Vaccination Against Androgen Receptor Splice Variants to Immunologically Target Prostate Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture and Viral Vector Construction
2.2. Luciferase Reporter Assay
2.3. mRNA Sequencing and Data Analysis
2.4. Cell Line Flow Cytometry
2.5. Western Blot
2.6. In Vivo Studies
2.7. ELISpot Assays and Intracellular Cytokine Staining Flow Cytometry
2.8. ELISA
2.9. Immunohisotchemistry (IHC)
2.10. Quantitation and Statistical Analysis
3. Results
3.1. Adenoviral Vaccines Targeting AR or AR-Vs Produce Antigen-Specific Immune Responses
3.2. Preventative Vaccination with AR or AR-V7 Vaccines Can Elicit Protective Immunity Against AR-V7+ Cancers
3.3. Lentiviral Expression of AR-V7 in a Novel C57BL/6 Syngeneic Prostate Tumor Cell Line Provides an Immunosuppressive Benefit Compared to an Empty Lentiviral Control Cell Line
3.4. Androgen Receptor-Targeted Vaccination Combined with Enzalutamide or Anti-PD1 Checkpoint Inhibition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Jacob, A.; Raj, R.; Allison, D.B.; Myint, Z.W. Androgen Receptor Signaling in Prostate Cancer and Therapeutic Strategies. Cancers 2021, 13, 5417. [Google Scholar] [CrossRef] [PubMed]
- Kirby, M.; Hirst, C.; Crawford, E.D. Characterising the Castration-Resistant Prostate Cancer Population: A Systematic Review. Int. J. Clin. Pract. 2011, 65, 1180–1192. [Google Scholar] [CrossRef] [PubMed]
- Sekhoacha, M.; Riet, K.; Motloung, P.; Gumenku, L.; Adegoke, A.; Mashele, S. Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches. Molecules 2022, 27, 5730. [Google Scholar] [CrossRef] [PubMed]
- Antonarakis, E.S.; Lu, C.; Wang, H.; Luber, B.; Nakazawa, M.; Roeser, J.C.; Chen, Y.; Mohammad, T.A.; Chen, Y.; Fedor, H.L.; et al. AR-V7 and Resistance to Enzalutamide and Abiraterone in Prostate Cancer. N. Engl. J. Med. 2014, 371, 1028–1038. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Li, J.; Liu, Y.; Shi, Z.; Xuan, Z.; Yang, K.; Xu, C.; Bai, Y.; Fu, M.; Xiao, Q.; et al. The Crucial Role of AR-V7 in Enzalutamide-Resistance of Castration-Resistant Prostate Cancer. Cancers 2022, 14, 4877. [Google Scholar] [CrossRef]
- Lu, C.; Luo, J. Decoding the Androgen Receptor Splice Variants. Transl. Androl. Urol. 2013, 2, 178. [Google Scholar] [CrossRef]
- Kim, S.; Au, C.C.; Jamalruddin, M.A.B.; Abou-Ghali, N.E.; Mukhtar, E.; Portella, L.; Berger, A.; Worroll, D.; Vatsa, P.; Rickman, D.S.; et al. AR-V7 Exhibits Non-Canonical Mechanisms of Nuclear Import and Chromatin Engagement in Castrate-Resistant Prostate Cancer. eLife 2022, 11, 1–49. [Google Scholar] [CrossRef]
- Schmidt, K.T.; Huitema, A.D.R.; Chau, C.H.; Figg, W.D. Resistance to Second-Generation Androgen Receptor Antagonists in Prostate Cancer. Nat. Rev. Urol. 2021, 18, 209–226. [Google Scholar] [CrossRef]
- Zhang, T.; Karsh, L.I.; Nissenblatt, M.J.; Canfield, S.E. Androgen Receptor Splice Variant, AR-V7, as a Biomarker of Resistance to Androgen Axis-Targeted Therapies in Advanced Prostate Cancer. Clin. Genitourin. Cancer 2020, 18, 1–10. [Google Scholar] [CrossRef]
- Hu, R.; Dunn, T.A.; Wei, S.; Isharwal, S.; Veltri, R.W.; Humphreys, E.; Han, M.; Partin, A.W.; Vessella, R.L.; Isaacs, W.B.; et al. Ligand-Independent Androgen Receptor Variants Derived from Splicing of Cryptic Exons Signify Hormone Refractory Prostate Cancer. Cancer Res. 2009, 69, 16–22. [Google Scholar] [CrossRef]
