Unveiling the Therapeutic Horizon: HPV Vaccines and Their Impact on Cutaneous Diseases—A Comprehensive Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Genital and Extragenital Warts
3.2. HPV Vaccine as a Treatment in Cutaneous Neoplasia
3.3. HPV Vaccine as a Treatment for Cutaneous Diseases in the Immunosuppressed Population
4. Discussion
4.1. The Context of HPV Infection and Vaccination
4.2. General Perception of HPV Vaccination
4.3. HPV Vaccination as a Therapeutic Outlet
4.3.1. HPV Vaccine for Genital and Extragenital Warts
4.3.2. HPV Vaccine for Nonmelanoma Skin Cancers
4.3.3. HPV Vaccine—A Therapeutic Option for Immunocompromised Patients
4.4. HPV Vaccine Tolerability and Safety
4.5. Future Direction
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gheit, T. Mucosal and Cutaneous Human Papillomavirus Infections and Cancer Biology. Front. Oncol. 2019, 9, 355. [Google Scholar] [CrossRef]
- Egawa, N.; Egawa, K.; Griffin, H.; Doorbar, J. Human Papillomaviruses; Epithelial Tropisms, and the Development of Neoplasia. Viruses 2015, 7, 3863–3890. [Google Scholar] [CrossRef]
- Neagu, N.; Dianzani, C.; Venuti, A.; Bonin, S.; Voidăzan, S.; Zalaudek, I.; Conforti, C. The Role of HPV in Keratinocyte Skin Cancer Development: A Systematic Review. J. Eur. Acad. Dermatol. Venereol. 2023, 37, 40–46. [Google Scholar] [CrossRef]
- Bar-Ilan, E.; Bar, J.; Baniel, A.; Slodownik, D.; Artzi, O.; Samuelov, L.; Sprecher, E.; Mashiah, J. Intralesional Human Papillomavirus Vaccine for the Treatment of Recalcitrant Cutaneous Warts. J. Dermatol. 2023, 50, 1373–1380. [Google Scholar] [CrossRef]
- Abeck, D.; Fölster-Holst, R. Quadrivalent Human Papillomavirus Vaccination: A Promising Treatment for Recalcitrant Cutaneous Warts in Children. Acta. Derm. Venereol. 2015, 95, 1017–1018. [Google Scholar] [CrossRef]
- Waldman, A.; Whiting, D.; Rani, M.; Alam, M. HPV Vaccine for Treatment of Recalcitrant Cutaneous Warts in Adults: A Retrospective Cohort Study. Dermatol. Surg. 2019, 45, 1739–1741. [Google Scholar] [CrossRef]
- Pham, C.T.; Juhasz, M.; Sung, C.T.; Mesinkovska, N.A. The Human Papillomavirus Vaccine as a Treatment for Human Papillomavirus-Related Dysplastic and Neoplastic Conditions: A Literature Review. J. Am. Acad. Dermatol. 2020, 82, 202–212. [Google Scholar] [CrossRef]
- Harari, A.; Chen, Z.; Burk, R.D. Human Papillomavirus Genomics: Past, Present and Future. Curr. Probl. Dermatol. 2014, 45, 1–18. [Google Scholar]
- Ciccarese, G.; Herzum, A.; Serviddio, G.; Occella, C.; Parodi, A.; Drago, F. Efficacy of Human Papillomavirus Vaccines for Recalcitrant Anogenital and Oral Warts. J. Clin. Med. 2023, 12, 7317. [Google Scholar] [CrossRef]
- Kost, Y.; Zhu, T.H.; Blasiak, R.C. Clearance of Recalcitrant Warts in a Pediatric Patient Following Administration of the Nine-valent Human Papillomavirus Vaccine. Pediatr. Dermatol. 2020, 37, 748–749. [Google Scholar] [CrossRef]
- Kuan, L.Y.; Chua, S.H.; Pan, J.Y.; Yew, Y.W.; Tan, W.P. The Quadrivalent Human Papillomavirus Vaccine in Recalcitrant Acral Warts: A Retrospective Study. Ann. Acad. Med. Singap. 2020, 49, 749–755. [Google Scholar] [CrossRef]
- Hayashi, A.; Matsumoto, K.; Mitsuishi, T. Three Cases of Recalcitrant Cutaneous Warts Treated with Quadrivalent Human Papillomavirus (HPV) Vaccine: The HPV Type May Not Determine the Outcome. Br. J. Dermatol. 2020, 182, 1285–1287. [Google Scholar] [CrossRef]
- Yang, M.Y.; Son, J.H.; Kim, G.W.; Kim, H.S.; Ko, H.C.; Kim, M.B.; Lim, K.M.; Kim, B.S. Quadrivalent Human Papilloma Virus Vaccine for the Treatment of Multiple Warts: A Retrospective Analysis of 30 Patients. J. Dermatol. Treat. 2019, 30, 405–409. [Google Scholar] [CrossRef]
- Choi, H. Can Quadrivalent Human Papillomavirus Prophylactic Vaccine Be an Effective Alternative for the Therapeutic Management of Genital Warts? An Exploratory Study. Int. Braz J Urol 2019, 45, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Gilsono, R.; Nugento, D.; Bennetto, K.; Doréo, C.J.; Murrayo, M.L.; Meadowso, J.; Haddowo, L.J.; Laceyo, C.; Sandmanno, F.; Jito, M.; et al. Imiquimod versus Podophyllotoxin, with and without Human Papillomavirus Vaccine, for Anogenital Warts: The HIPvac Factorial RCT. Health Technol. Assess. 2020, 24, 1–116. [Google Scholar] [CrossRef]
- Kost, Y.; Deutsch, A.; Zhu, T.H.; Hulur, I.; Blasiak, R.C. Vaccination against Human Papillomavirus Is Not Associated with Resolution of Verruca Vulgaris in Immunocompetent 9- to 21-Year Olds. J. Am. Acad. Dermatol. 2022, 87, 250–252. [Google Scholar] [CrossRef]
- Bossart, S.; Gabutti, M.P.; Seyed Jafari, S.M.; Hunger, R.E. Nonavalent Human Papillomavirus Vaccination as Alternative Treatment for Genital Warts. Dermatol. Ther. 2020, 33, e13771. [Google Scholar] [CrossRef]
- Shin, J.O.; Son, J.H.; Lee, J.; Kim, H.S.; Ko, H.C.; Kim, B.S.; Kim, M.B.; Shin, K. Nonavalent Human Papilloma Virus Vaccine for the Treatment of Multiple Recalcitrant Warts: An Open-Label Study. J. Am. Acad. Dermatol. 2022, 86, 940–941. [Google Scholar] [CrossRef]
- Couselo-Rodríguez, C.; Pérez-Feal, P.; Alarcón-Pérez, C.E.; Bou-Boluda, L.; Baselga, E. Clearance of Genital Warts in a Pediatric Patient Following Administration of the Nonavalent Human Papillomavirus Vaccine. Int. J. Dermatol. 2021, 60, e377–e379. [Google Scholar] [CrossRef]
- Kazlouskaya, M.; Fiadorchanka, N. Regression of Giant Condyloma Acuminata after One Dose of 9-Valent Human Papillomavirus (HPV) Vaccine. Int. J. Dermatol. 2019, 58, e245–e247. [Google Scholar] [CrossRef]
