Impact of Antenatal SARS-CoV-2 Exposure on SARS-CoV-2 Neutralization Potency
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Maternal and Infant Characteristics
3.2. Anti-S Antibody Response and Neutralization Potency in Three Trimesters of Pregnant Vaccines
3.3. Multivariable Linear Regression for Anti-S Response and Neutralization Potency
3.4. The Anti-S Antibody Levels and Time Intervals
3.5. Neutralization Potency for Non-Infected Individuals and Time Relationship
3.6. Transplacental Transfer Ratio of Antibodies and Time Relationship
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Transplacental Transfer Ratio of Anti-S Antibody | |||
Predictor Variables | B | SE | p Value |
COVID-19 infection | −0.605 | 0.166 | <0.001 |
Vaccine during first trimester | −0.053 | 0.188 | 0.779 |
Vaccine during second trimester | 0.583 | 0.171 | 0.001 |
Vaccine during third trimester | 0.127 | 0.187 | 0.501 |
References
- Summers, J.; Cheng, H.-Y.; Lin, H.-H.; Barnard, L.T.; Kvalsvig, A.; Wilson, N.; Baker, M.G. Potential lessons from the Taiwan and New Zealand health responses to the COVID-19 pandemic. Lancet Reg. Health West. Pac. 2020, 4, 100044. [Google Scholar] [CrossRef] [PubMed]
- Tseng, W.-P.; Wu, J.-L.; Wu, C.-C.; Kuo, K.-T.; Lin, C.-H.; Chung, M.-Y.; Lee, Y.-F.; Yang, B.-J.; Huang, C.-H.; Chen, S.-Y. Seroprevalence surveys for anti-SARS-CoV-2 antibody in different populations in Taiwan with low incidence of COVID-19 in 2020 and severe outbreaks of SARS in 2003. Front. Immunol. 2021, 12, 626609. [Google Scholar] [CrossRef] [PubMed]
- Shao, P.-L.; Tu, H.-C.; Gong, Y.-N.; Shu, H.-Y.; Kirby, R.; Hsu, L.-Y.; Yeo, H.-Y.; Kuo, H.-Y.; Huang, Y.-C.; Lin, Y.-F.; et al. Emergence and Persistent Dominance of SARS-CoV-2 Omicron BA.2.3.7 Variant, Taiwan. Emerg. Infect. Dis. 2023, 29, 4. [Google Scholar] [CrossRef] [PubMed]
- Rottenstreich, M.; Sela, H.; Rotem, R.; Kadish, E.; Wiener-Well, Y.; Grisaru-Granovsky, S. COVID-19 vaccination during the third trimester of pregnancy: Rate of vaccination and maternal and neonatal outcomes, a multicentre retrospective cohort study. BJOG 2022, 129, 248–255. [Google Scholar] [CrossRef]
- Stock, S.J.; Carruthers, J.; Calvert, C.; Denny, C.; Donaghy, J.; Goulding, A.; Hopcroft, L.E.M.; Hopkins, L.; McLaughlin, T.; Pan, J.; et al. SARS-CoV-2 infection and COVID-19 vaccination rates in pregnant women in Scotland. Nat. Med. 2022, 28, 504–512. [Google Scholar] [CrossRef]
- Goh, O.; Pang, D.; Tan, J.; Lye, D.; Chong, C.Y.; Ong, B.; Tan, K.B.; Yung, C.F. mRNA SARS-CoV-2 Vaccination Before vs During Pregnancy and Omicron Infection Among Infants. JAMA Netw. Open 2023, 6, e2342475. [Google Scholar] [CrossRef]
- Wei, S.Q.; Bilodeau-Bertrand, M.; Liu, S.; Auger, N. The impact of COVID-19 on pregnancy outcomes: A systematic review and meta-analysis. CMAJ 2021, 193, e540–e548. [Google Scholar] [CrossRef]
- Chinn, J.; Sedighim, S.; Kirby, K.A.; Hohmann, S.; Hameed, A.B.; Jolley, J.; Nguyen, N.T. Characteristics and Outcomes of Women with COVID-19 Giving Birth at US Academic Centers During the COVID-19 Pandemic. JAMA Netw. Open 2021, 4, e2120456. [Google Scholar] [CrossRef]