- Guo, Z.; Yang, X.; Sun, F.; Jiang, R.; Linn, D.E.; Chen, H.; Chen, H.; Kong, X.; Melamed, J.; Tepper, C.G.; et al. A Novel Androgen Receptor Splice Variant Is Upregulated during Prostate Cancer Progression and Promotes Androgen-Depletion-Resistant Growth. Cancer Res. 2009, 69, 2305–2313. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chan, S.C.; Brand, L.J.; Hwang, T.H.; Silverstein, K.A.T.; Dehm, S.M. Androgen Receptor Splice Variants Mediate Enzalutamide Resistance in Castration-Resistant Prostate Cancer Cell Lines. Cancer Res. 2013, 73, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Sobhani, N.; Neeli, P.K.; D’angelo, A.; Pittacolo, M.; Sirico, M.; Galli, I.C.; Roviello, G.; Nesi, G. AR-V7 in Metastatic Prostate Cancer: A Strategy beyond Redemption. Int. J. Mol. Sci. 2021, 22, 5515. [Google Scholar] [CrossRef] [PubMed]
- Sharp, A.; Coleman, I.; Yuan, W.; Sprenger, C.; Dolling, D.; Rodrigues, D.N.; Russo, J.W.; Figueiredo, I.; Bertan, C.; Seed, G.; et al. Androgen Receptor Splice Variant-7 Expression Emerges with Castration Resistance in Prostate Cancer. J. Clin. Investig. 2018, 129, 192–208. [Google Scholar] [CrossRef]
- Crosby, E.J.; Acharya, C.R.; Haddad, A.F.; Rabiola, C.A.; Lei, G.; Wei, J.P.; Yang, X.Y.; Wang, T.; Liu, C.X.; Wagner, K.U.; et al. Stimulation of Oncogene-Specific Tumor-Infiltrating T Cells through Combined Vaccine and APD-1 Enable Sustained Antitumor Responses against Established HER2 Breast Cancer. Clin. Cancer Res. 2020, 26, 4670–4681. [Google Scholar] [CrossRef]
- Dailey, G.P.; Rabiola, C.A.; Lei, G.; Wei, J.; Yang, X.Y.; Wang, T.; Liu, C.X.; Gajda, M.; Hobeika, A.C.; Summers, A.; et al. Vaccines Targeting ESR1 Activating Mutations Elicit Anti-Tumor Immune Responses and Suppress Estrogen Signaling in Therapy Resistant ER+ Breast Cancer. Hum. Vaccines Immunother. 2024, 20, 2309693. [Google Scholar] [CrossRef]
- Lu, X.; Horner, J.W.; Paul, E.; Shang, X.; Troncoso, P.; Deng, P.; Jiang, S.; Chang, Q.; Spring, D.J.; Sharma, P.; et al. Effective Combinatorial Immunotherapy for Castration-Resistant Prostate Cancer. Nature 2017, 543, 728–732. [Google Scholar] [CrossRef]
- Ram, S.; Vizcarra, P.; Whalen, P.; Deng, S.; Painter, C.L.; Jackson-Fisher, A.; Pirie-Shepherd, S.; Xia, X.; Powell, E.L. Pixelwise H-Score: A Novel Digital Image Analysis-Based Metric to Quantify Membrane Biomarker Expression from Immunohistochemistry Images. PLoS ONE 2021, 16, e0245638. [Google Scholar] [CrossRef]
- Wang, M.; Bronte, V.; Chen, P.W.; Gritz, L.; Panicali, D.; Rosenberg, S.A.; Restifo, N.P. Active Immunotherapy of Cancer with a Nonreplicating Recombinant Fowlpox Virus Encoding a Model Tumor-Associated Antigen. J. Immunol. 1995, 154, 4685–4692. [Google Scholar] [CrossRef]
- Shen, M.M.; Abate-Shen, C. Pten Inactivation and the Emergence of Androgen-Independent Prostate Cancer. Cancer Res. 2007, 67, 6535–6538. [Google Scholar] [CrossRef]
- Trotter, T.N.; Wilson, A.; McBane, J.; Dagotto, C.E.; Yang, X.Y.; Wei, J.P.; Lei, G.; Thrash, H.; Snyder, J.C.; Lyerly, H.K.; et al. Overcoming Xenoantigen Immunity to Enable Cellular Tracking and Gene Regulation with Immune-Competent “NoGlow” Mice. Cancer Res. Commun. 2024, 4, 1050–1062. [Google Scholar] [CrossRef] [PubMed]
- Chesner, L.; Graff, J.; Polesso, F.; Smith, A.; Lundberg, A.; Sjoestroem, M.; Xia, Z.; Linder, S.; Bergman, A.; Ashworth, A.; et al. Abstract B041: AR Suppresses MHC Class I Expression and T-Cell Response in Prostate Cancer. Cancer Res. 2023, 83, B041. [Google Scholar] [CrossRef]
- Vilaça, M.; Pinto, J.C.; Magalhães, H.; Reis, F.; Mesquita, A. Tumor-Infiltrating Lymphocytes in Localized Prostate Cancer: Do They Play an Important Role? Cureus 2023, 15, e34007. [Google Scholar] [CrossRef]
- Guan, X.; Polesso, F.; Wang, C.; Sehrawat, A.; Hawkins, R.M.; Murray, S.E.; Thomas, G.V.; Caruso, B.; Thompson, R.F.; Wood, M.A.; et al. Androgen Receptor Activity in T Cells Limits Checkpoint Blockade Efficacy. Nature 2022, 606, 791–796. [Google Scholar] [CrossRef] [PubMed]