- Martin, J.M.; Mateo, E.; Ramón, D. Spontaneous Regression of a Recalcitrant Wart after Bivalent Papillomavirus Vaccination. J. Pediatr. 2018, 194, 259–259.e1. [Google Scholar] [CrossRef]
- Nofal, A.; Marei, A.; Ibrahim, A.; Shimaa, M.; Nofal, E.; Nabil, M. Intralesional versus Intramuscular Bivalent Human Papillomavirus Vaccine in the Treatment of Recalcitrant Common Warts. J. Am. Acad. Dermatol. 2020, 82, 94–100. [Google Scholar] [CrossRef]
- Nofal, E.; Emam, S.; Aldesoky, F.; Ghonemy, S.; Adelshafy, A. Intralesional Bivalent Human Papilloma Virus Vaccine as a Treatment for Anogenital Warts versus Topical Podophyllin Resin 25%: A Pilot Study. Dermatol. Ther. 2022, 35, e15384. [Google Scholar] [CrossRef]
- Nofal, A.; Nofal, H.; Alwirshiffani, E.; ElGhareeb, M.I. Treatment Response and Tolerability of Intralesional Quadrivalent versus Bivalent Human Papillomavirus Vaccine for Recalcitrant Warts: A Randomized Controlled Trial. J. Am. Acad. Dermatol. 2023, 89, 1051–1052. [Google Scholar] [CrossRef] [PubMed]
- Nassar, A.; Alakad, R.; Essam, R.; Bakr, N.M.; Nofal, A. Comparative Efficacy of Intralesional Candida Antigen, Intralesional Bivalent Human Papilloma Virus Vaccine, and Cryotherapy in the Treatment of Common Warts. J. Am. Acad. Dermatol. 2022, 87, 419–421. [Google Scholar] [CrossRef] [PubMed]
- Marei, A.; Nofal, A.; Alakad, R.; Abdel-Hady, A. Combined Bivalent Human Papillomavirus Vaccine and Candida Antigen versus Candida Antigen Alone in the Treatment of Recalcitrant Warts. J. Cosmet. Dermatol. 2020, 19, 758–762. [Google Scholar] [CrossRef] [PubMed]
- Fawzy, M.; Nofal, E.; Abdelkhalek, N.; Ehab, R. Intralesional Bivalent and Quadrivalent Human Papillomavirus Vaccines Didn’t Significantly Enhance the Response of Multiple Anogenital Warts When Co-Administered with Intralesional Candida Antigen Immunotherapy. A Randomized Controlled Trial. Arch. Dermatol. Res. 2023, 315, 2813–2823. [Google Scholar] [CrossRef] [PubMed]
- Jeon, Y.J.; Koo, D.W.; Lee, J.S. Bowen Disease of the Nail Apparatus with HPV 16 Positivity and Resolution with Human Papillomavirus Vaccination. Br. J. Dermatol. 2020, 183, E1. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.Y.; Das, M.; Poppito, N.; Jarrett, P. Immunotherapy for the Treatment of Penile Intraepithelial Neoplasia Associated with Human Papilloma Virus Type 16 Using Topical Imiquimod and Human Papilloma Virus Vaccination. Australas. J. Dermatol. 2021, 62, e589–e591. [Google Scholar] [CrossRef] [PubMed]
- Nichols, A.J.; Gonzalez, A.; Clark, E.S.; Khan, W.N.; Rosen, A.C.; Guzman, W.; Rabinovitz, H.; Badiavas, E.V.; Kirsner, R.S.; Ioannides, T. Combined Systemic and Intratumoral Administration of Human Papillomavirus Vaccine to Treat Multiple Cutaneous Basaloid Squamous Cell Carcinomas. JAMA Dermatol. 2018, 154, 927–930. [Google Scholar] [CrossRef]
- Bossart, S.; Imstepf, V.; Hunger, R.E.; Seyed Jafari, S.M. Nonavalent Human Papillomavirus Vaccination as a Treatment for Skin Warts in Immunosuppressed Adults: A Case Series. Acta Derm. Venereol. 2020, 100, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Merio, L.; Chanal, J.; Jachiet, M.; Pourcher, V.; Arnault, J.P.; Jouhet, C.; Milpied-Homsi, B.; Bourgault-Villada, I.; Aubin, F.; Caux, F.; et al. Human Papilloma Virus Vaccine for Palmoplantar Warts: A Retrospective Study of 18 Patients. J. Eur. Acad. Dermatol. Venereol. 2023, 37, e223–e225. [Google Scholar] [CrossRef] [PubMed]
- Nichols, A.; Nahm, W.; Rabinovitz, H.; Ioannides, T. Keratinocyte Carcinomas in Immunocompromised Patients Are Reduced After Administration of the Nonavalent Human Papillomavirus Vaccine. J. Drugs Dermatol. 2022, 21, 526–528. [Google Scholar] [CrossRef]
- Namuduri, R.P.; Lee, L.Y.; Aan Koh, M.J. Combination of Oral Acitretin, Antiretroviral Therapy, Human Papillomavirus Vaccine, and Carbon Dioxide Laser Ablation for the Treatment of Giant Condyloma Acuminatum of the Vulva in a Patient with AIDS. Dermatol. Ther. 2020, 33, e14253. [Google Scholar] [CrossRef] [PubMed]
- Maor, D.; Brennand, S.; Goh, M.S.Y.; Fahey, V.; Tabrizi, S.N.; Chong, A.H. A Case of Acquired Epidermodysplasia Verruciformis in a Renal Transplant Recipient Clearing with Multimodal Treatment Including HPV (Gardasil) Vaccination. Australas. J. Dermatol. 2018, 59, 147–148. [Google Scholar] [CrossRef] [PubMed]
- Comerlato, J.; Kops, N.L.; Bessel, M.; Horvath, J.D.; Fernandes, B.V.; Villa, L.L.; De Souza, F.M.A.; Pereira, G.F.M.; Wendland, E.M. Sex Differences in the Prevalence and Determinants of HPV-Related External Genital Lesions in Young Adults: A National Cross-Sectional Survey in Brazil. BMC Infect. Dis. 2020, 20, 683. [Google Scholar] [CrossRef] [PubMed]
- Maccosham, A.; El-Zein, M.; Burchell, A.N.; Tellier, P.P.; Coutleé, F.; Franco, E.L. Transmission Reduction and Prevention with HPV Vaccination (TRAP-HPV) Study Protocol: A Randomised Controlled Trial of the Efficacy of HPV Vaccination in Preventing Transmission of HPV Infection in Heterosexual Couples. BMJ Open 2020, 10, e039383. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, C.; Alves, J.; Rodrigues, A.; Azevedo, J. Epidemiological Impact of the Human Papillomavirus Vaccination Program on Genital Warts in Portugal: A Retrospective, Chart Review Study. Vaccine 2022, 40, 275–281. [Google Scholar] [CrossRef]
- Lukács, A.; Máté, Z.; Farkas, N.; Mikó, A.; Tenk, J.; Hegyi, P.; Németh, B.; Czumbel, L.M.; Wuttapon, S.; Kiss, I.; et al. The Quadrivalent HPV Vaccine Is Protective against Genital Warts: A Meta-Analysis. BMC Public Health 2020, 20, 691. [Google Scholar] [CrossRef]