- Ferrara, A.; Hedderson, M.M.; Zhu, Y.; Avalos, L.A.; Kuzniewicz, M.W.; Myers, L.C.; Ngo, A.L.; Gunderson, E.P.; Ritchie, J.L.; Quesenberry, C.P.; et al. Perinatal Complications in Individuals in California with or without SARS-CoV-2 Infection During Pregnancy. JAMA Intern. Med. 2022, 182, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Oz-Alcalay, L.; Elron, E.; Davidovich, R.; Chodick, G.; Osovsky, M.; Chen, R.; Ashkenazi-Hoffnung, L. The association of neonatal SARS-CoV-2 anti-spike protein receptor-binding domain antibodies at delivery with infant SARS-CoV-2 infection under the age of 6 months: A prospective cohort study. Clin. Microbiol. Infect. 2023, 29, 789–794. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, A.G.; Li, L.; Golan, Y.; Gay, C.; Lin, C.Y.; Jigmeddagva, U.; Chidboy, M.A.; Ilala, M.; Buarpung, S.; Gonzalez, V.J.; et al. Assessment of Adverse Reactions, Antibody Patterns, and 12-month Outcomes in the Mother-Infant Dyad After COVID-19 mRNA Vaccination in Pregnancy. JAMA Netw. Open 2023, 6, e2323405. [Google Scholar] [CrossRef]
- Massalha, M.; Yefet, E.; Rozenberg, O.; Soltsman, S.; Hasanein, J.; Smolkin, T.; Alter, A.; Perlitz, Y.; Nachum, Z. Vertical transmission and humoral immune response following maternal infection with SARS-CoV-2: A prospective multicenter cohort study. Clin. Microbiol. Infect. 2022, 28, 1258–1262. [Google Scholar] [CrossRef]
- Edlow, A.G.; Li, J.Z.; Collier, A.Y.; Atyeo, C.; James, K.E.; Boatin, A.A.; Gray, K.J.; Bordt, E.A.; Shook, L.L.; Yonker, L.M.; et al. Assessment of Maternal and Neonatal SARS-CoV-2 Viral Load, Transplacental Antibody Transfer, and Placental Pathology in Pregnancies During the COVID-19 Pandemic. JAMA Netw. Open 2020, 3, e2030455. [Google Scholar] [CrossRef] [PubMed]
- Beharier, O.; Plitman Mayo, R.; Raz, T.; Nahum Sacks, K.; Schreiber, L.; Suissa-Cohen, Y.; Chen, R.; Gomez-Tolub, R.; Hadar, E.; Gabbay-Benziv, R.; et al. Efficient maternal to neonatal transfer of antibodies against SARS-CoV-2 and BNT162b2 mRNA COVID-19 vaccine. J. Clin. Investig. 2021, 131, e150319. [Google Scholar] [CrossRef] [PubMed]
- Abu Raya, B.; Srugo, I.; Kessel, A.; Peterman, M.; Bader, D.; Gonen, R.; Bamberger, E. The effect of timing of maternal tetanus, diphtheria, and acellular pertussis (Tdap) immunization during pregnancy on newborn pertussis antibody levels—A prospective study. Vaccine 2014, 32, 5787–5793. [Google Scholar] [CrossRef]
- Madhi, S.A.; Anderson, A.S.; Absalon, J.; Radley, D.; Simon, R.; Jongihlati, B.; Strehlau, R.; van Niekerk, A.M.; Izu, A.; Naidoo, N.; et al. Potential for Maternally Administered Vaccine for Infant Group B Streptococcus. N. Engl. J. Med. 2023, 389, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Rottenstreich, A.; Zarbiv, G.; Oiknine-Djian, E.; Vorontsov, O.; Zigron, R.; Kleinstern, G.; Wolf, D.G.; Porat, S. Timing of SARS-CoV-2 vaccination during the third trimester of pregnancy and transplacental antibody transfer: A prospective cohort study. Clin. Microbiol. Infect. 2022, 28, 419–425. [Google Scholar] [CrossRef]
- Rottenstreich, A.; Vorontsov, O.; Alfi, O.; Zarbiv, G.; Oiknine-Djian, E.; Zigron, R.; Kleinstern, G.; Mandelboim, M.; Porat, S.; Wolf, D.G. Maternal and Neonatal Severe Acute Respiratory Syndrome Coronavirus 2 Omicron Variant Neutralization After Antenatal Messenger RNA Vaccination. Clin. Infect. Dis. 2022, 75, 2023–2026. [Google Scholar] [CrossRef]
- ACOG. COVID-19 Vaccination Considerations for Obstetric–Gynecologic Care. First Issued 2020, Last Updated September 25, 2023. Available online: https://www.acog.org/clinical/clinical-guidance/practice-advisory/articles/2020/12/covid-19-vaccination-considerations-for-obstetric-gynecologic-care# (accessed on 30 January 2024).
