The Fear of SARS-CoV-2 Infection versus the Perception of COVID-19 Vaccination amongst Older Adults in Urban Areas (CoV-VAC-PL Study): A Polish Community-Based Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Measures
2.2.1. The Proprietary Questionnaire
2.2.2. Fear of COVID-19 Scale (FCV-19S)
2.2.3. Coronavirus Anxiety Scale (CAS)
2.2.4. Scale to Measure the Perception of SARS-CoV-2 Vaccines Acceptance (VAC-COVID-19)
2.2.5. Drivers of COVID-19 Vaccination Acceptance Scale (DrVac-COVID-19S)
2.3. Procedure and Ethical Considerations
2.4. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. Descriptive Statistics of the Scales Applied to this Study
3.3. Impact of Sociodemographic Variables on Fear of COVID-19 and Attitudes toward COVID-19 Vaccination
3.4. Correlations between Scales-Derived Values
4. Discussion
4.1. Fear of COVID-19
4.2. Attitudes toward COVID-19 Vaccination
4.3. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chadi, N.; Ryan, N.C.; Geoffroy, M.C. COVID-19 and the impacts on youth mental health: Emerging evidence from longitudinal studies. Can. J. Public Health 2022, 113, 44–52. [Google Scholar] [CrossRef]
- World Health Organization: WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 21 December 2023).
- Ministerstwo Zdrowia: Mapa Zarażeń Koronawirusem (SARS-CoV-2). Available online: https://www.gov.pl/web/koronawirus/wykaz-zarazen-koronawirusem-sars-cov-2 (accessed on 11 January 2024).
- Knolle, F.; Ronan, L.; Murray, G.K. The impact of the COVID-19 pandemic on mental health in the general population: A comparison between Germany and the UK. BMC Psychol. 2021, 9, 60. [Google Scholar] [CrossRef]
- Pfefferbaum, B.; North, C.S. Mental Health and the Covid-19 Pandemic. N. Engl. J. Med. 2020, 383, 510–512. [Google Scholar] [CrossRef]
- Yadav, U.N.; Yadav, O.P.; Singh, D.R.; Ghimire, S.; Rayamajhee, B.; Kanti Mistry, S.; Rawal, L.B.; Ali, A.M.; Kumar Tamang, M.; Mehta, S. Perceived fear of COVID-19 and its associated factors among Nepalese older adults in eastern Nepal: A cross-sectional study. PLoS ONE 2021, 16, e0254825. [Google Scholar] [CrossRef]
- Mistry, S.K.; Ali, A.M.; Yadav, U.N.; Das, S.; Akter, N.; Huda, M.N.; Hadisuyatmana, S.; Rahman, S.; Lim, D.; Rahman, M.M. COVID-19 related anxiety and its associated factors: A cross-sectional study on older adults in Bangladesh. BMC Psychiatry 2022, 22, 737. [Google Scholar] [CrossRef]
- Lee, S.W.; Yang, J.M.; Moon, S.Y.; Yoo, I.K.; Ha, E.K.; Kim, S.Y.; Park, U.M.; Choi, S.; Lee, S.H.; Ahn, Y.M.; et al. Association between mental illness and COVID-19 susceptibility and clinical outcomes in South Korea: A nationwide cohort study. Lancet Psychiatry 2020, 7, 1025–1031. [Google Scholar] [CrossRef]
- Yang, J.; Zheng, Y.; Gou, X.; Pu, K.; Chen, Z.; Guo, Q.; Ji, R.; Wang, H.; Wang, Y.; Zhou, Y. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis. Int. J. Infect. Dis. 2020, 94, 91–95. [Google Scholar] [CrossRef]
- Clark, A.; Jit, M.; Warren-Gash, C.; Guthrie, B.; Wang, H.H.X.; Mercer, S.W.; Sanderson, C.; McKee, M.; Troeger, C.; Ong, K.L.; et al. Global, regional, and national estimates of the population at increased risk of severe COVID-19 due to underlying health conditions in 2020: A modelling study. Lancet Glob. Health 2020, 8, e1003–e1017. [Google Scholar] [CrossRef] [PubMed]
- Wadman, M.; You, J. The vaccine wars. Science 2017, 356, 364–365. [Google Scholar] [CrossRef] [PubMed]
- Lurie, N.; Saville, M.; Hatchett, R.; Halton, J. Developing Covid-19 Vaccines at Pandemic Speed. N. Engl. J. Med. 2020, 382, 1969–1973. [Google Scholar] [CrossRef] [PubMed]
- Wouters, O.J.; Shadlen, K.C.; Salcher-Konrad, M.; Pollard, A.J.; Larson, H.J.; Teerawattananon, Y.; Jit, M. Challenges in ensuring global access to COVID-19 vaccines: Production, affordability, allocation, and deployment. Lancet 2021, 397, 1023–1034. [Google Scholar] [CrossRef]
- Ghasemiyeh, P.; Mohammadi-Samani, S.; Firouzabadi, N.; Dehshahri, A.; Vazin, A. A focused review on technologies, mechanisms, safety, and efficacy of available COVID-19 vaccines. Int. Immunopharmacol. 2021, 100, 108162. [Google Scholar] [CrossRef]
- Aw, J.; Seng, J.J.B.; Seah, S.S.Y.; Low, L.L. COVID-19 Vaccine Hesitancy—A Scoping Review of Literature in High-Income Countries. Vaccines 2021, 9, 900. [Google Scholar] [CrossRef]
- Aw, J.; Seah, S.S.Y.; Seng, B.J.J.; Low, L.L. COVID-19-Related Vaccine Hesitancy among Community Hospitals’ Healthcare Workers in Singapore. Vaccines 2022, 10, 537. [Google Scholar] [CrossRef]
- Chen, T.; Dai, M.; Xia, S. Perceived facilitators and barriers to intentions of receiving the COVID-19 vaccines among elderly Chinese adults. Vaccine 2022, 40, 100–106. [Google Scholar] [CrossRef]
- Silva, T.M.; Estrela, M.; Roque, V.; Gomes, E.R.; Figueiras, A.; Roque, F.; Herdeiro, M.T. Perceptions, knowledge and attitudes about COVID-19 vaccine hesitancy in older Portuguese adults. Age Ageing 2022, 51, afac013. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yuan, B.; Lu, X.; Liu, X.; Li, L.; Geng, S.; Zhang, H.; Lai, X.; Lyu, Y.; Feng, H.; et al. Willingness to accept COVID-19 vaccine among the elderly and the chronic disease population in China. Hum. Vaccin. Immunother. 2021, 17, 4873–4888. [Google Scholar] [CrossRef]
- Turhan, Z.; Dilcen, H.Y.; Dolu, İ. The mediating role of health literacy on the relationship between health care system distrust and vaccine hesitancy during COVID-19 pandemic. Curr. Psychol. 2022, 41, 8147–8156. [Google Scholar] [CrossRef] [PubMed]
- Boon-Itt, S.; Rompho, N.; Jiarnkamolchurn, S.; Skunkan, Y. Interaction between age and health conditions in the intention to be vaccinated against COVID-19 in Thailand. Hum. Vaccin. Immunother. 2021, 17, 4816–4822. [Google Scholar] [CrossRef] [PubMed]
- Callow, M.A.; Callow, D.D. Older Adults’ Behavior Intentions Once a COVID-19 Vaccine Becomes Available. J. Appl. Gerontol. 2021, 40, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Gallant, A.J.; Nicholls, L.A.B.; Rasmussen, S.; Cogan, N.; Young, D.; Williams, L. Changes in attitudes to vaccination as a result of the COVID-19 pandemic: A longitudinal study of older adults in the UK. PLoS ONE 2021, 16, e0261844. [Google Scholar] [CrossRef]
- Nikolovski, J.; Koldijk, M.; Weverling, G.J.; Spertus, J.; Turakhia, M.; Saxon, L.; Gibson, M.; Whang, J.; Sarich, T.; Zambon, R.; et al. Factors indicating intention to vaccinate with a COVID-19 vaccine among older U.S. adults. PLoS ONE 2021, 16, e0251963. [Google Scholar] [CrossRef]
- Macinko, J.; Seixas, B.V.; Mambrini, J.V.M.; Lima-Costa, M.F. Which older Brazilians will accept a COVID-19 vaccine? Cross-sectional evidence from the Brazilian Longitudinal Study of Aging (ELSI-Brazil). BMJ Open 2021, 11, e049928. [Google Scholar] [CrossRef] [PubMed]
- Ministerstwo Zdrowia: Raport Szczepień Przeciwko COVID-19. Available online: https://www.gov.pl/web/szczepimysie/raport-szczepien-przeciwko-covid-19 (accessed on 11 January 2024).