- Di Lorenzo, A.; Berardi, P.; Martinelli, A.; Bianchi, F.P.; Tafuri, S.; Stefanizzi, P. Real-Life Safety Profile of the 9-Valent HPV Vaccine Based on Data from the Puglia Region of Southern Italy. Vaccines 2022, 10, 419. [Google Scholar] [CrossRef]
- Wang, W.; Kothari, S.; Baay, M.; Garland, S.M.; Giuliano, A.R.; Nygård, M.; Velicer, C.; Tota, J.; Sinha, A.; Skufca, J.; et al. Real-World Impact and Effectiveness Assessment of the Quadrivalent HPV Vaccine: A Systematic Review of Study Designs and Data Sources. Expert Rev. Vaccines 2022, 21, 227–240. [Google Scholar] [CrossRef]
- Goldstone, S.E.; Giuliano, A.R.; Palefsky, J.M.; Lazcano-Ponce, E.; Penny, M.E.; Cabello, R.E.; Moreira, E.D.; Baraldi, E.; Jessen, H.; Ferenczy, A.; et al. Efficacy, Immunogenicity, and Safety of a Quadrivalent HPV Vaccine in Men: Results of an Open-Label, Long-Term Extension of a Randomised, Placebo-Controlled, Phase 3 Trial. Lancet Infect. Dis. 2022, 22, 413–425. [Google Scholar] [CrossRef]
- Osmani, V.; Fett, S.; Tauscher, M.; Donnachie, E.; Schneider, A.; Klug, S.J. HPV Vaccination Leads to Decrease of Anogenital Warts and Precancerous Lesions of the Cervix Uteri in Young Women with Low Vaccination Rates: A Retrospective Cohort Analysis. BMC Cancer 2022, 22, 1293. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Quiles, C.; López-Lacort, M.; Díez-Domingo, J.; Rodrigo-Casares, V.; Orrico-Sánchez, A. Human Papillomavirus Vaccines Effectiveness to Prevent Genital Warts: A Population-Based Study Using Health System Integrated Databases, 2009–2017. Vaccine 2022, 40, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Magdaleno-Tapial, J.; Hernández-Bel, P.; Ortiz-Salvador, J.M.; Casanova-Esquembre, A.; Lorca-Spröhnle, J.; Labrandero-Hoyos, C.; Peñuelas-Leal, R.; Sánchez-Carazo, J.L.; Pérez-Ferriols, A. Changes in the Prevalence of Human Papillomavirus Genotypes in Genital Warts Since the Introduction of Prophylactic Vaccines. Actas Dermosifiliogr. 2022, 113, 874–880. [Google Scholar] [CrossRef] [PubMed]
- Nygård, S.; Nygård, M.; Orumaa, M.; Hansen, B.T. Quadrivalent HPV Vaccine Effectiveness against Anogenital Warts: A Registry-Based Study of 2,2 Million Individuals. Vaccine 2023, 41, 5469–5476. [Google Scholar] [CrossRef] [PubMed]
- Husein-ElAhmed, H. Could the Human Papillomavirus Vaccine Prevent Recurrence of Ano-Genital Warts? A Systematic Review and Meta-Analysis. Int. J. STD AIDS 2020, 31, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Gosens, K.C.M.; Van Der Zee, R.P.; Van Heukelom, M.L.S.; Jongen, V.W.; Cairo, I.; Van Eeden, A.; Van Noesel, C.J.M.; Quint, W.G.V.; Pasmans, H.; Dijkgraaf, M.G.W.; et al. HPV Vaccination to Prevent Recurrence of Anal Intraepithelial Neoplasia in HIV+ MSM. AIDS 2021, 35, 1753–1764. [Google Scholar] [CrossRef] [PubMed]
- Cocchio, S.; Prandi, G.M.; Furlan, P.; Bertoncello, C.; Fonzo, M.; Saia, M.; Baldovin, T.; Baldo, V. Time-Trend of Hospitalizations for Anogenital Warts in Veneto Region in the HPV Vaccination Era: A Cross Sectional Study (2007–2018). BMC Infect. Dis. 2020, 20, 857. [Google Scholar] [CrossRef]
- Denecke, A.; Iftner, T.; Iftner, A.; Riedle, S.; Ocak, M.; Luyten, A.; Üye, I.; Tunc, K.; Petry, K.U. Significant Decline of HPV 6 Infection and Genital Warts despite Low HPV Vaccination Coverage in Young Women in Germany: A Long-Term Prospective, Cohort Data Analysis. BMC Infect. Dis. 2021, 21, 634. [Google Scholar] [CrossRef]
- Shing, J.Z.; Hull, P.C.; Zhu, Y.; Gargano, J.W.; Markowitz, L.E.; Cleveland, A.A.; Pemmaraju, M.; Park, I.U.; Whitney, E.; Mitchel, E.F.; et al. Trends in Anogenital Wart Incidence among Tennessee Medicaid Enrollees, 2006–2014: The Impact of Human Papillomavirus Vaccination. Papillomavirus Res. 2019, 7, 141–149. [Google Scholar] [CrossRef]
- Righolt, C.H.; Willows, K.; Kliewer, E.V.; Mahmud, S.M. Incidence of Anogenital Warts after the Introduction of the Quadrivalent HPV Vaccine Program in Manitoba, Canada. PLoS ONE 2022, 17, e0267646. [Google Scholar] [CrossRef]
- Orumaa, M.; Kjaer, S.K.; Dehlendorff, C.; Munk, C.; Olsen, A.O.; Hansen, B.T.; Campbell, S.; Nygård, M. The Impact of HPV Multi-Cohort Vaccination: Real-World Evidence of Faster Control of HPV-Related Morbidity. Vaccine 2020, 38, 1345–1351. [Google Scholar] [CrossRef]
- Sindhuja, T.; Bhari, N.; Gupta, S. Asian Guidelines for Condyloma Acuminatum. J. Infect. Chemother. 2022, 28, 845–852. [Google Scholar] [CrossRef]
- Markowitz, L.E.; Drolet, M.; Lewis, R.M.; Lemieux-Mellouki, P.; Pérez, N.; Jit, M.; Brotherton, J.M.; Ogilvie, G.; Kreimer, A.R.; Brisson, M. Human Papillomavirus Vaccine Effectiveness by Number of Doses: Updated Systematic Review of Data from National Immunization Programs. Vaccine 2022, 40, 5413–5432. [Google Scholar] [CrossRef]
- Basu, P.; Malvi, S.G.; Joshi, S.; Bhatla, N.; Muwonge, R.; Lucas, E.; Verma, Y.; Esmy, P.O.; Poli, U.R.R.; Shah, A.; et al. Vaccine efficacy against persistent human papillomavirus (HPV) 16/18 infection at 10 years after one, two, and three doses of quadrivalent HPV vaccine in girls in India: A multicentre, prospective, cohort study. Lancet Oncol. 2021, 22, 1518–1529. [Google Scholar] [CrossRef]
- Barnabas, R.V.; Brown, E.R.; Onono, M.A.; Bukusi, E.A.; Njoroge, B.; Winer, R.L.; Galloway, D.A.; Pinder, L.F.; Donnell, D.; Wakhungu, I.; et al. Efficacy of Single-Dose Human Papillomavirus Vaccination among Young African Women. NEJM Évid. 2022, 1, EVIDoa2100056. [Google Scholar] [CrossRef]
