New Trends in Vaccine Characterization, Formulations, and Development
Conflicts of Interest
List of Contributions
- Gong, X.; Srivastava, V.; Naicker, P.; Khan, A.; Ahmad, A. Candida parapsilosis Cell Wall Proteome Characterization and Effectiveness against Hematogenously Disseminated Candidiasis in a Murine Model. Vaccines 2023, 11, 674. https://doi.org/10.3390/vaccines11030674
- Hookham, L.; Lee, H.C.; Patel, D.A.; Coelho, M.; Giglio, N.; Le Doare, K.; Pannaraj, P.S. Vaccinating Children against SARS-CoV-2: A Literature Review and Survey of International Experts to Assess Safety, Efficacy and Perceptions of Vaccine Use in Children. Vaccines 2023, 11, 78. https://doi.org/10.3390/vaccines11010078
- Song, Y.; Mehl, F.; Zeichner, S.L. Vaccine Strategies to Elicit Mucosal Immunity. Vaccines 2024, 12, 191. https://doi.org/10.3390/vaccines12020191
- Shakya, A.K.; Mallick, B.; Nandakumar, K.S. A Perspective on Oral Immunotherapeutic Tools and Strategies for Autoimmune Disorders. Vaccines 2023, 11, 1031. https://doi.org/10.3390/vaccines11061031
- Kozak, M.; Hu, J. The Integrated Consideration of Vaccine Platforms, Adjuvants, and Delivery Routes for Successful Vaccine Development. Vaccines 2023, 11, 695. https://doi.org/10.3390/vaccines11030695
- Srivastava, V.; Nand, K.N.; Ahmad, A.; Kumar, R. Yeast-Based Virus-like Particles as an Emerging Platform for Vaccine Development and Delivery. Vaccines 2023, 11, 479. https://doi.org/10.3390/vaccines11020479
- Okuyama, R. Trends in COVID-19 Vaccine Development: Vaccine Platform, Developer, and Nationality. Vaccines 2024, 12, 259. https://doi.org/10.3390/vaccines12030259
- Bamouh, Z.; Elarkam, A.; Elmejdoub, S.; Hamdi, J.; Boumart, Z.; Smith, G.; Suderman, M.; Teffera, M.; Wesonga, H.; Wilson, S.; et al. Evaluation of a Combined Live Attenuated Vaccine against Lumpy Skin Disease, Contagious Bovine Pleuropneumonia and Rift Valley Fever. Vaccines 2024, 12, 302. https://doi.org/10.3390/vaccines12030302
References
- Saleh, A.; Qamar, S.; Tekin, A.; Singh, R.; Kashyap, R. Vaccine Development Throughout History. Cureus 2021, 13, e16635. [Google Scholar] [CrossRef]
- Mukherjee, S.; Kalra, K.; Phelan, A.L. Expanding global vaccine manufacturing capacity: Strategic prioritization in small countries. PLoS Glob. Public Health 2023, 3, e0002098. [Google Scholar] [CrossRef] [PubMed]
- Burchill, M.A.; Tamburini, B.A.; Pennock, N.D.; White, J.T.; Kurche, J.S.; Kedl, R.M. T cell vaccinology: Exploring the known unknowns. Vaccine 2013, 31, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Heidary, M.; Kaviar, V.H.; Shirani, M.; Ghanavati, R.; Motahar, M.; Sholeh, M.; Ghahramanpour, H.; Khoshnood, S. A Comprehensive Review of the Protein Subunit Vaccines Against COVID-19. Front. Microbiol. 2022, 13, 927306. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.who.int/initiatives/malaria-vaccine-implementation-programme (accessed on 26 February 2023).