- Cybulski, M.; Wojszel, Z.B.; Wojszel, A.; Jahel, S.; Sliwinska, P.; Krajewska-Kulak, E. Assessment of COVID-19 Anxiety Levels and Attitudes to COVID-19 Vaccine among Older Adults in Poland: A Pilot Study. Vaccines 2022, 10, 1918. [Google Scholar] [CrossRef] [PubMed]
- Ahorsu, D.K.; Lin, C.Y.; Imani, V.; Saffari, M.; Griffiths, M.D.; Pakpour, A.H. The Fear of COVID-19 Scale: Development and Initial Validation. Int. J. Ment. Health Addict. 2022, 20, 1537–1545. [Google Scholar] [CrossRef] [PubMed]
- Midorikawa, H.; Aiba, M.; Lebowitz, A.; Taguchi, T.; Shiratori, Y.; Ogawa, T.; Takahashi, A.; Takahashi, S.; Nemoto, K.; Arai, T.; et al. Confirming validity of The Fear of COVID-19 Scale in Japanese with a nationwide large-scale sample. PLoS ONE 2021, 16, e0246840. [Google Scholar] [CrossRef]
- Pilch, I.; Kurasz, Z.; Turska-Kawa, A. Experiencing fear during the pandemic: Validation of the fear of COVID-19 scale in Polish. PeerJ 2021, 9, e11263. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.A. Coronavirus Anxiety Scale: A brief mental health screener for COVID-19 related anxiety. Death Stud. 2020, 44, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Baka, Ł. Coronavirus anxiety and exhaustion among Polish front-line healthcare workers—The mediation effect of insomnia. Int. J. Occup. Med. Environ. Health 2021, 34, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Mejia, C.R.; Rodriguez-Alarcon, J.F.; Ticona, D.; Flores-Lovon, K.; Paredes-Obando, M.; Avalos-Reyes, M.S.; Ccasa-Valero, L.; Carbajal, M.; Carranza Esteban, R.F.; Mamani-Benito, O.; et al. Validation of a Scale to Measure the Perception of SARS-CoV-2 Vaccines Acceptance: The VAC-COVID-19 Scale. Electron. J. Gen. Med. 2021, 18, em303. [Google Scholar] [CrossRef]
- Yeh, Y.C.; Chen, I.H.; Ahorsu, D.K.; Ko, N.Y.; Chen, K.L.; Li, P.C.; Yen, C.F.; Lin, C.Y.; Griffiths, M.D.; Pakpour, A.H. Measurement Invariance of the Drivers of COVID-19 Vaccination Acceptance Scale: Comparison between Taiwanese and Mainland Chinese-Speaking Populations. Vaccines 2021, 9, 297. [Google Scholar] [CrossRef]
- Agrawal, S.; Dróżdż, M.; Makuch, S.; Pietraszek, A.; Sobieszczańska, M.; Mazur, G. The Assessment of Fear of COVID-19 among the Elderly Population: A Cross-Sectional Study. J. Clin. Med. 2021, 10, 5537. [Google Scholar] [CrossRef]
- Alsharawy, A.; Spoon, R.; Smith, A.; Ball, S. Gender Differences in Fear and Risk Perception During the COVID-19 Pandemic. Front. Psychol. 2021, 12, 3104. [Google Scholar] [CrossRef]
- Rodríguez-Hidalgo, A.J.; Pantaleón, Y.; Dios, I.; Falla, D. Fear of COVID-19, Stress, and Anxiety in University Undergraduate Students: A Predictive Model for Depression. Front. Psychol. 2020, 11, 3041. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, N. Generalized anxiety disorder, depressive symptoms and sleep quality during COVID-19 outbreak in China: A web-based cross-sectional survey. Psychiatry Res. 2020, 288, 112954. [Google Scholar] [CrossRef]
- Parlapani, E.; Holeva, V.; Nikopoulou, V.A.; Sereslis, K.; Athanasiadou, M.; Godosidis, A.; Stephanou, T.; Diakogiannis, I. Intolerance of Uncertainty and Loneliness in Older Adults During the COVID-19 Pandemic. Front. Psychiatry 2020, 11, 842. [Google Scholar] [CrossRef] [PubMed]
- Galasso, V.; Pons, V.; Profeta, P.; Becher, M.; Brouard, S.; Foucault, M. Gender differences in COVID-19 attitudes and behavior: Panel evidence from eight countries. Proc. Natl. Acad. Sci. USA 2020, 117, 27285–27291. [Google Scholar] [CrossRef] [PubMed]
- Hosen, I.; Pakpour, A.H.; Sakib, N.; Hussain, N.; Al Mamun, F.; Mamun, M.A. Knowledge and preventive behaviors regarding COVID-19 in Bangladesh: A nationwide distribution. PLoS ONE 2021, 16, e0251151. [Google Scholar] [CrossRef]
- Qiu, J.; Shen, B.; Zhao, M.; Wang, Z.; Xie, B.; Xu, Y. A nationwide survey of psychological distress among Chinese people in the COVID-19 epidemic: Implications and policy recommendations. Gen. Psychiatry 2020, 33, e100213. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Sun, Z.; Wu, L.; Zhu, Z.; Zhang, F.; Shang, Z.; Jia, Y.; Gu, J.; Zhou, Y.; Wang, Y.; et al. Prevalence and risk factors for acute posttraumatic stress disorder during the COVID-19 outbreak. J. Affect. Disord. 2021, 283, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Pan, R.; Wan, X.; Tan, Y.; Xu, L.; Ho, C.S.; Ho, R.C. Immediate Psychological Responses and Associated Factors during the Initial Stage of the 2019 Coronavirus Disease (COVID-19) Epidemic among the General Population in China. Int. J. Environ. Res. Public Health 2020, 17, 1729. [Google Scholar] [CrossRef]