- Piekos, S.N.; Hwang, Y.M.; Roper, R.T.; Sorensen, T.; Price, N.D.; Hood, L.; Hadlock, J.J. Effect of COVID-19 vaccination and booster on maternal-fetal outcomes: A retrospective cohort study. Lancet Digit Health 2023, 5, e594–e606. [Google Scholar] [CrossRef]
- WHO. WHO SAGE Roadmap on Uses of COVID-19 Vaccines in the Context of OMICRON and Substantial Population Immunity: An Approach to Optimize the Global Impact of COVID-19 Vaccines at a Time When Omicron and its Sub-Lineages Are the Dominant Circulating Variants of Concern, Based on Public Health Goals, Evolving Epidemiology, and Increasing Population-Level Immunity; First Issued 20 October 2020, Latest Update: 30 March 2023; WHO/2019-nCoV/Vaccines/SAGE/Prioritization/2023.1; World Health Organization: Geneva, Switzerland, 2023. Available online: https://apps.who.int/iris/handle/10665/366671 (accessed on 10 September 2023).
- Jamieson, D.J.; Rasmussen, S.A. An update on COVID-19 and pregnancy. Am. J. Obstet. Gynecol. 2022, 226, 177–186. [Google Scholar] [CrossRef]
- Zhu, F.; Althaus, T.; Tan, C.W.; Costantini, A.; Chia, W.N.; Van Vinh Chau, N.; Van Tan, L.; Mattiuzzo, G.; Rose, N.J.; Voiglio, E.; et al. WHO international standard for SARS-CoV-2 antibodies to determine markers of protection. Lancet Microbe 2022, 3, e81–e82. [Google Scholar] [CrossRef]
- Koh, K. Univariate Normal Distribution. In Encyclopedia of Quality of Life and Well-Being Research; Michalos, A.C., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 6817–6819. [Google Scholar]
- Kim, B.; Kim, T.; Kim, J. Paper-and-Pencil Programming Strategy toward Computational Thinking for Non-Majors: Design Your Solution. J. Educ. Comput. Res. 2013, 49, 437–459. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 3rd ed.; Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Sovey, S.; Osman, K.; Mohd-Matore, M.E. Exploratory and Confirmatory Factor Analysis for Disposition Levels of Computational Thinking Instrument among Secondary School Students. Eur. J. Educ. Res. 2022, 11, 639–652. [Google Scholar] [CrossRef]
- Brown, T.A. Confirmatory factor analysis for applied research. In Confirmatory Factor Analysis for Applied Research; The Guilford Press: New York, NY, USA, 2006; p. xiii, 475. [Google Scholar]
- Moriyama, S.; Adachi, Y.; Sato, T.; Tonouchi, K.; Sun, L.; Fukushi, S.; Yamada, S.; Kinoshita, H.; Nojima, K.; Kanno, T.; et al. Temporal maturation of neutralizing antibodies in COVID-19 convalescent individuals improves potency and breadth to circulating SARS-CoV-2 variants. Immunity 2021, 54, 1841–1852.e1844. [Google Scholar] [CrossRef]
- Nilles, E.; de St. Aubin, M.; Dumas, D.; Duke, W.; Etienne, M.C.; Abdalla, G.; Jarolim, P.; Oasan, T.; Garnier, S.; Iihoshi, N.; et al. Monitoring Temporal Changes in SARS-CoV-2 Spike Antibody Levels and Variant-Specific Risk for Infection, Dominican Republic, March 2021–August 2022. Emerg. Infect. Dis. J. 2023, 29, 723. [Google Scholar] [CrossRef]
- CDC. COVID-19 Vaccines While Pregnant or Breastfeeding. Updated 3 November, 2023. Available online: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/recommendations/pregnancy.html (accessed on 30 January 2024).