- Kreimer, A.R.; Sampson, J.N.; Porras, C.; Schiller, J.T.; Kemp, T.; Herrero, R.; Wagner, S.; Boland, J.; Schussler, J.; Lowy, D.R.; et al. Evaluation of Durability of a Single Dose of the Bivalent HPV Vaccine: The CVT Trial. J. Natl. Cancer Inst. 2020, 112, 1038–1046. [Google Scholar] [CrossRef]
- Bergman, H.; Buckley, B.S.; Villanueva, G.; Petkovic, J.; Garritty, C.; Lutje, V.; Riveros-Balta, A.X.; Low, N.; Henschke, N. Comparison of Different Human Papillomavirus (HPV) Vaccine Types and Dose Schedules for Prevention of HPV-Related Disease in Females and Males. Cochrane Database Syst. Rev. 2019, 2019, CD013479. [Google Scholar] [CrossRef]
- Ellingson, M.K.; Sheikha, H.; Nyhan, K.; Oliveira, C.R.; Niccolai, L.M. Human Papillomavirus Vaccine Effectiveness by Age at Vaccination: A Systematic Review. Hum. Vaccines Immunother. 2023, 19, 2239085. [Google Scholar] [CrossRef]
- Lee, T.S.; Kothari-Talwar, S.; Singhal, P.K.; Yee, K.; Kulkarni, A.; Lara, N.; Roset, M.; Giuliano, A.R.; Garland, S.M.; Ju, W. Cross-Sectional Study Estimating the Psychosocial Impact of Genital Warts and Other Anogenital Diseases in South Korea. BMJ Open 2019, 9, e025035. [Google Scholar] [CrossRef]
- Hirth, J. Disparities in HPV Vaccination Rates and HPV Prevalence in the United States: A Review of the Literature. Hum. Vaccines Immunother. 2019, 15, 146–155. [Google Scholar] [CrossRef]
- Sharma, S.J.; Schartinger, V.H.; Wuerdemann, N.; Langer, C.; Möllenhoff, K.; Collin, L.; Sutton, L.; Riedl, D.; Kreuter, A.; Lechner, M.; et al. Awareness of Human Papillomavirus (HPV) and HPV Vaccination amongst the General Population in Germany: Lack of Awareness and Need for Action. Oncol. Res. Treat 2022, 45, 561–566. [Google Scholar] [CrossRef]
- Tran, P.L.; Bruneteaux, A.; Lazaro, G.; Antoine, B.; Malik, B. HPV Vaccination Hesitancy in Reunion Island. J. Gynecol. Obstet. Hum. Reprod. 2022, 51, 102277. [Google Scholar] [CrossRef]
- Karamanidou, C.; Dimopoulos, K. Greek Health Professionals’ Perceptions of the HPV Vaccine, State Policy Recommendations and Their Own Role with Regards to Communication of Relevant Health Information. BMC Public Health 2016, 16, 467. [Google Scholar] [CrossRef]
- Voidăzan, S.; Tarcea, M.; Morariu, S.H.; Grigore, A.; Dobreanu, M. Human Papillomavirus Vaccine-Knowledge and Attitudes among Parents of Children Aged 10-14 Years: A Cross-Sectional Study, Tîrgu Mureş, Romania. Cent Eur. J. Public Health 2016, 24, 29–38. [Google Scholar] [CrossRef]
- Ren, X.; Qiu, L.; Ke, W.; Zou, H.; Liu, A.; Wu, T. Awareness and Acceptance of HPV Vaccination for Condyloma Acuminata among Men Who Have Sex with Men in China. Hum. Vaccines Immunother. 2022, 18, 2115267. [Google Scholar] [CrossRef]
- Chambers, C.; Deeks, S.L.; Sutradhar, R.; Cox, J.; de Pokomandy, A.; Grennan, T.; Hart, T.A.; Lambert, G.; Moore, D.M.; Coutlée, F.; et al. Increases in Human Papillomavirus Vaccine Coverage over 12 Months among a Community-Recruited Cohort of Gay, Bisexual, and Other Men Who Have Sex with Men in Canada. Vaccine 2022, 40, 3690–3700. [Google Scholar] [CrossRef]
- Gay, J.; Johnson, N.; Kavuru, V.; Phillips, M. Utility of the Human Papillomavirus Vaccination in Management of HPV-Associated Cutaneous Lesions. Ski. Ther. Lett. 2021, 26, 6–8. [Google Scholar]
- Giannini, S.L.; Hanon, E.; Moris, P.; Van Mechelen, M.; Morel, S.; Dessy, F.; Fourneau, M.A.; Colau, B.; Suzich, J.; Losonksy, G.; et al. Enhanced Humoral and Memory B Cellular Immunity Using HPV16/18 L1 VLP Vaccine Formulated with the MPL/Aluminium Salt Combination (AS04) Compared to Aluminium Salt Only. Vaccine 2006, 24, 5937–5949. [Google Scholar] [CrossRef]
- Gemigniani, F.; Hernández-Losa, J.; Ferrer, B.; García-Patos, V. Focal Epithelial Hyperplasia by Human Papillomavirus (HPV)-32 Misdiagnosed as HPV-16 and Treated with Combination of Retinoids, Imiquimod and Quadrivalent HPV Vaccine. J. Dermatol. 2015, 42, 1172–1175. [Google Scholar] [CrossRef]
- Woestenberg, P.J.; Guevara Morel, A.E.; Bogaards, J.A.; Hooiveld, M.; Schurink-Van ’t Klooster, T.M.; Hoebe, C.J.P.A.; Van Der Sande, M.A.B.; Van Benthem, B.H.B. Partial Protective Effect of Bivalent Human Papillomavirus 16/18 Vaccination Against Anogenital Warts in a Large Cohort of Dutch Primary Care Patients. Clin. Infect. Dis. 2021, 73, 291. [Google Scholar] [CrossRef]
- Senkomago, V.; Henley, S.J.; Thomas, C.C.; Mix, J.M.; Markowitz, L.E.; Saraiya, M. Human Papillomavirus–Attributable Cancers—United States, 2012–2016. MMWR. Morb. Mortal. Wkly. Rep. 2019, 68, 724–728. [Google Scholar] [CrossRef]
- Elst, L.; Albersen, M. HPV Vaccination: Does It Have a Role in Preventing Penile Cancer and Other Preneoplastic Lesions? Semin. Oncol. Nurs. 2022, 38, 151284. [Google Scholar] [CrossRef]
- Stratton, K.L.; Culkin, D.J. A Contemporary Review of HPV and Penile Cancer. Oncology 2016, 30, 245–249. [Google Scholar]
- Dimčić, T.; Komloš, K.F.; Poljak, M.; Kavalar, R.; Breznik, V. Digital Squamous Cell Carcinoma Associated with Possibly Carcinogenic Human Papillomavirus Type 73 (HPV73): A Case Report. Acta Dermatovenerol. Alp. Pannonica Adriat. 2020, 25, 215–218. [Google Scholar] [CrossRef]
- Tommasino, M. The Biology of Beta Human Papillomaviruses. Virus Res. 2017, 231, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Sichero, L.; Rollison, D.E.; Amorrortu, R.P.; Tommasino, M. Beta Human Papillomavirus and Associated Diseases. Acta Cytol. 2019, 63, 100–108. [Google Scholar] [CrossRef]
- Dehlendorff, C.; Baandrup, L.; Kjaer, S.K. Real-World Effectiveness of Human Papillomavirus Vaccination Against Vulvovaginal High-Grade Precancerous Lesions and Cancers. J. Natl. Cancer Inst. 2021, 113, 869–874. [Google Scholar] [CrossRef] [PubMed]