- Rodríguez-Rey, R.; Garrido-Hernansaiz, H.; Collado, S. Psychological Impact and Associated Factors During the Initial Stage of the Coronavirus (COVID-19) Pandemic Among the General Population in Spain. Front. Psychol. 2020, 11, 1540. [Google Scholar] [CrossRef]
- Anwar, A.; Yadav, U.N.; Huda, M.N.; Das, S.; Rosenbaum, S.; Ali, A.R.M.M.; Mondal, P.K.; Rizwan, A.A.M.; Hossain, S.F.A.; Das Shuvo, S.; et al. Anxiety and Stress Related to COVID-19 Among the Community Dwelling Older Adults Residing in the Largest Refugee Camp of the World. Community Ment. Health J. 2023, 59, 1181–1192. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Chiu, M.M.; Liu, S. Daily Positive Support and Perceived Stress During COVID-19 Outbreak: The Role of Daily Gratitude Within Couples. J. Happiness Stud. 2022, 23, 65–79. [Google Scholar] [CrossRef]
- Vowels, L.M.; Carnelley, K.B.; Francois-Walcott, R.R.R. Partner support and goal outcomes during COVID-19: A mixed methods study. Eur. J. Soc. Psychol. 2021, 51, 393–408. [Google Scholar] [CrossRef]
- Mistry, S.K.; Ali, A.R.M.M.; Akther, F.; Peprah, P.; Reza, S.; Prova, S.; Yadav, U.N. Are older adults of Rohingya community (Forcibly Displaced Myanmar Nationals or FDMNs) in Bangladesh fearful of COVID-19? Findings from a cross-sectional study. PLoS ONE 2021, 16, e0253648. [Google Scholar] [CrossRef]
- Mistry, S.K.; Ali, A.R.M.M.; Irfan, N.M.; Yadav, U.N.; Siddique, R.F.; Peprah, P.; Reza, S.; Rahman, Z.; Casanelia, L.; O’Callaghan, C. Prevalence and correlates of depressive symptoms among Rohingya (forcibly displaced Myanmar nationals or FDMNs) older adults in Bangladesh amid the COVID-19 pandemic. Glob. Ment. Health 2021, 8, e23. [Google Scholar] [CrossRef]
- Mistry, S.K.; Ali, A.R.M.M.; Akther, F.; Yadav, U.N.; Harris, M.F. Exploring fear of COVID-19 and its correlates among older adults in Bangladesh. Glob. Health 2021, 17, 47. [Google Scholar] [CrossRef] [PubMed]
- Quadros, S.; Garg, S.; Ranjan, R.; Vijayasarathi, G.; Mamun, M.A. Fear of COVID 19 Infection Across Different Cohorts: A Scoping Review. Front. Psychiatry 2021, 12, 708430. [Google Scholar] [CrossRef] [PubMed]
- Music, M.; Taylor, N.; McChesney, C.; Krustev, C.; Chirila, A.; Ji, C. Perspectives of Older Adults on COVID-19 and Influenza Vaccination in Ontario, Canada. J. Prim. Care Community Health 2023, 14. [Google Scholar] [CrossRef]
- Wagner, A.L.; Porth, J.M.; Wu, Z.; Boulton, M.L.; Finlay, J.M.; Kobayashi, L.C. Vaccine Hesitancy During the COVID-19 Pandemic: A Latent Class Analysis of Middle-Aged and Older US Adults. J. Community Health 2022, 47, 408–415. [Google Scholar] [CrossRef]
- Lima-Costa, M.F.; Macinko, J.; Mambrini, J.V.M. COVID-19 vaccine hesitancy in a national sample of older Brazilians: The ELSI-COVID Initiative, March 2021. Epidemiol. Serviços Saúde 2022, 31, e2021469. [Google Scholar] [CrossRef]
- Wei, L.; Zeng, W.; Huang, Y.; Ye, G.; Chen, Y.; Yang, L.; Cai, Y. COVID-19 vaccination coverage and its cognitive determinants among older adults in Shanghai, China, during the COVID-19 epidemic. Front. Public Health 2023, 11, 1163616. [Google Scholar] [CrossRef]
- Wong, L.P.; Alias, H.; Tan, Y.R.; Tan, K.M. Older people and responses to COVID-19: A cross-sectional study of prevention practices and vaccination intention. Int. J. Older People Nurs. 2022, 17, e12436. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.C.S.; Wong, E.L.Y.; Huang, J.; Cheung, A.W.L.; Law, K.; Chong, M.K.C.; Ng, R.W.Y.; Lai, C.K.C.; Boon, S.S.; Lau, J.T.F.; et al. Acceptance of the COVID-19 vaccine based on the health belief model: A population-based survey in Hong Kong. Vaccine 2021, 39, 1148–1156. [Google Scholar] [CrossRef] [PubMed]
- Magadmi, R.M.; Kamel, F.O. Beliefs and barriers associated with COVID-19 vaccination among the general population in Saudi Arabia. BMC Public Health 2021, 21, 1438. [Google Scholar] [CrossRef]
- Tran, V.D.; Pak, T.V.; Gribkova, E.I.; Galkina, G.A.; Loskutova, E.E.; Dorofeeva, V.V.; Dewey, R.S.; Nguyen, K.T.; Pham, D.T. Determinants of COVID-19 vaccine acceptance in a high infection-rate country: A cross-sectional study in Russia. Pharm. Pract. 2021, 19, 2276. [Google Scholar] [CrossRef]