- Albrecht, M.; Arck, P.C. Vertically transferred immunity in neonates: Mothers, mechanisms and mediators. Front. Immunol. 2020, 11, 555. [Google Scholar] [CrossRef] [PubMed]
- Khoury, D.S.; Cromer, D.; Reynaldi, A.; Schlub, T.E.; Wheatley, A.K.; Juno, J.A.; Subbarao, K.; Kent, S.J.; Triccas, J.A.; Davenport, M.P. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 2021, 27, 1205–1211. [Google Scholar] [CrossRef] [PubMed]
- Lau, E.H.Y.; Tsang, O.T.Y.; Hui, D.S.C.; Kwan, M.Y.W.; Chan, W.-H.; Chiu, S.S.; Ko, R.L.W.; Chan, K.H.; Cheng, S.M.S.; Perera, R.A.P.M.; et al. Neutralizing antibody titres in SARS-CoV-2 infections. Nat. Commun. 2021, 12, 63. [Google Scholar] [CrossRef]
- Burbelo, P.D.; Riedo, F.X.; Morishima, C.; Rawlings, S.; Smith, D.; Das, S.; Strich, J.R.; Chertow, D.S.; Davey, R.T.; Cohen, J.I. Sensitivity in Detection of Antibodies to Nucleocapsid and Spike Proteins of Severe Acute Respiratory Syndrome Coronavirus 2 in Patients with Coronavirus Disease 2019. J. Infect. Dis. 2020, 222, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Alonso, S.; Vidal, M.; Ruiz-Olalla, G.; González, R.; Manaca, M.N.; Jairoce, C.; Vázquez-Santiago, M.; Balcells, R.; Vala, A.; Rupérez, M.; et al. Reduced Placental Transfer of Antibodies Against a Wide Range of Microbial and Vaccine Antigens in HIV-Infected Women in Mozambique. Front. Immunol. 2021, 12, 614246. [Google Scholar] [CrossRef] [PubMed]
- Simmons, L.A.; Whipps, M.D.M.; Phipps, J.E.; Satish, N.S.; Swamy, G.K. Understanding COVID-19 vaccine uptake during pregnancy: ‘Hesitance’, knowledge, and evidence-based decision-making. Vaccine 2022, 40, 2755–2760. [Google Scholar] [CrossRef]
- Poon, L.C.; Leung, B.W.; Ma, T.; Yu, F.N.Y.; Kong, C.W.; Lo, T.K.; So, P.L.; Leung, W.C.; Shu, W.; Cheung, K.W.; et al. Relationship between viral load, infection-to-delivery interval and mother-to-child transfer of anti-SARS-CoV-2 antibodies. Ultrasound Obstet. Gynecol. 2021, 57, 974–978. [Google Scholar] [CrossRef]
- Ferri, C.; Raimondo, V.; Giuggioli, D.; Gragnani, L.; Lorini, S.; Dagna, L.; Bosello, S.L.; Foti, R.; Riccieri, V.; Guiducci, S.; et al. Impact of COVID-19 and vaccination campaign on 1,755 systemic sclerosis patients during first three years of pandemic. Possible risks for individuals with impaired immunoreactivity to vaccine, ongoing immunomodulating treatments, and disease-related lung involvement during the next pandemic phase. J. Transl. Autoimmun. 2023, 7, 100212. [Google Scholar] [CrossRef]
