (75.3) | 141 (73.1) |
Female | 28 (29.2) | 24 (24.7) | 52 (26.9) |
Age group, n (%) | |||
<30 years. | 17 (17.7) | 11 (11.3) | 28 (14.5) |
30–50 years. | 61 (63.5) | 62 (63.9) | 123 (63.7) |
50–70 years. | 18 (18.8) | 22 (22.7) | 40 (20.7) |
>70 years. | 0 | 2 (2.1) | 2 (1.0) |
Mean age, year (SD) | 43.6 (12) | 41.0 (11.3) | 42.3 (11.7) |
Mean Body Mass Index (SD) | 26.7 (4.78) | 26.4 (3.6) | 26.5 (4.2) |
Education, n (%) | |||
Under diploma | 11 (11.5) | 15 (15.5) | 26 (13.5) |
Diploma | 38 (39.6) | 36 (37.1) | 74 (38.3) |
Bachelor | 28 (29.2) | 31 (32.0) | 59 (30.6) |
Master and above | 19 (19.8) | 15 (15.5) | 34 (17.6) |
Vital signs, mean(min-max) | |||
Body temperature (°C) (min-max) | 36.7 (35.8–37.8) | 36.8 (35.7–37.1) | 36.7 (35.7–37.8) |
Heart rate (Per minute) | 76.5 (55–108) | 79.5 (63–108) | 78.0 (55–108) |
Respiratory rate (Per minute) | 16.8 (14–19) | 16.8 (14–20) | 16.8 (14–20) |
Systolic BP (mmHg) | 114.0 (90–155) | 115.2 (93–151) | 114.6 (93–151) |
Diastolic BP (mmHg) | 76.5 (60–100) | 77.4 (60–92) | 77 (60–100) |
Co-morbidities, n (%) | |||
Hypertension | 4 (3.8) | 7 (6.9) | 11 (5.3) |
Chronic heart diseases | 0 (0.0) | 1 (0.99) | 1 (0.49) |
Chronic kidney diseases | 0 (0.0) | 1 (0.99) | 1 (0.49) |
Mild liver diseases (fatty liver) | 9 (8.5) | 12 (11.9) | 21 (10.2) |
Diabetes with complications | 5 (4.7) | 6 (5.9) | 11 (5.3) |
Antibody levels (AUC), GM (95% CI) | |||
Serum anti-RBD IgG | 179,016 (163,705–195,760) | 181,381 (166,057–198,118) | 180,214 (169,340–191,785) |
Serum anti-RBD IgA | 85,344 (78,607–92,659) | 94,027 (86,399–102,328) | 89,673 (84,543–95,115) |
Nasal mucosal anti-RBD IgG | 34,548 (30,461–39,185) | 37,567 (33,529–42,090) | 36,050 (33,141–39,214) |
Nasal mucosal anti-RBD IgA | 31,911 (31,016–32,831) | 31,339 (30,648–32,046) | 31,616 (31,057–32,185) |
Time from the last vaccination, n (%) | |||
5–9.5 months | 35 (36.5%) | 30 (30.9%) | 65 (33.7%) |
9.5–12.5 months | 33 (34.4%) | 31 (31.9%) | 64 (33.2%) |
12.5–18 months | 28 (29.2%) | 36 (37.1%) | 64 (33.1%) |
Type of the last vaccine received, n (%) | |||
AstraZeneca (Viral vector) | 4 (4.2) | 4 (4.1) | 8 (4.1) |
Barakat (Inactivated) | 1 (1.0) | 1 (1.0) | 2 (1.0) |
Pastocovac (Protein subunit) | 2 (2.1) | 2 (2.1) | 4 (2.1) |
Razi Cov Pars (Protein subunit) | 64 (66.7) | 62 (63.9) | 126 (65.3) |
Sinopharm (Inactivated) | 17 (17.7) | 19 (19.6) | 36 (18.6) |
Spikogen (Protein subunit) | 8 (8.3) | 9 (9.3) | 17 (8.8) |
Placebo | Intranasal RCP | |
---|---|---|
Serum Anti-RBD IgG | ||
GMAUC (95% CI) | ||
Baseline | 179,016 (163,705–195,760, n = 91) | 181,381 (166,058–198,119, n = 94) |
Day 14 | 188,767 (167,867–212,269, n = 90) | 178,344 (157,196–202,338, n = 86) |
GMRAUC (95% CI) | ||
Baseline | Ref | 1.01 (0.89–1.15, p = 0.78) |