- Al-Hanawi, M.K.; Alshareef, N.; El-Sokkary, R.H. Willingness to Receive COVID-19 Vaccination among Older Adults in Saudi Arabia: A Community-Based Survey. Vaccines 2021, 9, 1257. [Google Scholar] [CrossRef] [PubMed]
- Loomba, S.; de Figueiredo, A.; Piatek, S.J.; de Graaf, K.; Larson, H.J. Measuring the impact of COVID-19 vaccine misinfor-mation on vaccination intent in the UK and USA. Nat. Hum. Behav. 2021, 5, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, F.M.; Fadila, D.E.; Elmawla, D.A.E.A. Older adults’ acceptance of the COVID-19 vaccine: Application of the health belief model. Nurs. Open 2023, 10, 6989–7002. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Fang, Y.; Yu, F.Y.; Chan, P.S.; Chen, S.; Sun, F. Facilitators and Barriers to Take up a COVID-19 Vaccine Booster Dose among Community-Dwelling Older Adults in Hong Kong: A Population-Based Random Telephone Survey. Vaccines 2022, 10, 966. [Google Scholar] [CrossRef] [PubMed]
- Neumann-Böhme, S.; Varghese, N.E.; Sabat, I.; Barros, P.P.; Brouwer, W.; van Exel, J.; Schreyögg, J.; Stargardt, T. Once we have it, will we use it? A European survey on willingness to be vaccinated against COVID-19. Eur. J. Health Econ. 2020, 21, 977–982. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.A.M.; Colebunders, R.; Gele, A.A.; Farah, A.A.; Osman, S.; Guled, I.A.; Abdullahi, A.A.M.; Hussein, A.M.; Ali, A.M.; Siewe Fodjo, J.N. COVID-19 Vaccine Acceptability and Adherence to Preventive Measures in Somalia: Results of an Online Survey. Vaccines 2021, 9, 543. [Google Scholar] [CrossRef] [PubMed]
- Berg, M.B.; Lin, L. Predictors of COVID-19 vaccine intentions in the United States: The role of psychosocial health constructs and demographic factors. Transl. Behav. Med. 2021, 11, 1782–1788. [Google Scholar] [CrossRef]
- Chen, H.; Li, X.; Gao, J.; Liu, X.; Mao, Y.; Wang, R.; Zheng, P.; Xiao, Q.; Jia, Y.; Fu, H.; et al. Health Belief Model Perspective on the Control of COVID-19 Vaccine Hesitancy and the Promotion of Vaccination in China: Web-Based Cross-sectional Study. J. Med. Internet Res. 2021, 23, e29329. [Google Scholar] [CrossRef]
- Nomura, S.; Eguchi, A.; Yoneoka, D.; Kawashima, T.; Tanoue, Y.; Murakami, M.; Sakamoto, H.; Maruyama-Sakurai, K.; Gilmour, S.; Shi, S.; et al. Reasons for being unsure or unwilling regarding intention to take COVID-19 vaccine among Japanese people: A large cross-sectional national survey. Lancet Reg. Health West. Pac. 2021, 14, 100223. [Google Scholar] [CrossRef]
- Shmueli, L. Predicting intention to receive COVID-19 vaccine among the general population using the health belief model and the theory of planned behavior model. BMC Public Health 2021, 21, 804. [Google Scholar] [CrossRef]
- Lazarus, J.V.; Ratzan, S.C.; Palayew, A.; Gostin, L.O.; Larson, H.J.; Rabin, K.; Kimball, S.; El-Mohandes, A. A global survey of potential acceptance of a COVID-19 vaccine. Nat. Med. 2021, 27, 225–228. [Google Scholar] [CrossRef]
- Fisher, K.A.; Bloomstone, S.J.; Walder, J.; Crawford, S.; Fouayzi, H.; Mazor, K.M. Attitudes Toward a Potential SARS-CoV-2 Vaccine: A Survey of U.S. Adults. Ann. Intern. Med. 2020, 173, 964–973. [Google Scholar] [CrossRef]
- Marzo, R.R.; Ahmad, A.; Abid, K.; Khatiwada, A.P.; Ahmed, A.; Kyaw, T.M.; Abidin, I.B.Z.; Srithar, M.; Sinnathamby, S.; Sarvasundram, A.P.; et al. Factors influencing the acceptability of COVID-19 vaccination: A cross-sectional study from Malaysia. Vacunas 2022, 23, S33–S40. [Google Scholar] [CrossRef]
Feature | n | % | |
---|---|---|---|
Sex | Female | 401 | 50.1 |
Male | 399 | 49.9 | |
Age | 60–69 years old | 297 | 37.1 |
70–79 years old | 252 | 31.5 | |
≥80 years old | 251 | 31.4 | |
Marital status | Married | 479 | 59.9 |
Separated | 2 | 0.3 | |
Divorced | 76 | 9.5 | |
Widow/Widower | 193 | 24.1 | |
Education | Higher | 202 | 25.3 |
Secondary | 320 | 40.0 | |
Primary | 63 | 7.9 | |
Vocational | 215 | 26.9 | |
Place of residence | City up to 250,000 residents | 250 | 31.25 |
City of 250,000–500,000 residents | 300 | 37.5 | |
City above 500,000 residents | 250 | 31.25 | |
Financial situation | Very bad | 10 | 1.3 |
Bad | 0 | 0.0 | |
Rather bad | 16 | 2.0 | |
Neither good nor bad | 141 | 17.6 | |
Rather good | 146 | 18.3 | |
Good | 378 | 47.3 | |
Very good | 109 | 13.6 | |
Professional status | I have retired | 647 | 80.9 |