- Enokida, T.; Moreira, A.; Bhardwaj, N. Vaccines for Immunoprevention of Cancer. J. Clin. Investig. 2021, 131, e146956. [Google Scholar] [CrossRef] [PubMed]
- Joura, E.A.; Giuliano, A.R.; Iversen, O.-E.; Bouchard, C.; Mao, C.; Mehlsen, J.; Moreira, E.D.; Ngan, Y.; Petersen, L.K.; Lazcano-Ponce, E.; et al. A 9-Valent HPV Vaccine against Infection and Intraepithelial Neoplasia in Women. N. Engl. J. Med. 2015, 372, 711–723. [Google Scholar] [CrossRef]
- Wieland, U.; Oellig, F.; Kreuter, A. Anal Dysplasia and Anal Cancer. English Version. Hautarzt 2020, 71, 74–81. [Google Scholar] [CrossRef]
- Nichols, A.J.; Allen, A.H.; Shareef, S.; Badiavas, E.V.; Kirsner, R.S.; Ioannides, T. Association of Human Papillomavirus Vaccine With the Development of Keratinocyte Carcinomas. JAMA Dermatol. 2017, 153, 571–574. [Google Scholar] [CrossRef] [PubMed]
- Boudes, M.; Venard, V.; Routiot, T.; Buzzi, M.; Maillot, F. Prevalence and Distribution of HPV Genotypes in Immunosuppressed Patients in Lorraine Region. Viruses 2021, 13, 2454. [Google Scholar] [CrossRef]
- Wielgos, A.A.; Pietrzak, B. Human Papilloma Virus-Related Premalignant and Malignant Lesions of the Cervix and Anogenital Tract in Immunocompromised Women. Ginekol. Pol. 2020, 91, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Bacik, L.C.; Chung, C. Human Papillomavirus-Associated Cutaneous Disease Burden in Human Immunodeficiency Virus (HIV)-Positive Patients: The Role of Human Papillomavirus Vaccination and a Review of the Literature. Int. J. Dermatol. 2018, 57, 627–634. [Google Scholar] [CrossRef] [PubMed]
- Larsen, H.K.; Kjaer, S.K.; Haedersdal, M.; Kjaer, A.K.; Bonde, J.H.; Sørensen, S.S.; Thomsen, L.T. Anal Human Papillomavirus Infection in Kidney Transplant Recipients Compared With Immunocompetent Controls. Clin. Infect. Dis. 2022, 75, 1993–1999. [Google Scholar] [CrossRef] [PubMed]
- Blomberg, M.; He, S.Y.; Harwood, C.; Arron, S.T.; Demehri, S.; Green, A.; Asgari, M.M. Research Gaps in the Management and Prevention of Cutaneous Squamous Cell Carcinoma in Organ Transplant Recipients. Br. J. Dermatol. 2017, 177, 1225–1233. [Google Scholar] [CrossRef]
- Wielgos, A.; Pietrzak, B.; Sikora, M.; Martirosian, G.; Suchonska, B.; Gozdowska, J.; Oldakowska-Jedynak, U.; Jabiry-Zieniewicz, Z.; Durlik, M.; Rudnicka, L.; et al. Human Papillomavirus (HPV) DNA Detection Using Self-Sampling Devices in Women Undergoing Long Term Immunosuppressive Therapy. Viruses 2020, 12, 962. [Google Scholar] [CrossRef]
- Laniosz, V.; Lehman, J.S.; Poland, G.A.; Wetter, D.A. Literature-Based Immunization Recommendations for Patients Requiring Immunosuppressive Medications for Autoimmune Bullous Dermatoses. Int. J. Dermatol. 2016, 55, 599–607. [Google Scholar] [CrossRef]
- Chikandiwa, A.; Pisa, P.T.; Muller, E.E.; Tamalet, C.; Mayaud, P.; Chersich, M.F.; Delany-Moretlwe, S. Incidence, Persistence, Clearance, and Correlates of Genital Human Papillomavirus Infection and Anogenital Warts in a Cohort of Men Living With Human Immunodeficiency Virus in South Africa. Sex. Transm. Dis. 2019, 46, 347–353. [Google Scholar] [CrossRef]
- Mena, G.; García-Basteiro, A.L.; Llupià, A.; Díez, C.; Costa, J.; Gatell, J.-M.; García, F.; Bayas, J.-M. Factors Associated with the Immune Response to Hepatitis A Vaccination in HIV-Infected Patients in the Era of Highly Active Antiretroviral Therapy. Vaccine 2013, 31, 3668–3674. [Google Scholar] [CrossRef]
- Geretti, A.M.; Brook, G.; Cameron, C.; Chadwick, D.; French, N.; Heyderman, R.; Ho, A.; Hunter, M.; Ladhani, S.; Lawton, M.; et al. British HIV Association Guidelines on the Use of Vaccines in HIV-Positive Adults 2015. HIV Med. 2016, 17, s2–s81. [Google Scholar] [CrossRef]
- McClymont, E.; Lee, M.; Raboud, J.; Coutlée, F.; Walmsley, S.; Lipsky, N.; Loutfy, M.; Trottier, S.; Smaill, F.; Klein, M.B.; et al. The Efficacy of the Quadrivalent Human Papillomavirus Vaccine in Girls and Women Living With Human Immunodeficiency Virus. Clin. Infect. Dis. 2019, 68, 788–794. [Google Scholar] [CrossRef]
- Smith, S.P.; Baxendale, H.E.; Sterling, J.C. Clearance of Recalcitrant Warts in a Patient with Idiopathic Immune Deficiency Following Administration of the Quadrivalent Human Papillomavirus Vaccine. Clin. Exp. Dermatol. 2017, 42, 306–308. [Google Scholar] [CrossRef]
- Bonaldo, G.; Vaccheri, A.; D’Annibali, O.; Motola, D. Safety Profile of Human Papilloma Virus Vaccines: An Analysis of the US Vaccine Adverse Event Reporting System from 2007 to 2017. Br. J. Clin. Pharmacol. 2019, 85, 634–643. [Google Scholar] [CrossRef]
- Phan, K.; Lin, M.J. Intralesional Human Papillomavirus Vaccine Therapy for Recalcitrant Plantar Wart Triggers Gout Flare. Cutis 2022, 110, E13–E14. [Google Scholar] [CrossRef]
- Jastrząb, B.A.; Stefaniak, A.A.; Hryncewicz-Gwóźdź, A.; Nockowski, P.; Szepietowski, J.C. Pityriasis Lichenoides et Varioliformis Acuta Triggered by Human Papillomavirus Vaccine: A Case Report and Literature Review. Acta Derm. Venereol. 2021, 101, adv00552. [Google Scholar] [CrossRef]
- Kim, K.Y.; Kim, D.Y.; Seo, J.; Ahn, Y.; Kim, D.S. Increased Serum Antibody Titer against HPV-16 Antigen in Patients with Behçet’s Disease. J. Korean Med. Sci. 2017, 32, 599–604. [Google Scholar] [CrossRef]
- Grimaldi-Bensouda, L.; Rossignol, M.; Koné-Paut, I.; Krivitzky, A.; Lebrun-Frenay, C.; Clet, J.; Brassat, D.; Papeix, C.; Nicolino, M.; Benhamou, P.Y.; et al. Risk of Autoimmune Diseases and Human Papilloma Virus (HPV) Vaccines: Six Years of Case-Referent Surveillance. J. Autoimmun. 2017, 79, 84–90. [Google Scholar] [CrossRef]
