Oral Administration of Zinc Sulfate with Intramuscular Foot-and-Mouth Disease Vaccine Enhances Mucosal and Systemic Immunity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Zinc Sulfate
2.2. Cells and Antigen Purification
2.3. Composition of Test Vaccine
2.4. Animals, Vaccination, and Oral Zinc Sulfate Administration
2.5. Food Efficiency Ratio and Systemic and Mucosal Immune Responses in Mice
2.6. FMDV Challenge After Oral Zinc Sulfate Administration in Mice
2.7. Biochemical Assays and Systemic and Mucosal Immune Response in Pigs
2.8. Ethics Statement
2.9. Serological Assays
2.10. Gene Evaluation of Porcine Blood Specimens for Mechanistic Assessments
2.11. Statistical Analyses
3. Results
3.1. Effect of Oral Zinc Sulfate Administration on Body Weight, Food Intake, and FER
3.2. Oral Zinc Sulfate Administration Induces and Sustains Systemic Immune Responses in Mice and Protects against FMDV
3.3. Oral Zinc Sulfate Administration Induces and Sustains a Systemic Immune Response in Pigs
3.4. Oral Zinc Sulfate Administration Enhances Mucosal Immune Responses in Mice and Pigs
3.5. Oral Zinc Sulfate Administration Stimulates Mucosal Immune Responses by Upregulating Mucosal Immunity-Related Cytokines in PBMCs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jamal, S.M.; Belsham, G.J. Foot-and-mouth disease: Past, present and future. Vet. Res. 2013, 44, 116. [Google Scholar] [CrossRef] [PubMed]
- Kamel, M.; El-Sayed, A.; Vazquez, H.C. Foot-and-mouth disease vaccines: Recent updates and future perspectives. Arch. Virol. 2019, 164, 1501–1513. [Google Scholar] [CrossRef] [PubMed]
- Długosz, E.; Wesołowska, A. Immune response of the host and vaccine development. Pathogens 2023, 12, 637. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.S.; Kong, W.P.; Wei, C.J.; Van Hoeven, N.; Gorres, J.P.; Nason, M.; Andersen, H.; Tumpey, T.M.; Nabel, G.J. Comparative efficacy of hemagglutinin, nucleoprotein, and matrix 2 protein gene-based vaccination against h5n1 influenza in mouse and ferret. PLoS ONE 2010, 5, e9812. [Google Scholar] [CrossRef]
- Nizard, M.; Diniz, M.O.; Roussel, H.; Tran, T.; Ferreira, L.C.; Badoual, C.; Tartour, E. Mucosal vaccines: Novel strategies and applications for the control of pathogens and tumors at mucosal sites. Hum. Vaccin. Immunother. 2014, 10, 2175–2187. [Google Scholar] [CrossRef]
- Tsai, C.J.; Loh, J.M.; Fujihashi, K.; Kiyono, H. Mucosal vaccination: Onward and upward. Expert. Rev. Vaccines 2023, 22, 885–899. [Google Scholar] [CrossRef]
- Kiyono, H.; Yuki, Y.; Nakahashi-Ouchida, R.; Fujihashi, K. Mucosal vaccines: Wisdom from now and then. Int. Immunol. 2021, 33, 767–774. [Google Scholar] [CrossRef]
- Levine, M.M.; Dougan, G. Optimism over vaccines administered via mucosal surfaces. Lancet 1998, 351, 1375–1376. [Google Scholar] [CrossRef]
- Shim, S.; Soh, S.H.; Im, Y.B.; Ahn, C.; Park, H.-T.; Park, H.-E.; Park, W.B.; Kim, S.; Yoo, H.S. Induction of systemic immunity through nasal-associated lymphoid tissue (nalt) of mice intranasally immunized with brucella abortus malate dehydrogenase-loaded chitosan nanoparticles. PLoS ONE 2020, 15, e0228463. [Google Scholar] [CrossRef]
- Kozlowski, P.A.; Williams, S.B.; Lynch, R.M.; Flanigan, T.P.; Patterson, R.R.; Cu-Uvin, S.; Neutra, M.R. Differential induction of mucosal and systemic antibody responses in women after nasal, rectal, or vaginal immunization: Influence of the menstrual cycle. J. Immunol. 2002, 169, 566–574. [Google Scholar] [CrossRef]