I am a disability/illness allowance beneficiary | 29 | 3.6 | |
I am professionally active (I work) | 124 | 15.5 | |
Health condition self-assessment before the pandemic | Very bad | 1 | 0.1 |
Bad | 1 | 0.1 | |
Rather bad | 13 | 1.6 | |
Neither good nor bad | 54 | 6.8 | |
Rather good | 153 | 19.1 | |
Good | 381 | 47.6 | |
Very good | 19 | 24.6 | |
Mental disorders before the pandemic | Yes | 35 | 4.4 |
No | 765 | 95.6 | |
Mental disorders diagnosed before the pandemic | Depression | 17 | 2.1 |
Panic disorder | 1 | 0.1 | |
Neurosis | 1 | 0.1 | |
Sleep disorders | 16 | 2.1 | |
Health condition self-assessment during the pandemic | Very bad | 0 | 0.0 |
Bad | 8 | 1.0 | |
Rather bad | 22 | 2.8 | |
Neither good nor bad | 93 | 11.6 | |
Rather good | 196 | 24.5 | |
Good | 322 | 40.3 | |
Very good | 159 | 19.9 | |
Mental disorders during the pandemic | Yes | 4 | 0.5 |
No | 796 | 99.5 | |
Mental disorders diagnosed during the pandemic | Depression | 1 | 0.1 |
Panic disorder | 1 | 0.1 | |
Agoraphobia | 1 | 0.1 | |
Sleep disorders | 1 | 0.1 | |
SARS-CoV-2 infection confirmed by a PCR test positive result | Yes | 304 | 38.0 |
No | 496 | 62.0 | |
Number of SARS-CoV-2 infections | 1 | 204 | 67.1 |
2 | 78 | 25.7 | |
3 | 20 | 6.6 | |
4 | 2 | 0.7 | |
COVID-19 vaccination | Yes | 706 | 88.3 |
No | 94 | 11.7 | |
Number of vaccine doses against COVID-19 | 1 | 11 | 1.6 |
2 | 168 | 23.8 | |
3 | 350 | 49.6 | |
4 | 164 | 23.2 | |
5 | 13 | 1.8 | |
Sources of information on COVID-19 and vaccines against COVID-19 (1) | Internet | 295 | 36.9 |
Television | 643 | 80.4 | |
Press | 371 | 46.4 | |
Family | 457 | 57.1 | |
Acquaintances, friends | 361 | 45.1 | |
Medical personnel | 312 | 39.0 | |
The vaccination decision was influenced by my recovering from the disease or a symptomatic SARS-CoV-2 infection in the case of a close relative. | Yes | 295 | 36.9 |
No | 505 | 63.1 | |
What role did your family and direct contacts (acquaintances, friends) play as far as COVID-19 vaccination was concerned? | They encouraged me to be vaccinated against COVID-19. | 344 | 43.0 |
They encouraged me to be vaccinated against COVID-19. | 177 | 22.1 | |
Difficult to say. | 279 | 34.9 |
Scale | M | SD | Min | Q25 | Me | Q75 | Max |
---|---|---|---|---|---|---|---|
CAS | 1.03 | 1.95 | 0.0 | 0.0 | 0.0 | 1.0 | 13.0 |
FCV-19S | 15.61 | 5.75 | 7.0 | 11.0 | 16.0 | 19.0 | 35.0 |
Values subscale | 15.24 | 4.69 | 3.0 | 13.0 | 16.5 | 18.0 | 21.0 |
Impacts subscale | 15.63 | 4.48 | 3.0 | 14.0 | 17.0 | 19.0 | 21.0 |
Knowledge subscale | 13.15 | 3.95 | 3.0 | 10.0 | 14.0 | 16.0 | 21.0 |
Autonomy subscale | 17.21 | 2.94 | 8.0 | 15.0 | 18.0 | 19.0 | 21.0 |
DrVac-COVID-19S-total | 61.23 | 12.35 | 25.0 | 54.0 | 64.0 | 70.0 | 84.0 |
VAC-COVID-19-negative subscale | 28.33 | 4.86 | 7.0 | 26.0 | 29.0 | 32.0 | 35.0 |
VAC-COVID-19-positive subscale | 15.98 | 3.23 | 4.0 | 14.0 | 16.0 | 18.0 | 20.0 |
VAC-COVID-19-total | 44.31 | 7.20 | 18.0 | 41.0 | 45.0 | 50.0 | 55.0 |
Scale | Women (n = 401) | Men (n = 399) | p a | ||
---|---|---|---|---|---|
M ± SD | Me (IQR) | M ± SD | Me (IQR) | ||
CAS | 1.18 ± 1.98 | 0 (0–2) | 0.87 ± 1.90 | 0 (0–1) | <0.001 * |
FCV-19S | 16.38 ± 5.72 | 16 (13–20) | 14.83 ± 5.67 | 15 (10–18) | <0.001 * |
Values subscale | 15.42 ± 4.55 | 17 (13–18) | 15.05 ± 4.83 | 16 (13–18) | 0.324 |
Impacts subscale | 15.62 ± 4.47 | 17 (14–19) | 15.64 ± 4.49 | 17 (14–18) | 0.877 |
Knowledge subscale | 13.30 ± 4.03 | 14 (10–16) | 13.00 ± 3.87 | 13 (10–16) | 0.235 |
Autonomy subscale | 17.25 ± 2.90 | 18 (16–19) | 17.17 ± 2.98 | 18 (15–19) | 0.785 |
DrVac-COVID-19S | 61.60 ± 12.17 | 64 (54–71) | 60.85 ± 12.53 | 64 (54–70) | 0.392 |
VAC-COVID-19-negative subscale | 28.44 ± 4.92 | 29 (26–32) | 28.21 ± 4.80 | 28 (26–32) | 0.350 |
VAC-COVID-19-positive subscale | 16.07 ± 3.26 | 16 (14–18) | 15.89 ± 3.20 | 16 (14–18) | 0.360 |
VAC-COVID-19-total score | 44.51 ± 7.28 | 46 (40–50) | 44.10 ± 7.13 | 45 (41–50) | 0.318 |
Scale | 60–69 Years (I) (n = 297) | 70–79 Years (II) (n = 252) | 80 and More Years (III) (n = 251) | p a | p b | |||
---|---|---|---|---|---|---|---|---|
M ± SD | Me (IQR) | M ± SD | Me (IQR) | M ± SD | Me (IQR) | |||
CAS | 0.74 ± 1.67 | 0 (0–1) | 1.13 ± 1.96 | 0 (0–1) | 1.27 ± 2.18 | 0 (0–2) | 0.008 * | I-II: 0.096 I-III: 0.061 II-III: 1 |
FCV-19S | 14.63 ± 6.05 | 14 (9–18) | 15.81 ± 5.34 | 16 (13–18) | 16.55 ± 5.61 | 16 (12–20) | <0.001 * | I-II: 0.009 * I-III: <0.001 * II-III: 0.542 |