- Choi, J.Y.; Kim, H.S.; Lee, G.Y. Case of Lupus Erythematosus Panniculitis Triggered by Human Papillomavirus Quadrivalent Vaccine Injection. J. Dermatol. 2017, 44, 1420–1421. [Google Scholar] [CrossRef]
- Bragazzi, N.L.; Bridgewood, C.; Sharif, K.; Kamal, M.; Amital, H.; Watad, A.; Shoenfeld, Y. HPV Vaccines and Lupus: Current Approaches towards Preventing Adverse Immune Cross-Reactivity. Expert Rev. Vaccines 2019, 18, 31–42. [Google Scholar] [CrossRef]
- Corrà, A.; Bonciolini, V.; Quintarelli, L.; Verdelli, A.; Caproni, M. Linear IGA Bullous Dermatosis Potentially Triggered by Vaccination. Int. J. Immunopathol. Pharmacol. 2022, 36, 20587384211021218. [Google Scholar] [CrossRef]
- Ikeya, S.; Urano, S.; Tokura, Y. Linear IgA Bullous Dermatosis Following Human Papillomavirus Vaccination. Eur. J. Dermatol. 2012, 22, 787–788. [Google Scholar] [CrossRef]
- Fournier, C.; Auger, I.; Houle, M.C. Wells Syndrome (eosinophilic cellulitis) following Vaccination: Two Pediatric Cases with Positive Patch Test to Aluminium Salts. Contact Dermat. 2020, 82, 401–402. [Google Scholar] [CrossRef]
- Parietti, M.; Trunfio, M.; Delmonte, S.; Conti, L.; Trentalange, A.; Bonora, S.; Calcagno, A.; Ribero, S. Efflorescence of Acquired Epidermodysplasia Verruciformis Due to Immune Reconstitution Inflammatory Syndrome-like Mechanisms Following Anti-HPV Vaccination in a HIV-Positive Patient. Int. J. STD AIDS 2022, 33, 94–96. [Google Scholar] [CrossRef] [PubMed]
- Drago, F.; Ciccarese, G.; Rebora, A.; Parodi, A. Pityriasis Rosea Following Human Papillomavirus Vaccination. Braz. J. Infect. Dis. 2015, 19, 224–225. [Google Scholar] [CrossRef]
- Pinheiro, R.R.; Duarte, B.; João, A.; Lencastre, A. Cutaneous Pseudolymphoma following Quadrivalent Human Papillomavirus Vaccination-a Rare Adverse Event. J. Dtsch. Dermatol. Ges. 2018, 16, 465–467. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.R.; Kjaer, S.K.; Sigurdsson, K.; Iversen, O.E.; Mauricio, H.A.; Wheeler, C.M.; Perez, G.; Koutsky, L.A.; Tay, E.H.; Garcia, P.; et al. The Impact of Quadrivalent Human Papillomavirus (HPV.; Types 6, 11, 16, and 18) L1 Virus-like Particle Vaccine on Infection and Disease Due to Oncogenic Nonvaccine HPV Types in Generally HPV-Naive Women Aged 16-26 Years. J. Infect. Dis. 2009, 199, 926–935. [Google Scholar] [CrossRef]
- Smith, J.F.; Brownlow, M.; Brown, M.; Kowalski, R.; Esser, M.T.; Ruiz, W.; Barr, E.; Brown, D.R.; Bryan, J.T. Antibodies from Women Immunized with Gardasil Cross-Neutralize HPV 45 Pseudovirions. Hum. Vaccines 2007, 3, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Toft, L.; Storgaard, M.; Müller, M.; Sehr, P.; Bonde, J.; Tolstrup, M.; Østergaard, L.; Søgaard, O.S. Comparison of the Immunogenicity and Reactogenicity of Cervarix and Gardasil Human Papillomavirus Vaccines in HIV-Infected Adults: A Randomized, Double-Blind Clinical Trial. J. Infect. Dis. 2014, 209, 1165–1173. [Google Scholar] [CrossRef] [PubMed]
- Yadav, R.; Zhai, L.; Tumban, E. Virus-like Particle-Based L2 Vaccines against HPVs: Where Are We Today? Viruses 2019, 12, 18. [Google Scholar] [CrossRef] [PubMed]
- Hasche, D.; Vinzón, S.E.; Rösl, F. Cutaneous Papillomaviruses and Non-Melanoma Skin Cancer: Causal Agents or Innocent Bystanders? Front. Microbiol. 2018, 9, 874. [Google Scholar] [CrossRef] [PubMed]
- Rollison, D.E.; Viarisio, D.; Amorrortu, R.P.; Gheit, T.; Tommasino, M. An Emerging Issue in Oncogenic Virology: The Role of Beta Human Papillomavirus Types in the Development of Cutaneous Squamous Cell Carcinoma. J. Virol. 2019, 93, e01003-18. [Google Scholar] [CrossRef]
- Gupta, R.; Rady, P.L.; Doan, H.Q.; Tyring, S.K. Development of a β-HPV Vaccine: Updates on an Emerging Frontier of Skin Cancer Prevention. J. Clin. Virol. 2020, 126, 104348. [Google Scholar] [CrossRef]
- Olczak, P.; Matsui, K.; Wong, M.; Alvarez, J.; Lambert, P.; Christensen, N.D.; Hu, J.; Huber, B.; Kirnbauer, R.; Wang, J.W.; et al. RG2-VLP: A Vaccine Designed to Broadly Protect against Anogenital and Skin Human Papillomaviruses Causing Human Cancer. J. Virol. 2022, 96, e0056622. [Google Scholar] [CrossRef]
Author, Year of Publication | Type of Study | Population | Pathology | Vaccine Type | Results |
---|---|---|---|---|---|
Nofal, 2023 [24] | Parallel randomized controlled three-armed study | N = 50 patients with multiple recalcitrant warts N1 = 20 intralesional qHPV vaccine, mean age 31.7 ± 9.15 N2 = 20 intralesional bHPV vaccine, mean age 35.2 ± 10.32 N3 = 10 saline control, mean age 32.7 ± 6.68 | Recalcitrant warts | Intralesional qHPV vaccine Intralesional bHPV vaccine | N1′ = 18 (90%) patients complete response N1″ = 2 (10%) patients partial response N1‴ = 0 patients no response N2′ = 6 (30%) patients complete response N2″ = 4 (20%) patients partial N2‴ = 10 (50%) patients no response N3′ = 10 (100%) no response N1 vs. N2 vs. Placebo: p < 0.0001 |
Fawzy, 2023 [27] | Randomized controlled trial | N = 80 patients N1 = 20 patients treated with intralesional Candida antigen only, mean age 41.8 ± 11.9 N2 = 20 patients treated with intralesional bHPV vaccine and Candida antigen N3 = 20 patients treated with intralesional qHPV vaccine and Candida antigen N3 = 20 patients treated with intralesional saline | Multiple AGW | Intralesional qHPV vaccine Intralesional bHPV vaccine | N1′ = 8 (40.0%) complete response N1″ = 8 (40.0%) partial response N1‴ = 4 (20.0%) no response N1 vs. N4: p < 0.001 N2′ = 4 (20.0%) complete response N2″ = 12 (60.0%) partial response N2‴ = 4 (20.0%) no response N2 vs. N4: p < 0.001 N3′ = 12 (60.0%) complete response N3″ = 4 (20.0%) partial response N3‴ = 4 (20.0%) no response N3 vs. N4: p < 0.001 N4′ = 0 (0.0%) complete response N4″ = 2 (10.0%) partial response N4‴ = 18 (90.0%) no response N2 vs. N3: p = 0.018 |