- Widhani, A.; Hasibuan, A.S.; Rismawati, R.; Maria, S.; Koesnoe, S.; Hermanadi, M.I.; Ophinni, Y.; Yamada, C.; Harimurti, K.; Sari, A.N.L.; et al. Efficacy, Immunogenicity, and Safety of COVID-19 Vaccines in Patients with Autoimmune Diseases: A Systematic Review and Meta-Analysis. Vaccines 2023, 11, 1456. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, M.; Pagenkemper, M.; Wiessner, C.; Spohn, M.; Lütgehetmann, M.; Jacobsen, H.; Gabriel, G.; Zazara, D.E.; Haertel, C.; Hecher, K.; et al. Infant immunity against viral infections is advanced by the placenta-dependent vertical transfer of maternal antibodies. Vaccine 2022, 40, 1563–1571. [Google Scholar] [CrossRef]
- Atyeo, C.; Pullen, K.M.; Bordt, E.A.; Fischinger, S.; Burke, J.; Michell, A.; Slein, M.D.; Loos, C.; Shook, L.L.; Boatin, A.A.; et al. Compromised SARS-CoV-2-specific placental antibody transfer. Cell 2021, 184, 628–642.e610. [Google Scholar] [CrossRef]
- Takizawa, T.; Anderson, C.L.; Robinson, J.M. A novel FcγR-defined, IgG-containing organelle in placental endothelium. J. Immunol. 2005, 175, 2331–2339. [Google Scholar] [CrossRef] [PubMed]
Characteristics | COVID-19 Positive (n = 38) | COVID-19 Negative (n = 37) | p Value |
---|---|---|---|
Age, years | 33 (5.4) 1 | 33 (5.7) 1 | 0.984 1 |
Body mass index, kg/ | 26.5 (3.6) 1 | 27.1 (4.4) 1 | 0.497 1 |
Gravida | 0.274 | ||
Nulliparous | 21 (55) | 25 (68) | |
Multiparous | 17 (45) | 12 (32) | |
Gestational Age at Birth, weeks | 38.9 (0.8) 2 | 38.4 (1.3) 2 | 0.245 2 |
Mode of delivery | 0.012 | ||
Vaginal delivery | 30 (79) | 19 (51) | |
Cesarean section | 8 (21) | 18 (49) | |
Obstetric complications | |||
Hypertensive disorder | 5 (13) | 7 (19) | 0.496 |
Gestational diabetes mellitus | 3 (8) | 4 (11) | 0.711 3 |
COVID-19 Omicron infection to delivery, days | 4.5 (6) 1 | ||
Timing of COVID-19 Omicron infection | |||
First trimester, <13 weeks | 0 (0) | ||
Second trimester, 13–27 weeks | 3 (8) | ||
Third trimester, ≥27 weeks | 35 (92) | ||
Vaccine dose during pregnancy | |||
First trimester, <13 weeks | 18 (47) | 7 (19) | 0.029 |
Second trimester, 13–27 weeks | 19 (50) | 17 (46) | 0.902 |
Third trimester, ≥27weeks | 13 (8) | 11 (30) | 0.500 |
Vaccine dose | |||
Primary series with one booster dose | 22 (58) | 22 (60) | 0.891 |
Primary series, completed | 13 (34) | 12 (32) | 0.870 |
Primary series, partial | 3 (8) | 3 (8) | 1.000 3 |
Vaccine Type | 0.924 3 | ||
Messenger RNA | 12 (32) | 10 (27) | |
Adenoviral vector | 2 (5) | 3 (8) | |
Protein subunit | 2 (5) | 1 (3) | |
Mixed vaccine | 22 (58) | 23 (62) | |
Vaccine Administered During Pregnancy, doses | |||
Messenger RNA | 42 (84) | 30 (86) | 0.533 |
Adenoviral vector | 6 (12) | 5 (14) | 0.781 |