Values subscale | 14.45 ± 4.88 | 16 (12–18) | 15.56 ± 4.69 | 17 (14–18) | 15.84 ± 4.35 | 17 (14–19) | <0.001 * | I-II: 0.01 * I-III: 0.001 * II-III: 1 |
Impacts subscale | 14.86 ± 4.73 | 16 (13–18) | 15.92 ± 4.44 | 17 (14.5–19) | 16.26 ± 4.08 | 18 (14–19) | <0.001 * | I-II: 0.015 * I-III: <0.001 * II-III: 1 |
Knowledge subscale | 13.41 ± 3.91 | 14 (10–16) | 13.36 ± 3.93 | 14 (10–16) | 12.63 ± 3.99 | 13 (10–16) | 0.041 * | I-II: 1 I-III: 0.074 II-III: 0.097 |
Autonomy subscale | 17.33 ± 2.88 | 18 (16–19) | 17.29 ± 2.84 | 18 (15.5–19) | 16.98 ± 3.12 | 18 (15–19) | 0.431 | - |
DrVac-COVID-19S | 60.05 ± 12.87 | 63 (51–70) | 62.13 ± 12.15 | 66 (56–70) | 61.71 ± 11.84 | 64 (55–70) | 0.121 | - |
VAC-COVID-19-negative subscale | 28.42 ± 5.09 | 29 (26–32) | 28.33 ± 4.58 | 29 (26–32) | 28.20 ± 4.87 | 28 (25–32) | 0.637 | - |
VAC-COVID-19-positive subscale | 15.58 ± 3.54 | 16 (14–18) | 16.27 ± 2.97 | 16 (14–18) | 16.17 ± 3.05 | 16 (15–18) | 0.112 | - |
VAC-COVID-19-total score | 44.01 ± 7.71 | 45 (40–50) | 44.60 ± 6.77 | 46 (41–50) | 44.37 ± 7.03 | 45 (41–50) | 0.869 | - |
Scale | Single (I) (n = 50) | Widow/Widower (II) (n = 193) | Married (III) (n = 479) | Divorced/Separated (IV) (n = 78) | p a | p b | ||||
---|---|---|---|---|---|---|---|---|---|---|
M ± SD | Me (IQR) | M ± SD | Me (IQR) | M ± SD | Me (IQR) | M ± SD | Me (IQR) | |||
CAS | 0.88 ± 2.06 | 0 (0–0) | 1.31 ± 2.01 | 0 (0–2) | 0.89 ± 1.76 | 0 (0–1) | 1.32 ± 2.64 | 0 (0–1) | 0.002 * | I-II: 0.237 I-III: 1 I-IV: 0.845 II-III: 0.027 * II-IV: 1 III-IV: 0.820 |
FCV-19S | 13.84 ± 6.50 | 12.5 (8–18) | 16.25 ± 5.74 | 16 (12–20) | 15.30 ± 5.58 | 15 (11–19) | 17.04 ± 5.90 | 17 (14–19) | 0.003 * | I-II: 0.022 * I-III: 0.236 I-IV: 0.007 * II-III: 0.411 II-IV: 1 III-IV: 0.126 |
Values subscale | 12.98 ± 6.36 | 15 (6–18) | 15.42 ± 4.44 | 17 (13–18) | 15.41 ± 4.57 | 17 (13–18) | 15.15 ± 4.54 | 16 (13–18) | 0.103 | - |
Impacts subscale | 13.12 ± 6.07 | 15 (7–18) | 15.54 ± 4.46 | 17 (13–18) | 15.94 ± 4.25 | 17 (14–19) | 15.54 ± 4.24 | 17 (14–18) | 0.016 * | I-II: 0.094 I-III: 0.01 * I-IV: 0.328 II-III: 1 II-IV: 1 III-IV: 1 |
Knowledge subscale | 13.24 ± 4.28 | 14 (11–16) | 12.93 ± 4.04 | 13 (10–16) | 13.38 ± 3.84 | 14 (10–16) | 12.26 ± 4.12 | 12,5 (9–15) | 0.133 | - |
Autonomy subscale | 16.76 ± 3.01 | 17 (15–19) | 16.97 ± 3.11 | 18 (15–19) | 17.22 ± 2.94 | 18 (15–19) | 18.04 ± 2.30 | 18 (17–19) | 0.043 * | I-II: 1 I-III: 1 I-IV: 0.085 II-III: 1 II-IV: 0.083 III-IV: 0.237 |
DrVac-COVID-19S | 56.10 ± 15.95 | 59 (42–68) | 60.87 ± 12.38 | 64 (53–70) | 61.95 ± 11.83 | 65 (54–70) | 60.99 ± 12.17 | 63 (54–70) | 0.087 | - |
VAC-COVID-19-negative subscale | 27.02 ± 5.69 | 28.5 (22–32) | 28.01 ± 4.87 | 28 (25–32) | 28.63 ± 4.83 | 29 (26–32) | 28.08 ± 4.30 | 28 (26–31) | 0.100 | - |
VAC-COVID-19-positive subscale | 15.10 ± 4.00 | 16 (12–18) | 16.13 ± 3.10 | 16 (14–18) | 16.04 ± 3.21 | 16 (14–18) | 15.81 ± 3.09 | 16 (13–18) | 0.442 | - |
VAC-COVID-19-total score | 42.12 ± 8.67 | 46 (36–49) | 44.14 ± 7.21 | 45 (40–50) | 44.67 ± 7.10 | 45 (41–50) | 43.88 ± 6.66 | 44 (40–49) | 0.187 | - |
Scale | Primary (I) (n = 63) | Secondary (II) (n = 320) | Vocational (III) (n = 215) | Higher (IV) (n = 202) | p a | p b | ||||
---|---|---|---|---|---|---|---|---|---|---|
M ± SD | Me (IQR) | M ± SD | Me (IQR) | M ± SD | Me (IQR) | M ± SD | Me (IQR) | |||
CAS | 0.97 ± 1.75 | 0 (0–1) | 1.11 ± 2.01 | 0 (0–1) | 1.19 ± 1.98 | 0 (0–2) | 0.75 ± 1.84 | 0 (0–1) | 0.01 * | I-II: 1 I-III: 1 I-IV: 1 II-III: 1 II-IV: 0.178 III-IV: 0.038 * |
FCV-19S | 16.21 ± 5.72 | 16 (12–20) | 15.57 ± 5.74 | 16 (11–19) | 16.45 ± 5.96 | 17 (13–20) | 14.58 ± 5.40 | 14 (10–18) | 0.002 * | I-II: 1 I-III: 1 I-IV: 0.1780 II-III: 0.269 II-IV: 0.258 III-IV: 0.001 * |
Values subscale | 14.40 ± 5.10 | 16 (12–18) | 15.52 ± 4.45 | 17 (14–18) | 14.69 ± 4.95 | 16 (13–18) | 15.63 ± 4.60 | 17 (13–19) | 0.068 | - |
Impacts subscale | 15.05 ± 4.59 | 17 (12–18) | 15.81 ± 4.32 | 17 (14–18.5) | 15.11 ± 4.74 | 16 (14–18) | 16.08 ± 4.37 | 17 (14–19) | 0.065 | - |
Knowledge subscale | 11.29 ± 3.76 | 11 (9–14) | 13.11 ± 4.01 | 14 (10–16) | 12.47 ± 3.68 | 12 (10–15) | 14.52 ± 3.78 | 15 (12–17) | <0.001 * | I-II: 0.003 * I-III: 0.236 I-IV: <0.001 * II-III: 0.244 II-IV: <0.001 * III-IV: <0.001 * |