- Xu, H.; Cai, L.; Hufnagel, S.; Cui, Z. Intranasal vaccine: Factors to consider in research and development. Int. J. Pharm. 2021, 609, 121180. [Google Scholar] [CrossRef] [PubMed]
- Homayun, B.; Lin, X.; Choi, H.-J. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics 2019, 11, 129. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, N.; Takahashi, D.; Takano, S.; Kimura, S.; Hase, K. The roles of peyer’s patches and microfold cells in the gut immune system: Relevance to autoimmune diseases. Front. Immunol. 2019, 10, 2345. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Xu, G.; Chen, M.; Ma, H. Intestinal uptake and tolerance to food antigens. Front. Immunol. 2022, 13, 906122. [Google Scholar] [CrossRef]
- Prasad, A.S. Zinc: Role in immunity, oxidative stress and chronic inflammation. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 646–652. [Google Scholar] [CrossRef]
- Kambe, T.; Tsuji, T.; Hashimoto, A.; Itsumura, N. The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol. Rev. 2015, 95, 749–784. [Google Scholar] [CrossRef]
- Wessels, I.; Maywald, M.; Rink, L. Zinc as a gatekeeper of immune function. Nutrients 2017, 9, 1286. [Google Scholar] [CrossRef]
- Read, S.A.; Obeid, S.; Ahlenstiel, C.; Ahlenstiel, G. The role of zinc in antiviral immunity. Adv. Nutr. 2019, 10, 696–710. [Google Scholar] [CrossRef]
- Afsharian, M.; Vaziri, S.; Janbakhsh, A.R.; Sayad, B.; Mansouri, F.; Nourbakhsh, J.; Qadiri, K.; Najafi, F.; Shirvanii, M. The effect of zinc sulfate on immunologic response to recombinant hepatitis b vaccine in elderly: Zinc sulfate and immunologic response to recombinant hepatitis b vaccine. Hepat. Mon. 2011, 11, 32. [Google Scholar]
- Tefas, C.; Ciobanu, L.; Berce, C.; Meșter, A.; Onica, S.; Toma, C.; Tanțău, M.; Taulescu, M. Beneficial effect of oral administration of zinc sulfate on 5-fluorouracil-induced gastrointestinal mucositis in rats. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 11365–11373. [Google Scholar]
- Lee, M.J.; Kim, H.M.; Shin, S.; Jo, H.; Park, S.H.; Kim, S.M.; Park, J.H. The c3d-fused foot-and-mouth disease vaccine platform overcomes maternally-derived antibody interference by inducing a potent adaptive immunity. NPJ Vaccines 2022, 7, 70. [Google Scholar] [CrossRef] [PubMed]
- Belsham, G.J. Towards improvements in foot-and-mouth disease vaccine performance. Acta Vet. Scand. 2020, 62, 20. [Google Scholar] [CrossRef] [PubMed]
- Robinson, L.; Knight-Jones, T.J.; Charleston, B.; Rodriguez, L.; Gay, C.; Sumption, K.J.; Vosloo, W. Global foot-and-mouth disease research update and gap analysis: 3-vaccines. Transbound. Emerg. Dis. 2016, 63, 30–41. [Google Scholar] [CrossRef]
- Cao, Y.; Lu, Z.; Liu, Z. Foot-and-mouth disease vaccines: Progress and problems. Expert. Rev. Vaccines 2016, 15, 783–789. [Google Scholar] [CrossRef] [PubMed]
- Knight-Jones, T.J.; Rushton, J. The economic impacts of foot and mouth disease–what are they, how big are they and where do they occur? Prev. Vet. Med. 2013, 112, 161–173. [Google Scholar] [CrossRef]
- Pabst, O.; Mowat, A. Oral tolerance to food protein. Mucosal Immunol. 2012, 5, 232–239. [Google Scholar] [CrossRef]
- Wu, F.Y.; Wu, C.W. Zinc in DNA replication and transcription. Annu. Rev. Nutr. 1987, 7, 251–272. [Google Scholar] [CrossRef]
- Beyersmann, D.; Haase, H. Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals 2001, 14, 331–341. [Google Scholar] [CrossRef]