Protein subunit | 2 (4) | 0 (0) | 0.493 3 |
Last vaccine to maternal blood sampling, days | 143.8 (90.7) 1 | 142.2 (97.5) 1 | 0.941 1 |
Last vaccine to delivery, days | 145.7 (91.6) 1 | 143 (97.8) 1 | 0.902 1 |
Last vaccine to COVID-19 Omicron infection, days | 129 (90.4) 1 |
Maternal Blood, Anti-S Antibody (U/mL) | Cord Blood, Anti-S Antibody (U/mL) | |||||
Predictor Variables | B | SE | p Value | B | SE | p Value |
COVID-19 Omicron infection | 11,096.887 | 3895.534 | 0.006 | 7797.896 | 3433.965 | 0.026 |
First trimester vaccines | 7,587.933 | 4409.352 | 0.090 | 6053.706 | 3886.902 | 0.124 |
Second trimester vaccines | −2730.440 | 3998.881 | 0.497 | 102.250 | 3525.067 | 0.977 |
Third trimester vaccines | 4281.695 | 4383.091 | 0.332 | 9838.372 | 3863.753 | 0.013 |
Maternal blood, Wuhan strain 1 | Cord blood, Wuhan strain 1 | |||||
Predictor variables | B | SE | p value | B | SE | p value |
COVID-19 Omicron infection | 3.421 | 5.339 | 0.524 | 0.022 | 6.451 | 0.997 |
First trimester vaccines | 8.648 | 6.043 | 0.157 | 7.091 | 7.302 | 0.222 |
Second trimester vaccines | 25.789 | 5.481 | <0.001 | 27.066 | 6.622 | <0.001 |
Third trimester vaccines | 27.152 | 6.007 | <0.001 | 22.226 | 7.258 | <0.001 |
Maternal blood, Omicron strain 1 | Cord blood, Omicron strain 1 | |||||
Predictor variables | B | SE | p value | B | SE | p value |
COVID-19 Omicron infection | 16.150 | 6.451 | 0.015 | 2.507 | 5.080 | 0.700 |
First trimester vaccines | 12.414 | 7.302 | 0.094 | 17.383 | 5.750 | 0.021 |
Second trimester vaccines | 18.330 | 6.622 | 0.007 | 29.676 | 5.214 | <0.001 |
Third trimester vaccines | 33.051 | 7.258 | <0.001 | 37.060 | 5.715 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiang, C.-J.; Hsu, W.-L.; Su, M.-T.; Ko, W.-C.; Hsu, K.-F.; Tsai, P.-Y. Impact of Antenatal SARS-CoV-2 Exposure on SARS-CoV-2 Neutralization Potency. Vaccines 2024, 12, 164. https://doi.org/10.3390/vaccines12020164
Chiang C-J, Hsu W-L, Su M-T, Ko W-C, Hsu K-F, Tsai P-Y. Impact of Antenatal SARS-CoV-2 Exposure on SARS-CoV-2 Neutralization Potency. Vaccines. 2024; 12(2):164. https://doi.org/10.3390/vaccines12020164
Chicago/Turabian StyleChiang, Chia-Jung, Wei-Lun Hsu, Mei-Tsz Su, Wen-Chien Ko, Keng-Fu Hsu, and Pei-Yin Tsai. 2024. "Impact of Antenatal SARS-CoV-2 Exposure on SARS-CoV-2 Neutralization Potency" Vaccines 12, no. 2: 164. https://doi.org/10.3390/vaccines12020164
APA StyleChiang, C. -J., Hsu, W. -L., Su, M. -T., Ko, W. -C., Hsu, K. -F., & Tsai, P. -Y. (2024). Impact of Antenatal SARS-CoV-2 Exposure on SARS-CoV-2 Neutralization Potency. Vaccines, 12(2), 164. https://doi.org/10.3390/vaccines12020164