Autonomy subscale | 17.06 ± 2.76 | 18 (15–19) | 17.20 ± 3.07 | 18 (16–19) | 16.91 ± 2.78 | 18 (15–19) | 17.59 ± 2.94 | 18 (16–20) | 0.046 * | I-II: 1 I-III: 1 I-IV: 0.827 II-III: 0.711 II-IV: 0.896 III-IV: 0.038 * |
DrVac-COVID-19S | 57.79 ± 11.86 | 60 (49–67) | 61.64 ± 11.63 | 64 (54–70) | 59.17 ± 12.80 | 61 (53–69) | 63.83 ± 12.58 | 66 (57–73) | <0.001 * | I-II: 0.147 I-III: 1 I-IV: <0.001 * II-III: 0.404 II-IV: 0.056 III-IV: <0.001 * |
VAC-COVID-19-negative subscale | 27.11 ± 6.31 | 29 (23–32) | 28.52 ± 4.64 | 29 (26–32) | 27.58 ± 4.90 | 28 (25–32) | 29.20 ± 4.46 | 30 (26–33) | 0.006 * | I-II: 1 I-III: 1 I-IV: 0.240 II-III: 0.192 II-IV: 0.761 III-IV: 0.005 * |
VAC-COVID-19-positive subscale | 15.97 ± 3.84 | 17 (13–19) | 15.99 ± 3.25 | 16 (14–18) | 15.85 ± 3.12 | 16 (14–18) | 16.12 ± 3.13 | 16 (14–18) | 0.720 | - |
VAC-COVID-19-total score | 43.08 ± 9.32 | 47 (36–51) | 44.50 ± 7.03 | 45 (41–50) | 43.42 ± 7.20 | 44 (40–49) | 45.32 ± 6.60 | 46 (41–51) | 0.072 | - |
Scale | Disability/Illness Allowance (I) (n = 29) | Pension (II) (n = 647) | Professionally Active (III) (n = 124) | p a | p b | |||
---|---|---|---|---|---|---|---|---|
M ± SD | Me (IQR) | M ± SD | Me (IQR) | M ± SD | Me (IQR) | |||
CAS | 3.31 ± 2.84 | 4 (0–6) | 0.98 ± 1.85 | 0 (0–1) | 0.74 ± 1.83 | 0 (0–1) | <0.001 * | I-II: <0.001 * I-III: <0.001 * II-III: 0.708 |
FCV-19S | 18.07 ± 4.80 | 19 (17–20) | 15.79 ± 5.67 | 16 (12–19) | 14.08 ± 6.03 | 13.5 (9–17.5) | <0.001 * | I-II: 0.016 I-III: <0.001 * II-III: <0.001* |
Values subscale | 15.17 ± 3.05 | 15 (14–16) | 15.33 ± 4.64 | 17 (13–18) | 14.74 ± 5.24 | 17 (11.5–18) | 0.239 | - |
Impacts subscale | 15.34 ± 2.68 | 16 (14–16) | 15.76 ± 4.42 | 17 (14–19) | 15.03 ± 5.06 | 16.5 (12.5–18) | 0.098 | - |
Knowledge subscale | 14.38 ± 3.00 | 15 (13–16) | 12.98 ± 3.95 | 13 (10–16) | 13.78 ± 4.08 | 14 (10.5–17) | 0.023 * | I-II: 0.162 I-III: 1 II-III: 0.111 |
Autonomy subscale | 13.38 ± 3.57 | 12 (11–16) | 17.28 ± 2.80 | 18 (16–19) | 17.72 ± 2.90 | 18 (16.5–20) | <0.001 * | I-II: <0.001 * I-III: <0.001 * II-III: 0.202 |
DrVac-COVID-19S | 58.28 ± 8.20 | 57 (54–60) | 61.35 ± 12.17 | 64 (54–70) | 61.27 ± 13.94 | 65 (51–71) | 0.072 | - |
VAC-COVID-19-negative subscale | 28.28 ± 3.32 | 28 (27–31) | 28.22 ± 4.89 | 28 (25–32) | 28.87 ± 4.97 | 30 (27–32) | 0.210 | - |
VAC-COVID-19-positive subscale | 16.00 ± 2.63 | 16 (16–17) | 16.04 ± 3.19 | 16 (14–18) | 15.68 ± 3.53 | 16 (14–18) | 0.694 | - |
VAC-COVID-19-total score | 44.28 ± 5.18 | 44 (43–47) | 44.26 ± 7.22 | 45 (40–50) | 44.55 ± 7.59 | 46 (41.5–50) | 0.672 | - |
Scale | City of up to 250,000 Residents (I) (n = 250) | City of 250,000–500,000 Residents (II) (n = 300) | City Above 500,000 Residents (III) (n = 250) | p a | p b | |||
---|---|---|---|---|---|---|---|---|
M ± SD | Me (IQR) | M ± SD | Me (IQR) | M ± SD | Me (IQR) | |||
CAS | 1.73 ± 2.12 | 1 (0–3) | 0.76 ± 1.88 | 0 (0–0) | 0.66 ± 1.64 | 0 (0–0) | <0.001 * | I-II: <0.001 * I-III: <0.001 * II-III: 1 |
FCV-19S | 16.40 ± 3.96 | 17 (14–19) | 16.37 ± 6.26 | 16 (12–19) | 13.90 ± 6.24 | 12 (9–18) | <0.001 * | I-II: 0.260 I-III: <0.001 * II-III: <0.001 * |
Values subscale | 16.36 ± 3.57 | 17 (15–18) | 15.01 ± 4.30 | 16 (12–18) | 14.38 ± 5.81 | 16 (10–19) | <0.001 * | I-II: 0.002 * I-III: 0.008 * II-III: 1 |
Impacts subscale | 16.50 ± 3.42 | 17 (15–18) | 15.68 ± 4.04 | 16.5 (14–18) | 14.70 ± 5.61 | 16 (11–19) | 0.021 * | I-II: 0.110 I-III: 0.025 * II-III: 1 |
Knowledge subscale | 13.89 ± 3.57 | 15 (12–16) | 12.96 ± 3.82 | 13 (10–16) | 12.64 ± 4.36 | 13 (9–16) | <0.001 * | I-II: 0.008 * I-III: <0.001 * II-III: 1 |
Autonomy subscale | 16.50 ± 3.13 | 18 (14–19) | 17.19 ± 2.65 | 18 (16–19) | 17.94 ± 2.91 | 18 (16–21) | <0.001 * | I-II: 0.242 I-III: <0.001 * II-III: <0.001* |
DrVac-COVID-19S | 63.26 ± 10.23 | 65 (58–70) | 60.84 ± 11.61 | 62 (54–70) | 59.66 ± 14.69 | 63 (48–71) | 0.026 * | I-II: 0.063 I-III: 0.049 * II-III: 1 |
VAC-COVID-19-negative subscale | 29.64 ± 4.22 | 30 (27–33) | 27.07 ± 4.86 | 27 (24–31) | 28.52 ± 5.10 | 30 (26–32) | <0.001 * | I-II: <0.001 * I-III: 0.097 II-III: <0.001 * |
VAC-COVID-19-positive subscale | 16.29 ± 2.34 | 16 (15–18) | 16.00 ± 3.10 | 16 (14–19) | 15.66 ± 4.03 | 17 (13–19) | 0.790 | - |
VAC-COVID-19-total score | 45.93 ± 5.87 | 47 (43–50) | 43.07 ± 7.00 | 43 (39–48) | 44.18 ± 8.29 | 47 (39–50) | <0.001 * | I-II: <0.001 * I-III: 0.318 II-III: 0.004 * |
Scale | SARS-CoV-2 Infection (n = 304) | No SARS-CoV-2 Infection (n = 496) | p a | ||
