A Comprehensive Evaluation of the HPV Neutralizing Antibodies in Guangzhou, China: A Comparative Study on Various HPV Vaccines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Pseudovirion-Based Neutralization Assay (PBNA)
2.3. Statistical Analysis
3. Results
3.1. Study Population
3.2. Humoral Immune Response
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Cervical Cancer. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/cervical-cancer (accessed on 15 April 2024).
- de Martel, G.; Georges, D.; Bray, F.; Ferlay, J.; Clifford, G.M. Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis. Lancet Glob. Health 2020, 8, e180–e190. [Google Scholar] [CrossRef] [PubMed]
- de Martel, C.; Plummer, M.; Vignat, J.; Franceschi, S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int. J. Cancer 2017, 141, 664–670. [Google Scholar] [CrossRef] [PubMed]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Biological agents. IARC Monogr. Eval. Carcinog. Risks Hum. 2012, 100 Pt B, 1–441. [Google Scholar]
- de Sanjosé, S.; Diaz, M.; Castellsagué, X.; Clifford, G.; Bruni, L.; Muñoz, N.; Bosch, F.X. Worldwide prevalence and genotype distribution of cervical human papillomavirus DNA in women with normal cytology: A meta-analysis. Lancet Infect. Dis. 2007, 7, 453–459. [Google Scholar] [CrossRef]
- Liu, Y.; Ang, Q.; Wu, H.; Xu, J.; Chen, D.; Zhao, H.; Liu, H.; Guo, X.; Gu, Y.; Qiu, H. Prevalence of human papillomavirus genotypes and precancerous cervical lesions in a screening population in Beijing, China: Analysis of results from China’s top 3 hospital, 2009–2019. Virol. J. 2020, 17, 104. [Google Scholar] [CrossRef]
- Tang, Y.; Zheng, L.; Yang, S.; Li, B.; Su, H.; Zhang, L.P. Epidemiology and genotype distribution of human papillomavirus (HPV) in Southwest China: A cross-sectional five years study in non-vaccinated women. Virol. J. 2017, 14, 84. [Google Scholar] [CrossRef] [PubMed]
- Castellsague, X. Natural history and epidemiology of HPV infection and cervical cancer. Gynecol. Oncol. 2008, 110 (Suppl. S2), S4–S7. [Google Scholar] [CrossRef]
- Rahangdale, L.; Mungo, C.; O’Connor, S.; Chibwesha, C.J.; Brewer, N.T. Human papillomavirus vaccination and cervical cancer risk. BMJ 2022, 379, e070115. [Google Scholar] [CrossRef]
- eClinicalMedicine. Global strategy to eliminate cervical cancer as a public health problem: Are we on track? EClinicalMedicine 2023, 55, 101842. [Google Scholar] [CrossRef]
- WHO. Prequalified Vaccines. 2024. Available online: https://extranet.who.int/prequal/vaccines/prequalified-vaccines (accessed on 16 April 2024).