Bar-Ilan, 2023 [4] | Retrospective case series | N = 20 patients N1 = 13 adults N2 = seven children | Recalcitrant cutaneous warts | Intralesional 9vHPV vaccine | N′ = 3 poor response (0–24% improvement) and moderate response (25–49%, improvement); N″ = 5 (25%) excellent response (75–99% improvement); N″″ = 12 (60%) complete response with PGA score = 0 |
Ciccarese, 2023 [9] | Retrospective Study | N = 29 patients, average age of 39 years N1 = 14 patients received HPV vaccine simultaneously with standard treatments, average age of 39 years N2 = 15 patients with standard treatments, average age of 39 years | Recalcitrant agws/ows | 9vHPV vaccine (IM) | N1′ = 9 (64%) complete response N1″ = 3 (21%) partial response N1‴ = 2 (15%) no response N2′ = 4 (27%) complete response N2″ = 2 (13%) partial response N2‴ = 9 (60%) no response p = 0.01 |
Nofal, 2022 [23] | Clinical trial | N = 44 immunocompetent patients N1 = 22 patients treated with intralesional bHPV vaccine, mean age 35.95 ± 10.63 N2 = 22 patients treated with topical podophyllin 25%, mean age 33.6 ± 8.1 | Multiple AGW | Intralesional bHPV vaccine | N1′ = 10 (45.5%) complete response N1″ = 4 (18.1) partial response N1‴ = 8 (36.4%) no response N2′ = 6 (27.3%) complete response N2″ = 14 (63.6%) partial response N2‴ = 2 (9.1%) no response |
Kost, 2022 [16] | Retrospective study | N = 336 patients with VV N1 = 48 patients vaccinated during follow-up, mean age 11.33 ± 2.91 N2 = 131 vaccinated before diagnosis, mean age 15.03 ± 2.55 N3′ = 157 unvaccinated patients, 11.94 ± 3.57 | Verruca Vulgaris | 9vHPV vaccine (IM) | N1′ = 9 (18.75%) complete response N1″ = 13 (27.08 %) partial response N1‴ = 26 (54.17%) no response p = 0.859 N2′ = 22 (16.79%) complete response N2″ = 40 (30.53%) partial response N2‴ = 69 (52.67%) no response p = 0.846 N3′ = 23 (14.65%) complete response N3″ = 52 (33.12%) partial response N3‴ = 82 (52.22%) no response |
Nassar, 2021 [25] | Prospective study | N = 105 patients with multiple common warts N1 = 30 patients received 0.2 mL of intralesional Candida antigen, mean age 30.33 ± 17.88 N2 = 30 patients received 0.2 mL of intralesional bHPV vaccine, mean age 29.96 ± 18.85 N3 = 30 patients underwent cryotherapy, mean age 31.73 ± 17.80 N4 = 15 patients received 0.2 mL of intralesional saline, mean age 31.93 ± 17.58 | Multiple common warts | Intralesional bHPV vaccine | N1′ = 19 (63.3%) complete response N1″ = 3 (10%) partial response N1‴ = 8 (26.7%) no response N2′ = 15 (50 %) complete response N2″ = 9 (30%) partial response N2‴ = 6 (20%) no response N3′ = 6 (20%) complete response N3″ = 13 (43.3%) partial response N3‴ = 11 (36.7%) no response N4′ = 0 (0%) complete response N4″ = 1 (6.7%) partial response N4‴ = 14 (93.3%) no response p < 0.001 |
Shin, 2022 [18] | Open-label, uncontrolled, single-arm study | N = 45 patients with multiple recalcitrant warts, mean age 28.7 ± 15.5 years | Multiple recalcitrant warts | 9vHPV vaccine (IM) | N1′ = 28 (62.2%) complete response N1″ = 4 (8.9%) partial response N1‴ = 13 (28.9%) no response |
Couselo-Rodriguez, 2021 [19] | Case report | N = 1 female, 11-year-old patient with genital warts | GW | 9vHPV vaccine (IM) | Partial response—a pedunculated lesion in the anterior commissure of the labia majora persisted |
Marei A, 2020 [26] | Prospective study | N = 40 patients, mean age 32.5 ± 24.7 years N1 = 20 patients received intralesional Candida antigen injection alone, mean age 31 ± 12.9 years N2 = 20 patients received combined treatment of bHPV recombinant HPV vaccine and intralesional Candida antigen, mean age 29 ± 8.47 years | Recalcitrant warts | Intralesional bHPV vaccine (IM) | N1′ = 8 (40%) complete clearance N1″ = 5 (25%) partial response N1‴ = 7 patients (35%) showed no response N2′ = 14 (70%) complete clearance in a combined therapy group N2″ = 4 patients (20%) showed partial response N2″ = 2 patients (10%) showed no response p = 0.014 statistically significant in favor of the combination therapy group |
Nofal, 2020 [22] | N = 44 adult patients N1 = 22 patients received intralesional bHPV vaccine, mean age 29.27 ± 8.7 years N2 = 22 patients were injected with intramuscular bHPV vaccine, mean age 30.27 ± 12.2 years | Multiple recalcitrant common warts | bHPV vaccine (IM) | N1′ = 18 (81.8%) complete response N1″ = 2 partial response N1‴ = 2 no response. N2′ = 14 (63.3%) complete response N2″ = 6 partial response N2‴ = 2 no response | |
Hayashi, 2020 [12] | Case series | N = 3 immunocompetent male patients | Multiple warts—HPV typing: HPVs 57, 27 | qHPV vaccine (IM) | N′ = 2 complete responses after the 3rd or 4th dose N″ = 1 no response |
Gilson, 2020 [15] | Randomized, controlled, multicenter, partially blinded factorial trial. | N = 503 patients with AGW, mean age = 31 years; N1 = 125 received IMIQ plus qHPV, mean age 31 ± 10 N2 = 126 received PDX plus qHPV, mean age 31 ± 10 N3 = 126 received IMIQ plus placebo, mean age 32 ± 10 N4 = 126 received PDX plus placebo, mean age 30 ± 10 N’ = 12 (2.4%) participants were HIV positive | AGW | qHPV vaccine (IM) | aOR (95% CI) = 1.46 (0.97 to 2.20) for qHPV vaccine versus placebo for being wart free at week 16 and remaining wart free between weeks 16 and 48 |