---|---|---|---|---|---|
M ± SD | Me (IQR) | M ± SD | Me (IQR) | ||
CAS | 1.49 ± 2.38 | 0 (0–2) | 0.75 ± 1.56 | 0 (0–1) | <0.001 * |
FCV-19S | 16.01 ± 5.70 | 16 (12–19) | 15.36 ± 5.77 | 15 (11–19) | 0.096 |
Values subscale | 15.84 ± 4.21 | 17 (14–18) | 14.86 ± 4.93 | 16 (12–18) | 0.017 * |
Impacts subscale | 15.99 ± 4.09 | 17 (14–18.5) | 15.41 ± 4.69 | 17 (13–19) | 0.212 |
Knowledge subscale | 13.71 ± 3.76 | 14 (11–16) | 12.81 ± 4.03 | 13 (10–16) | 0.001 * |
Autonomy subscale | 17.03 ± 3.15 | 18 (15–19) | 17.32 ± 2.81 | 18 (16–19) | 0.400 |
DrVac-COVID-19S | 62.58 ± 11.63 | 65 (56–70) | 60.40 ± 12.71 | 63 (52.5–70) | 0.023 * |
VAC-COVID-19-negative subscale | 28.55 ± 4.49 | 29 (26–32) | 28.19 ± 5.07 | 29 (26–32) | 0.600 |
VAC-COVID-19-positive subscale | 16.09 ± 3.13 | 16 (14.5–18) | 15.92 ± 3.29 | 16 (14–18) | 0.599 |
VAC-COVID-19-total score | 44.64 ± 6.68 | 45 (41–50) | 44.10 ± 7.51 | 45 (40–50) | 0.625 |
Scale | COVID-19 Vaccination (n = 706) | No COVID-19 Vaccination (n = 94) | p a | ||
---|---|---|---|---|---|
M ± SD | Me (IQR) | M ± SD | Me (IQR) | ||
CAS | 1.13 ± 2.00 | 0 (0–2) | 0.30 ± 1.29 | 0 (0–0) | <0.001 * |
FCV-19S | 16.12 ± 5.58 | 16 (12–19) | 1.74 ± 5.56 | 10.5 (7–15) | <0.001 * |
Values subscale | 16.36 ± 3.53 | 17 (15–19) | 6.78 ± 3.57 | 6 (4–9) | <0.001 * |
Impacts subscale | 16.66 ± 3.45 | 17 (15–19) | 7.90 ± 3.73 | 8 (5–11) | <0.001 * |
Knowledge subscale | 13.62 ± 3.77 | 14 (11–16) | 9.60 ± 3.42 | 9 (7–11) | <0.001 * |
Autonomy subscale | 17.17 ± 2.99 | 18 (15–19) | 17.52 ± 2.51 | 18 (16–19) | 0.594 |
DrVac-COVID-19S | 63.81 ± 10.28 | 65.5 (58–71) | 41.80 ± 8.76 | 41 (36–48) | <0.001 * |
VAC-COVID-19-negative subscale | 29.21 ± 4.14 | 30 (27–33) | 21.68 ± 4.71 | 21 (19–24) | <0.001 * |
VAC-COVID-19-positive subscale | 16.62 ± 2.62 | 17 (15–19) | 11.20 ± 3.36 | 12 (9–13) | <0.001 * |
VAC-COVID-19-total score | 45.83 ± 5.80 | 46 (42–50) | 32.88 ± 6.44 | 32 (28–36) | <0.001 * |
Scale | CAS | FCV-19S | V | I | K | A | DrVac- COVID-19S | VAC- COVID-19-Negative | VAC- COVID-19-Positive | |
---|---|---|---|---|---|---|---|---|---|---|
FCV-19S | r | 0.550 | ||||||||
p | <0.001 * | |||||||||
Values (V) subscale | r | 0.196 | 0.204 | |||||||
p | <0.001 * | <0.001 * | ||||||||
Impacts (I) subscale | r | 0.163 | 0.198 | 0.885 | ||||||
p | <0.001 * | <0.001 * | <0.001 * | |||||||
Knowledge (K) subscale | r | 0.114 | 0.134 | 0.520 | 0.520 | |||||
p | <0.001 * | <0.001 * | <0.001 * | <0.001 * | ||||||
Autonomy (A) subscale | r | −0.211 | −0.237 | 0.230 | 0.258 | 0.004 | ||||
p | <0.001 * | <0.001 * | <0.001 * | <0.001 * | 0.917 | |||||
DrVac-COVID-19S | r | 0.114 | 0.161 | 0.899 | 0.906 | 0.715 | 0.390 | |||
p | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | ||||
VAC-COVID-19-negative subscale | r | 0.159 | 0.152 | 0.557 | 0.517 | 0.408 | 0.215 | 0.573 | ||
p | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | |||
VAC-COVID-19-positive subscale | r | 0.120 | 0.223 | 0.554 | 0.545 | 0.349 | 0.145 | 0.566 | 0.563 | |
p | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | ||
VAC-COVID-19-total score | r | 0.159 | 0.206 | 0.612 | 0.579 | 0.428 | 0.203 | 0.629 | 0.926 | 0.820 |
p | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cybulski, M.; Shpakou, A.; Cwalina, U. The Fear of SARS-CoV-2 Infection versus the Perception of COVID-19 Vaccination amongst Older Adults in Urban Areas (CoV-VAC-PL Study): A Polish Community-Based Study. Vaccines 2024, 12, 223. https://doi.org/10.3390/vaccines12030223
Cybulski M, Shpakou A, Cwalina U. The Fear of SARS-CoV-2 Infection versus the Perception of COVID-19 Vaccination amongst Older Adults in Urban Areas (CoV-VAC-PL Study): A Polish Community-Based Study. Vaccines. 2024; 12(3):223. https://doi.org/10.3390/vaccines12030223
Chicago/Turabian StyleCybulski, Mateusz, Andrei Shpakou, and Urszula Cwalina. 2024. "The Fear of SARS-CoV-2 Infection versus the Perception of COVID-19 Vaccination amongst Older Adults in Urban Areas (CoV-VAC-PL Study): A Polish Community-Based Study" Vaccines 12, no. 3: 223. https://doi.org/10.3390/vaccines12030223
APA StyleCybulski, M., Shpakou, A., & Cwalina, U. (2024). The Fear of SARS-CoV-2 Infection versus the Perception of COVID-19 Vaccination amongst Older Adults in Urban Areas (CoV-VAC-PL Study): A Polish Community-Based Study. Vaccines, 12(3), 223. https://doi.org/10.3390/vaccines12030223