- Zhao, F.-H.; Wu, T.; Hu, Y.-M.; Wei, L.-H.; Li, M.-Q.; Huang, W.-J.; Chen, W.; Huang, S.-J.; Pan, Q.-J.; Zhang, X.; et al. Efficacy, safety, and immunogenicity of an Escherichia coli-produced Human Papillomavirus (16 and 18) L1 virus-like-particle vaccine: End-of-study analysis of a phase 3, double-blind, randomised, controlled trial. Lancet Infect. Dis. 2022, 22, 1756–1768. [Google Scholar] [CrossRef]
- Zhao, F.; Jastorff, A.; Hong, Y.; Hu, S.; Chen, W.; Xu, X.; Zhu, Y.; Zhu, J.; Zhang, X.; Zhang, W.; et al. Safety of AS04-HPV-16/18 vaccine in Chinese women aged 26 years and older and long-term protective effect in women vaccinated at age 18–25 years: A 10-year follow-up study. Asia Pac. J. Clin. Oncol. 2023, 19, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zhao, Y.; Li, J.; Li, M.; Su, Y.; Mi, X.; La Tu, S.Y.; Shen, D.; Ren, L.; Li, Y.; et al. The eight-year long-term follow-up on the effectiveness of the quadrivalent human papillomavirus vaccine in Chinese women 20–45 years of age. Human Vaccin. Immunother. 2022, 18, 2052700. [Google Scholar] [CrossRef] [PubMed]
- Restrepo, J.; Herrera, T.; Samakoses, R.; Reina, J.C.; Pitisuttithum, P.; Ulied, A.; Bekker, L.-G.; Moreira, E.D.; Olsson, S.-E.; Block, S.L.; et al. Ten-Year Follow-up of 9-Valent Human Papillomavirus Vaccine: Immunogenicity, Effectiveness, and Safety. Pediatrics 2023, 152, e2022060993. [Google Scholar] [CrossRef]
- Colombara, D.V.; Wang, S.M. The impact of HPV vaccination delays in China: Lessons from HBV control programs. Vaccine 2013, 31, 4057–4059. [Google Scholar] [CrossRef] [PubMed]
- Harper, D.M.; Jimbo, M. Elimination of cervical cancer depends on HPV vaccination and primary HPV screening. Lancet Infect. Dis. 2021, 21, 1342–1344. [Google Scholar] [CrossRef]
- Zaman, K.; Schuind, A.E.; Adjei, S.; Antony, K.; Aponte, J.J.; Buabeng, P.B.; Qadri, F.; Kemp, T.J.; Hossain, L.; A Pinto, L.; et al. Safety and immunogenicity of Innovax bivalent human papillomavirus vaccine in girls 9–14 years of age: Interim analysis from a phase 3 clinical trial. Vaccine 2024, 42, 2290–2298. [Google Scholar] [CrossRef]
- Lin, R.; Jin, H.; Fu, X. Comparative efficacy of human papillomavirus vaccines: Systematic review and network meta-analysis. Expert. Rev. Vaccines 2023, 22, 1168–1178. [Google Scholar] [CrossRef]
- Nie, J.; Liu, Y.; Huang, W.; Wang, Y. Development of a Triple-Color Pseudovirion-Based Assay to Detect Neutralizing Antibodies against Human Papillomavirus. Viruses 2016, 8, 107. [Google Scholar] [CrossRef]
- Buck, C.B.; Thompson, C.D.; Roberts, J.N.; Muller, M.; Lowy, D.R.; Schiller, J.T. Carrageenan is a potent inhibitor of papillomavirus infection. PLoS Pathog. 2006, 2, e69. [Google Scholar] [CrossRef]
- Roberts, J.N.; Buck, C.B.; Thompson, C.D.; Kines, R.; Bernardo, M.; Choyke, P.L.; Lowy, D.R.; Schiller, J.T. Genital transmission of HPV in a mouse model is potentiated by nonoxynol-9 and inhibited by carrageenan. Nat. Med. 2007, 13, 857–861. [Google Scholar] [CrossRef]