- Bohnsack, B.L.; Hirschi, K.K. Nutrient regulation of cell cycle progression. Annu. Rev. Nutr. 2004, 24, 433–453. [Google Scholar] [CrossRef]
- Rink, L.; Haase, H. Zinc homeostasis and immunity. Trends Immunol. 2007, 28, 1–4. [Google Scholar] [CrossRef]
- Pernelle, J.J.; Creuzet, C.; Loeb, J.; Gacon, G. Phosphorylation of the lymphoid cell kinase p56lck is stimulated by micromolar concentrations of Zn2+. FEBS Lett. 1991, 281, 278–282. [Google Scholar] [CrossRef] [PubMed]
- Overbeck, S.; Rink, L.; Haase, H. Modulating the immune response by oral zinc supplementation: A single approach for multiple diseases. Arch. Immunol. Ther. Exp. 2008, 56, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Ko, M.K.; Kim, H.W.; Park, S.H.; Park, J.H.; Kim, S.M.; Lee, M.J. The role of zinc sulfate in enhancing cellular and humoral immune responses to foot-and-mouth disease vaccine. Virus Res. 2023, 335, 199189. [Google Scholar] [CrossRef] [PubMed]
- Yap, Y.A.; Mariño, E. An insight into the intestinal web of mucosal immunity, microbiota, and diet in inflammation. Front. Immunol. 2018, 9, 2617. [Google Scholar] [CrossRef] [PubMed]
- Brandtzaeg, P.; Baekkevold, E.S.; Farstad, I.N.; Jahnsen, F.L.; Johansen, F.E.; Nilsen, E.M.; Yamanaka, T. Regional specialization in the mucosal immune system: What happens in the microcompartments? Immunol. Today 1999, 20, 141–151. [Google Scholar] [CrossRef]
- Van Egmond, M.; Damen, C.A.; Van Spriel, A.B.; Vidarsson, G.; van Garderen, E.; van de Winkel, J.G. Iga and the iga fc receptor. Trends Immunol. 2001, 22, 205–211. [Google Scholar] [CrossRef]
- Ndrepepa, G. Aspartate aminotransferase and cardiovascular disease—A narrative review. J. Lab. Precis. Med. 2021, 6. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, B.; Liu, Q.; Zhang, Y.; Zhu, M.; Shi, L.; Chen, H. Assessment of hematologic and biochemical parameters for healthy commercial pigs in China. Animals 2022, 12, 2464. [Google Scholar] [CrossRef]
- Azab, B.; Kedia, S.; Shah, N.; Vonfrolio, S.; Lu, W.; Naboush, A.; Mohammed, F.; Bloom, S.W. The value of the pretreatment albumin/globulin ratio in predicting the long-term survival in colorectal cancer. Int. J. Colorectal Dis. 2013, 28, 1629–1636. [Google Scholar] [CrossRef]
- Jo, H.; Kim, B.Y.; Park, S.H.; Kim, H.M.; Shin, S.H.; Hwang, S.Y.; Kim, S.-M.; Kim, B.; Park, J.-H.; Lee, M.J. The HSP70-fused foot-and-mouth disease epitope elicits cellular and humoral immunity and drives broad-spectrum protective efficacy. NPJ Vaccines 2021, 6, 42. [Google Scholar] [CrossRef]
- Iijima, H.; Takahashi, I.; Kiyono, H. Mucosal immune network in the gut for the control of infectious diseases. Rev. Med. Virol. 2001, 11, 117–133. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Kimura, S.; Hase, K. M cell-dependent antigen uptake on follicle-associated epithelium for mucosal immune surveillance. Inflamm. Regen. 2018, 38, 15. [Google Scholar] [CrossRef] [PubMed]
- Mantis, N.J.; Rol, N.; Corthésy, B. Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol. 2011, 4, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jin, L.; Chen, T. The effects of secretory IgA in the mucosal immune system. BioMed Res. Int. 2020, 2020, 2032057. [Google Scholar] [CrossRef]
- Gocher-Demske, A.M.; Cui, J.; Szymczak-Workman, A.L.; Vignali, K.M.; Latini, J.N.; Pieklo, G.P.; Kimball, J.C.; Avery, L.; Cipolla, E.M.; Huckestein, B.R. IFNγ-induction of Th1-like regulatory T cells controls antiviral responses. Nat. Immunol. 2023, 24, 841–854. [Google Scholar] [CrossRef]