Day 14 | Ref | 0.94 (0.80–1.12, p = 0.45) |
Serum Anti-RBD IgA | ||
GMAUC (95% CI) | ||
Baseline | 85,344 (78,607–92,658, n = 91) | 94,027.1 (86,399–102,328, n = 95) |
Day 14 | 97,939 (87,859–109,177, n = 90) | 93,169 (83,327–104,174, n = 86) |
GMRAUC (95% CI) | ||
Baseline | Ref | 1.10 (0.98–1.24, p = 0.17) |
Day 14 | Ref | 0.95 (0.81–1.11, p = 0.45) |
Nasal mucosal Anti-RBD IgG | ||
GMAUC (95% CI) | ||
Baseline | 28,387 (24,135–33,373, n = 91) | 28,558 (25,229–32,326, n = 94) |
Day 14 | 34,302 (29,568–39794, n = 92) | 53,724 (43,785–65,919, n = 90) |
GMRAUC (95% CI) | ||
Baseline | Ref | 1.01 (0.82–1.23, p = 0.58) |
Day 14 | Ref | 1.57 (1.22–2.01, p = 0.015) |
Nasal mucosal Anti-RBD IgA | ||
GMAUC (95% CI) | ||
Baseline | 34,548 (30,461–39,185, n = 91) | 37,567 (33,529–42,090, n = 94) |
Day 14 | 37,159 (32,506–42,478, n = 92) | 46,770 (40,346–54,217, n = 90) |
GMRAUC (95% CI) | ||
Baseline | Ref | 1.09 (0.92–1.29, p = 0.29) |
Day 14 | Ref | 1.26 (1.03–1.53, p = 0.046) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fallah Mehrabadi, M.H.; Hajimoradi, M.; Es-haghi, A.; Kalantari, S.; Noofeli, M.; Mokarram, A.R.; Razzaz, S.H.; Taghdiri, M.; Mokhberalsafa, L.; Sadeghi, F.; et al. Safety and Immunogenicity of Intranasal Razi Cov Pars as a COVID-19 Booster Vaccine in Adults: Promising Results from a Groundbreaking Clinical Trial. Vaccines 2024, 12, 1255. https://doi.org/10.3390/vaccines12111255
Fallah Mehrabadi MH, Hajimoradi M, Es-haghi A, Kalantari S, Noofeli M, Mokarram AR, Razzaz SH, Taghdiri M, Mokhberalsafa L, Sadeghi F, et al. Safety and Immunogenicity of Intranasal Razi Cov Pars as a COVID-19 Booster Vaccine in Adults: Promising Results from a Groundbreaking Clinical Trial. Vaccines. 2024; 12(11):1255. https://doi.org/10.3390/vaccines12111255
Chicago/Turabian StyleFallah Mehrabadi, Mohammad Hossein, Monireh Hajimoradi, Ali Es-haghi, Saeed Kalantari, Mojtaba Noofeli, Ali Rezaei Mokarram, Seyed Hossein Razzaz, Maryam Taghdiri, Ladan Mokhberalsafa, Fariba Sadeghi, and et al. 2024. "Safety and Immunogenicity of Intranasal Razi Cov Pars as a COVID-19 Booster Vaccine in Adults: Promising Results from a Groundbreaking Clinical Trial" Vaccines 12, no. 11: 1255. https://doi.org/10.3390/vaccines12111255
APA StyleFallah Mehrabadi, M. H., Hajimoradi, M., Es-haghi, A., Kalantari, S., Noofeli, M., Mokarram, A. R., Razzaz, S. H., Taghdiri, M., Mokhberalsafa, L., Sadeghi, F., Mohseni, V., Masoumi, S., Golmoradi-Zadeh, R., Rabiee, M. H., Solaymani-Dodaran, M., & Banihashemi, S. R. (2024). Safety and Immunogenicity of Intranasal Razi Cov Pars as a COVID-19 Booster Vaccine in Adults: Promising Results from a Groundbreaking Clinical Trial. Vaccines, 12(11), 1255. https://doi.org/10.3390/vaccines12111255