- Pastrana, D.V.; Gambhira, R.; Buck, C.B.; Pang, Y.-Y.S.; Thompson, C.D.; Culp, T.D.; Christensen, N.D.; Lowy, D.R.; Schiller, J.T.; Roden, R.B. Cross-neutralization of cutaneous and mucosal Papillomavirus types with anti-sera to the amino terminus of L2. Virology 2005, 337, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Kondo, K.; Ochi, H.; Matsumoto, T.; Yoshikawa, H.; Kanda, T. Modification of human papillomavirus-like particle vaccine by insertion of the cross-reactive L2-epitopes. J. Med. Virol. 2008, 80, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Kondo, K.; Ishii, Y.; Ochi, H.; Matsumoto, T.; Yoshikawa, H.; Kanda, T. Neutralization of HPV16, 18, 31, and 58 pseudovirions with antisera induced by immunizing rabbits with synthetic peptides representing segments of the HPV16 minor capsid protein L2 surface region. Virology 2007, 358, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Kwak, K.; Jiang, R.; Wang, J.W.; Jagu, S.; Kirnbauer, R.; Roden, R.B. Impact of inhibitors and L2 antibodies upon the infectivity of diverse alpha and beta human papillomavirus types. PLoS ONE 2014, 9, e97232. [Google Scholar] [CrossRef]
- Sun, P.; Zhang, S.; Qin, X.; Chang, X.; Cui, X.; Li, H.; Zhang, S.; Gao, H.; Wang, P.; Zhang, Z.; et al. Foot-and-mouth disease virus capsid protein VP2 activates the cellular EIF2S1-ATF4 pathway and induces autophagy via HSPB1. Autophagy 2018, 14, 336–346. [Google Scholar] [CrossRef]
- Johnson, K.M.; Kines, R.C.; Roberts, J.N.; Lowy, D.R.; Schiller, J.T.; Day, P.M. Role of heparan sulfate in attachment to and infection of the murine female genital tract by human papillomavirus. J. Virol. 2009, 83, 2067–2074. [Google Scholar] [CrossRef]
- Matumoto, M. A note on some points of calculation method of LD50 by Reed and Muench. Jpn. J. Exp. Med. 1949, 20, 175–179. [Google Scholar]
- Van Kriekinge, G.; Castellsague, X.; Cibula, D.; Demarteau, N. Estimation of the potential overall impact of human papillomavirus vaccination on cervical cancer cases and deaths. Vaccine 2014, 32, 733–739. [Google Scholar] [CrossRef]
- Demarteau, N.; Tang, C.H.; Chen, H.C.; Chen, C.J.; Van Kriekinge, G. Cost-effectiveness analysis of the bivalent compared with the quadrivalent human papillomavirus vaccines in Taiwan. Value Health 2012, 15, 622–631. [Google Scholar] [CrossRef]
- Kirnbauer, R.; Booy, F.; Cheng, N.; Lowy, D.R.; Schiller, J.T. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc. Natl. Acad. Sci. USA 1992, 89, 12180–12184. [Google Scholar] [CrossRef]
- Zhong, G.-H.; Huang, W.-J.; Chu, K.; Zhang, L.; Bi, Z.-F.; Zhu, K.-X.; Chen, Q.; Zheng, T.-Q.; Zhang, M.-L.; Liu, S.; et al. Head-to-head immunogenicity comparison of an Escherichia coli-produced 9-valent human papillomavirus vaccine and Gardasil 9 in women aged 18–26 years in China: A randomised blinded clinical trial. Lancet Infect. Dis. 2023, 23, 1313–1322. [Google Scholar]
- Zhou, L.; Gu, B.; Wang, J.; Liu, G.; Zhang, X. Human papillomavirus vaccination at the national and provincial levels in China: A cost-effectiveness analysis using the PRIME model. BMC Public Health 2022, 22, 777. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Xu, X.; Zhao, X.; Hu, S.; Qiao, Y.; Zhang, Y.; Hutubessy, R.; Basu, P.; Broutet, N.; Jit, M.; et al. Effectiveness and cost-effectiveness of eliminating cervical cancer through a tailored optimal pathway: A modeling study. BMC Med. 2021, 19, 62. [Google Scholar]
- Pinto, L.A.; Dillner, J.; Beddows, S.; Unger, E.R. Immunogenicity of HPV prophylactic vaccines: Serology assays and their use in HPV vaccine evaluation and development. Vaccine 2018, 36 Pt A, 4792–4799. [Google Scholar] [CrossRef]