Kuan, 2020 [11] | Retrospective study | N = 26 patients received HPV qHPV vaccine as an adjunctive treatment | Recalcitrant acral warts | qHPV vaccine (IM) | N1′ = 8 (30.8%), complete response, median age (range) = 27.5 (14–44) N1″ = 9 (34.65%) partial response, median age (range) = 36 (8–77) years N1‴ = 9 (34.65%) less than 50% improvement in their warts, median age (range) = 38 (21–64), |
Bossart, 2020 [17] | Case series | N = 5 male patients without comorbidities with recalcitrant genital warts | 9vHPV vaccine (IM) | N′ = 2 complete remissions N″ = 3 disease regressions | |
Kost, 2020 [10] | Case report | N = 9-year-old female patient | Multiple verruca vulgaris | 9vHPV vaccine (IM) | Complete response, no recurrence at 9 months |
Waldman, 2019 [6] | Retrospective study | N = 16 patients N′ = 2 immunosuppressed patients | Extragenital recalcitrant warts | qHPV vaccine (IM) | N′ = 7 (44%) complete clearance, N″ = 6 (38%) persistent or new warts N‴ = 3 (19%) lost to follow-up after HPV vaccination |
Yang, 2019 [13] | Retrospective study | N = 30 patients, mean age = 21.43 ± 11.86 | Multiple warts | qHPV vaccine (IM) | N′ = 14 (46.67%) complete response N″ = 5 (16.67%) partial response N‴ = 11 (36.67%) no response |
Choi, 2019 [14] | Prospective study | N = 26 patients N1 = 16 underwent surgical excision, mean age 35.8 ± 11.2 years N2 = 10 vaccinated, mean age 26.1 ± 6.0 years | GW | qHPV vaccine (IM) | N′ = (60%) complete response |
Kazlouskaya, 2019 [20] | Case report | N = 1 female, 79-year-old | Giant condyloma acuminata—HPV16, HPV18, HPV6, HPV11 Genotypes | 1 dose of 9vHPV vaccine (IM) | Complete response after only one dose of the 9vHPV vaccine |
Martin, 2018 [21] | Case report | N = 1 female, 10-year-old with a common wart | Cutaneous refractory wart | bHPV vaccine | Complete response |
Authors, Year of Publication | Type of Study | Studied Population | Treatment | Results |
---|---|---|---|---|
Kim 2021 [29] | Case series | One male, 70-year-old with high-grade PEIN showing HPV 16 integration | 9vHPV vaccine | Repeat biopsies at 13 months and 34 months showed no evidence of PEIN; Clearance of HPV 16 on repeat immunostaining |
One male, 46-year-old with high-grade PEIN showing HPV 16 integration | Repeat biopsies 11 months later showed no remaining PEIN; HPV 16 immunostaining was negative | |||
One male, 67-year-old with PEIN showing HPV 16 integration | Repeat biopsy 9 months later showed no remaining PEIN; HPV 16 immunostaining was negative | |||
Jeon 2020 [28] | Case report | Fifteen-year-old girl with verrucous plaque involving the nail folds of the thumbs With HPV 16 positivity | Cryosurgery and qHPV vaccine | No sign of recurrence for 6 months |
Nichols 2018 [30] | Case report | Ninety-year-old woman with multiple cutaneous basaloid SCCs | 9vHPV vaccine systemically and intratumorally | Clinical improvement was observed 2 weeks after the second intratumoral dose of the 9vHPV vaccine with a reduction in tumor size and number. Eleven months after the first intratumoral dose, there was no clinical or histologic evidence of residual SCC. |
Authors, Year of Publication | Type of Study | Studied Population | Treatment | Results |
---|---|---|---|---|
Nichols 2022 [33] | Case series | N = 2 male patients with multiple prior kcs N1 = 1 patient with liver transplant N2 = 1 patient with Chron’s disease | 9vHPV vaccine | N1′ = 88% reduction in kcs/year N2′ = 63% reduction in kcs/year |
Merio, 2022 [32] | Retrospective study | N = 18 patients with palmoplantar warts, median age = 39.5 years | qHPV or 9vHPV | N1 = 2 patients (11%) in complete remission N2 = 7 patients (39%) in partial remission |
Namuduri 2020 [34] | Case report | Forty-six-year-old woman with giant condyloma acuminatum of the vulva and AIDS | CO2 laser ablation + qHPV vaccine + acitetrin | After 2 years of treatment—complete remission |
Bossart 2020 [31] | Case series | N = 5 immunosuppressed patients with recalcitrant skin warts | 9vHPV vaccine | N1 = 1 patients with complete regression N2 = 4 patients with disease regression |
Maor 2018 [35] | Case report | Fifty-year-old woman with renal transplant and acquired epidermodysplasia verruciformis | qHPV vaccine | One month after completion of the three doses of the qHPV vaccine the lesions were flattened |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Șandru, F.; Radu, A.-M.; Petca, A.; Dumitrașcu, M.C.; Petca, R.-C.; Roman, A.-M. Unveiling the Therapeutic Horizon: HPV Vaccines and Their Impact on Cutaneous Diseases—A Comprehensive Review. Vaccines 2024, 12, 228. https://doi.org/10.3390/vaccines12030228
Șandru F, Radu A-M, Petca A, Dumitrașcu MC, Petca R-C, Roman A-M. Unveiling the Therapeutic Horizon: HPV Vaccines and Their Impact on Cutaneous Diseases—A Comprehensive Review. Vaccines. 2024; 12(3):228. https://doi.org/10.3390/vaccines12030228
Chicago/Turabian StyleȘandru, Florica, Andreea-Maria Radu, Aida Petca, Mihai Cristian Dumitrașcu, Răzvan-Cosmin Petca, and Alexandra-Maria Roman. 2024. "Unveiling the Therapeutic Horizon: HPV Vaccines and Their Impact on Cutaneous Diseases—A Comprehensive Review" Vaccines 12, no. 3: 228. https://doi.org/10.3390/vaccines12030228
APA StyleȘandru, F., Radu, A. -M., Petca, A., Dumitrașcu, M. C., Petca, R. -C., & Roman, A. -M. (2024). Unveiling the Therapeutic Horizon: HPV Vaccines and Their Impact on Cutaneous Diseases—A Comprehensive Review. Vaccines, 12(3), 228. https://doi.org/10.3390/vaccines12030228