- Filardy, A.A.; Ferreira, J.R.; Rezende, R.M.; Kelsall, B.L.; Oliveira, R.P. The intestinal microenvironment shapes macrophage and dendritic cell identity and function. Immunol. Lett. 2023, 253, 41–53. [Google Scholar] [CrossRef]
- Weiberg, D.; Basic, M.; Smoczek, M.; Bode, U.; Bornemann, M.; Buettner, M. Participation of the spleen in the IgA immune response in the gut. PLoS ONE 2018, 13, e0205247. [Google Scholar] [CrossRef]
- Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 2018, 18, 134–147. [Google Scholar] [CrossRef]
Group | Days Post-Vaccination (dpv) | ALT (U/L) | AST (U/L) | BUN (mg/dL) | CREA (mg/dL) | LDH (U/L) | TP (mg/dL) | ALB (mg/dL) | A/G ratio |
---|---|---|---|---|---|---|---|---|---|
NC | 0 | 41.20 ± 3.68 | 40.00 ± 2.06 | 5.90 ± 0.37 | 0.75 ± 0.02 | 421.28 ± 45.74 | 2.58 ± 0.10 | 2.90 ± 0.06 | 1.22 ± 0.04 |
28 | 56.80 ± 4.03 | 56.25 ± 22.48 | 9.56 ± 1.08 | 1.01 ± 0.05 | 496.23 ± 40.97 | 6.08 ± 0.15 | 3.36 ± 0.05 | 1.26 ± 0.08 | |
56 | 49.60 ± 1.85 | 33.40 ± 1.82 | 10.50 ± 1.21 | 1.15 ± 0.02 | 333.10 ± 13.02 | 6.72 ± 0.15 | 3.14 ± 0.08 | 0.89 ± 0.05 | |
84 | 47.00 ± 1.74 | 66.00 ± 14.04 a | 17.26 ± 1.47 | 1.46 ± 0.05 | 266.48 ± 2.76 | 6.06 ± 0.07 | 3.62 ± 0.04 | 1.49 ± 0.05 | |
PC | 0 | 37.20 ± 1.73 | 32.60 ± 0.61 | 7.50 ± 1.43 | 0.68 ± 0.02 | 340.30 ± 13.22 | 5.34 ± 0.07 | 2.98 ± 0.07 | 1.26 ± 0.08 |
28 | 48.40 ± 1.85 | 45.50 ± 3.32 | 9.30 ± 0.67 | 0.93 ± 0.02 | 456.34 ± 17.62 | 6.30 ± 0.14 | 3.32 ± 0.11 | 1.12 ± 0.07 | |
56 | 53.80 ± 3.33 | 48.60 ± 9.20 | 13.98 ± 0.95 | 1.16 ± 0.05 | 361.90 ± 26.52 | 6.80 ± 0.10 | 3.36 ± 0.08 | 0.98 ± 0.02 | |
84 | 43.60 ± 2.79 | 37.75 ± 25.86 | 16.78 ± 1.60 | 1.30 ± 0.07 | 254.12 ± 8.38 | 6.34 ± 0.12 | 3.72 ± 0.09 | 1.44 ± 0.08 | |
Exp. | 0 | 42.40 ± 4.09 | 42.40 ± 1.95 | 4.92 ± 0.64 | 0.74 ± 0.03 | 310.00 ± 10.42 | 5.58 ± 0.10 | 2.84 ± 0.20 | 1.08 ± 0.13 |
28 | 55.60 ± 5.12 | 39.40 ± 3.92 | 6.12 ± 0.96 | 1.03 ± 0.03 | 425.12 ± 23.09 | 6.42 ± 0.10 | 3.52 ± 0.15 | 1.26 ± 0.13 | |
56 | 57.60 ± 3.60 | 39.00 ± 3.97 | 11.38 ± 1.22 | 1.12 ± 0.02 | 327.82 ± 15.60 | 7.06 ± 0.45 | 3.24 ± 0.12 | 0.94 ± 0.14 | |
84 | 37.60 ± 2.41 | 32.00 ± 1.90 b | 14.70 ± 0.88 | 1.43 ± 0.09 | 251.16 ± 15.55 | 6.10 ± 0.34 | 3.34 ± 0.27 | 1.25 ± 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.J.; Shin, S.; Kim, H.W.; Ko, M.-K.; Park, S.H.; Kim, S.-M.; Park, J.-H. Oral Administration of Zinc Sulfate with Intramuscular Foot-and-Mouth Disease Vaccine Enhances Mucosal and Systemic Immunity. Vaccines 2024, 12, 1268. https://doi.org/10.3390/vaccines12111268
Lee MJ, Shin S, Kim HW, Ko M-K, Park SH, Kim S-M, Park J-H. Oral Administration of Zinc Sulfate with Intramuscular Foot-and-Mouth Disease Vaccine Enhances Mucosal and Systemic Immunity. Vaccines. 2024; 12(11):1268. https://doi.org/10.3390/vaccines12111268
Chicago/Turabian StyleLee, Min Ja, Seokwon Shin, Hyeong Won Kim, Mi-Kyeong Ko, So Hui Park, Su-Mi Kim, and Jong-Hyeon Park. 2024. "Oral Administration of Zinc Sulfate with Intramuscular Foot-and-Mouth Disease Vaccine Enhances Mucosal and Systemic Immunity" Vaccines 12, no. 11: 1268. https://doi.org/10.3390/vaccines12111268
APA StyleLee, M. J., Shin, S., Kim, H. W., Ko, M. -K., Park, S. H., Kim, S. -M., & Park, J. -H. (2024). Oral Administration of Zinc Sulfate with Intramuscular Foot-and-Mouth Disease Vaccine Enhances Mucosal and Systemic Immunity. Vaccines, 12(11), 1268. https://doi.org/10.3390/vaccines12111268