- Rojas, L.A.; Sethna, Z.; Soares, K.C.; Olcese, C.; Pang, N.; Patterson, E.; Lihm, J.; Ceglia, N.; Guasp, P.; Chu, A.; et al. Personalized RNA Neoantigen Vaccines Stimulate T Cells in Pancreatic Cancer. Nature 2023, 618, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Olson, B.M.; McNeel, D.G. CD8+ T Cells Specific for the Androgen Receptor Are Common in Patients with Prostate Cancer and Are Able to Lyse Prostate Tumor Cells. Cancer Immunol. Immunother. 2011, 60, 781–792. [Google Scholar] [CrossRef]
- Stultz, J.; Fong, L. How to Turn up the Heat on the Cold Immune Microenvironment of Metastatic Prostate Cancer. Prostate Cancer Prostatic Dis. 2021, 24, 697–717. [Google Scholar] [CrossRef]
- Powles, T.; Yuen, K.C.; Gillessen, S.; Kadel, E.E.; Rathkopf, D.; Matsubara, N.; Drake, C.G.; Fizazi, K.; Piulats, J.M.; Wysocki, P.J.; et al. Atezolizumab with Enzalutamide versus Enzalutamide Alone in Metastatic Castration-Resistant Prostate Cancer: A Randomized Phase 3 Trial. Nat. Med. 2022, 28, 144–153. [Google Scholar] [CrossRef]
- Antonarakis, E.S.; Piulats, J.M.; Gross-Goupil, M.; Goh, J.; Ojamaa, K.; Hoimes, C.J.; Vaishampayan, U.; Berger, R.; Sezer, A.; Alanko, T.; et al. Pembrolizumab for Treatment-Refractory Metastatic Castration-Resistant Prostate Cancer: Multicohort, Open-Label Phase II KEYNOTE-199 Study. J. Clin. Oncol. 2020, 38, 395–405. [Google Scholar] [CrossRef]
- Wang, I.; Song, L.; Wang, B.Y.; Kalebasty, A.R.; Uchio, E.; Zi, X. Prostate Cancer Immunotherapy: A Review of Recent Advancements with Novel Treatment Methods and Efficacy. Am. J. Clin. Exp. Urol. 2022, 10, 210–233. [Google Scholar]
- Consiglio, C.R.; Udartseva, O.; Ramsey, K.D.; Bush, C.; Gollnick, S.O. Enzalutamide, an Androgen Receptor Antagonist, Enhances Myeloid Cell-Mediated Immune Suppression and Tumor Progression. Cancer Immunol. Res. 2020, 8, 1215–1227. [Google Scholar] [CrossRef] [PubMed]
- Kwon, E.D.; Drake, C.G.; Scher, H.I.; Fizazi, K.; Bossi, A.; Van den Eertwegh, A.J.M.; Krainer, M.; Houede, N.; Santos, R.; Mahammedi, H.; et al. Ipilimumab versus Placebo after Radiotherapy in Patients with Metastatic Castration-Resistant Prostate Cancer That Had Progressed after Docetaxel Chemotherapy (CA184-043): A Multicentre, Randomised, Double-Blind, Phase 3 Trial. Lancet Oncol. 2014, 15, 700–712. [Google Scholar] [CrossRef] [PubMed]
- Shenderov, E.; Boudadi, K.; Fu, W.; Wang, H.; Sullivan, R.; Jordan, A.; Dowling, D.; Harb, R.; Schonhoft, J.; Jendrisak, A.; et al. Nivolumab plus Ipilimumab, with or without Enzalutamide, in AR-V7-Expressing Metastatic Castration-Resistant Prostate Cancer: A Phase-2 Nonrandomized Clinical Trial. Prostate 2021, 81, 326–338. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marek, R.D.; Halabi, S.; Wang, M.-E.; McBane, J.; Wei, J.; Wang, T.; Yang, X.; Liu, C.; Lei, G.; Lyerly, H.K.; et al. Vaccination Against Androgen Receptor Splice Variants to Immunologically Target Prostate Cancer. Vaccines 2024, 12, 1273. https://doi.org/10.3390/vaccines12111273
Marek RD, Halabi S, Wang M-E, McBane J, Wei J, Wang T, Yang X, Liu C, Lei G, Lyerly HK, et al. Vaccination Against Androgen Receptor Splice Variants to Immunologically Target Prostate Cancer. Vaccines. 2024; 12(11):1273. https://doi.org/10.3390/vaccines12111273
Chicago/Turabian StyleMarek, Robert D., Selena Halabi, Mu-En Wang, Jason McBane, Junping Wei, Tao Wang, Xiao Yang, Congxiao Liu, Gangjun Lei, Herbert Kim Lyerly, and et al. 2024. "Vaccination Against Androgen Receptor Splice Variants to Immunologically Target Prostate Cancer" Vaccines 12, no. 11: 1273. https://doi.org/10.3390/vaccines12111273
APA StyleMarek, R. D., Halabi, S., Wang, M. -E., McBane, J., Wei, J., Wang, T., Yang, X., Liu, C., Lei, G., Lyerly, H. K., Chen, M., Trotter, T. N., & Hartman, Z. C. (2024). Vaccination Against Androgen Receptor Splice Variants to Immunologically Target Prostate Cancer. Vaccines, 12(11), 1273. https://doi.org/10.3390/vaccines12111273