- Dessy, F.J.; Giannini, S.L.; Bougelet, C.A.; Kemp, T.J.; David, M.P.; Poncelet, S.M.; Pinto, L.A.; Wettendorff, M.A. Correlation between direct ELISA, single epitope-based inhibition ELISA and pseudovirion-based neutralization assay for measuring anti-HPV-16 and anti-HPV-18 antibody response after vaccination with the AS04-adjuvanted HPV-16/18 cervical cancer vaccine. Human Vaccin. 2008, 4, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.-M.; Guo, M.; Li, C.-G.; Chu, K.; He, W.-G.; Zhang, J.; Gu, J.-X.; Li, J.; Zhao, H.; Wu, X.-H.; et al. Immunogenicity noninferiority study of 2 doses and 3 doses of an Escherichia coli-produced HPV bivalent vaccine in girls vs. 3 doses in young women. Sci. China Life Sci. 2020, 63, 582–591. [Google Scholar] [CrossRef]
- Malagón, T.; Drolet, M.; Boily, M.-C.; Franco, E.L.; Jit, M.; Brisson, J.; Brisson, M. Cross-protective efficacy of two human papillomavirus vaccines: A systematic review and meta-analysis. Lancet Infect. Dis. 2012, 12, 781–789. [Google Scholar] [CrossRef]
- Mariz, F.C.; Bender, N.; Anantharaman, D.; Basu, P.; Bhatla, N.; Pillai, M.R.; Prabhu, P.R.; Sankaranarayanan, R.; Eriksson, T.; Pawlita, M.; et al. Peak neutralizing and cross-neutralizing antibody levels to human papillomavirus types 6/16/18/31/33/45/52/58 induced by bivalent and quadrivalent HPV vaccines. NPJ Vaccines 2020, 5, 14. [Google Scholar] [CrossRef]
- Stanley, M.; Joura, E.; Yen, G.P.; Kothari, S.; Luxembourg, A.; Saah, A.; Walia, A.; Perez, G.; Khoury, H.; Badgley, D.; et al. Systematic literature review of neutralizing antibody immune responses to non-vaccine targeted high-risk HPV types induced by the bivalent and the quadrivalent vaccines. Vaccine 2021, 39, 2214–2223. [Google Scholar] [CrossRef]
Longitudinal | Cross-Sectional | |||||
---|---|---|---|---|---|---|
Cecolin 2 | Cecolin 2 | Cervarix 2 | Gardasil 4 | Gardasil 9 | Control | |
N | 87 | 14 | 21 | 17 | 163 | 50 |
Dose | 2 | 3 | 3 | 3 | 3 | - |
Age at time of first vaccine dose (years, median) [range] ① | 12 [12,13] | 23 [19,34] | 23 [16,39] | 24 [15,31] | 23 [17,26] | 26 ③ [24,27] |
Time after the last dose (months, mean) [95%CI] | 1 ② | 9.9 [5.9,13.8] | 21.2 [12.9,29.5] | 37.9 [19.5,56.2] | 14.7 [6.7,22.5] | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zha, R.; Liao, C.; Lin, D.; Zhao, L.; Chen, Y.; Yao, L.; Li, X.; Yi, B.; Li, T.; Xiao, J.; et al. A Comprehensive Evaluation of the HPV Neutralizing Antibodies in Guangzhou, China: A Comparative Study on Various HPV Vaccines. Vaccines 2024, 12, 1286. https://doi.org/10.3390/vaccines12111286
Zha R, Liao C, Lin D, Zhao L, Chen Y, Yao L, Li X, Yi B, Li T, Xiao J, et al. A Comprehensive Evaluation of the HPV Neutralizing Antibodies in Guangzhou, China: A Comparative Study on Various HPV Vaccines. Vaccines. 2024; 12(11):1286. https://doi.org/10.3390/vaccines12111286
Chicago/Turabian StyleZha, Renyun, Conghui Liao, Daner Lin, Lixuan Zhao, Yanfang Chen, Lin Yao, Xiaokang Li, Boyang Yi, Ting Li, Jianpeng Xiao, and et al. 2024. "A Comprehensive Evaluation of the HPV Neutralizing Antibodies in Guangzhou, China: A Comparative Study on Various HPV Vaccines" Vaccines 12, no. 11: 1286. https://doi.org/10.3390/vaccines12111286
APA StyleZha, R., Liao, C., Lin, D., Zhao, L., Chen, Y., Yao, L., Li, X., Yi, B., Li, T., Xiao, J., Hu, Y., Chen, Z., Guo, C., Lu, J., & Lu, J. (2024). A Comprehensive Evaluation of the HPV Neutralizing Antibodies in Guangzhou, China: A Comparative Study on Various HPV Vaccines. Vaccines, 12(11), 1286. https://doi.org/10.3390/vaccines12111286