- Duthie, M.S.; Pena, M.T.; Ebenezer, G.J.; Gillis, T.P.; Sharma, R.; Cunningham, K.; Polydefkis, M.; Maeda, Y.; Makino, M.; Truman, R.W.; et al. LepVax, a defined subunit vaccine that provides effective pre-exposure and post-exposure prophylaxis of M. leprae infection. NPJ Vaccines 2018, 3, 12. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, V.; Nand, K.N.; Ahmad, A.; Kumar, R. Yeast-Based Virus-like Particles as an Emerging Platform for Vaccine Development and Delivery. Vaccines 2023, 11, 479. [Google Scholar] [CrossRef]
- Szabó, G.T.; Mahiny, A.J.; Vlatkovic, I. COVID-19 mRNA vaccines: Platforms and current developments. Mol. Ther. 2022, 30, 1850–1868. [Google Scholar] [CrossRef]
- El-Elimat, T.; AbuAlSamen, M.M.; Almomani, B.A.; Al-Sawalha, N.A.; Alali, F.Q. Acceptance and attitudes toward COVID-19 vaccines: A cross-sectional study from Jordan. PLoS ONE 2021, 16, e0250555. [Google Scholar] [CrossRef]
- Kumar, R.; Srivastava, V.; Nand, K.N. The Two Sides of the COVID-19 Pandemic. COVID 2023, 3, 1746–1760. [Google Scholar] [CrossRef]
- Tan, Y.; Chen, L.; Li, K.; Lou, B.; Liu, Y.; Liu, Z. Yeast as carrier for drug delivery and vaccine construction. J. Control. Release 2022, 346, 358–379. [Google Scholar] [CrossRef]
- Ardiani, A.; Higgins, J.P.; Hodge, J.W. Vaccines based on whole recombinant Saccharomyces cerevisiae cells. FEMS Yeast Res. 2010, 10, 1060–1069. [Google Scholar] [CrossRef]
- Kumar, R.; Srivastava, V. Application of anti-fungal vaccines as a tool against emerging anti-fungal resistance. Front. Fungal Biol. 2023, 4, 1241539. [Google Scholar] [CrossRef]
- Fisher, M.C.; Alastruey-Izquierdo, A.; Berman, J.; Bicanic, T.; Bignell, E.M.; Bowyer, P.; Bromley, M.; Brüggemann, R.; Garber, G.; Cornely, O.A.; et al. Tackling the emerging threat of antifungal resistance to human health. Nat. Rev. Microbiol. 2022, 20, 557–571. [Google Scholar] [CrossRef]
- Chen, D.; Kristensen, D. Opportunities and challenges of developing thermostable vaccines. Expert Rev. Vaccines 2009, 8, 547–557. [Google Scholar] [CrossRef]
- Kunda, N.K.; Peabody, J.; Zhai, L.; Price, D.N.; Chackerian, B.; Tumban, E.; Muttil, P. Evaluation of the thermal stability and the protective efficacy of spray-dried HPV vaccine, Gardasil® 9. Hum. Vaccine Immunother. 2019, 15, 1995–2002. [Google Scholar] [CrossRef]
- Braun, L.J.; Jezek, J.; Peterson, S.; Tyagi, A.; Perkins, S.; Sylvester, D.; Guy, M.; Lal, M.; Priddy, S.; Plzak, H.; et al. Characterization of a thermostable hepatitis B vaccine formulation. Vaccine 2009, 27, 4609–4614. [Google Scholar] [CrossRef]
- Smith, T.G.; Siirin, M.; Wu, X.; Hanlon, C.A.; Bronshtein, V. Rabies vaccine preserved by vaporization is thermostable and immunogenic. Vaccine 2015, 33, 2203–2206. [Google Scholar] [CrossRef]
- Leung, V.; Mapletoft, J.; Zhang, A.; Lee, A.; Vahedi, F.; Chew, M.; Szewczyk, A.; Jahanshahi-Anbuhi, S.; Ang, J.; Cowbrough, B.; et al. Thermal Stabilization of Viral Vaccines in Low-Cost Sugar Films. Sci. Rep. 2019, 9, 7631. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Wang, G.; Li, X.F.; Li, Y.; Zhu, S.Y.; Qin, C.F.; Tang, R. Alumina-encapsulated vaccine formulation with improved thermostability and immunogenicity. Chem. Commun. 2016, 52, 6447–6450. [Google Scholar] [CrossRef] [PubMed]
- Tsagkaris, C.; Laubscher, L.; Papadakis, M.; Vladychuk, V.; Matiashova, L. Immunization in state of siege: The importance of thermostable vaccines for Ukraine and other war-torn countries and territories. Expert Rev. Vaccines 2022, 21, 1007–1008. [Google Scholar] [CrossRef] [PubMed]
- Ulmer, J.B.; Valley, U.; Rappuoli, R. Vaccine manufacturing: Challenges and solutions. Nat. Biotechnol. 2006, 24, 1377–1383. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Lu, J.; Lv, J. The Inefficient and Unjust Global Distribution of COVID-19 Vaccines: From a Perspective of Critical Global Justice. Inquiry 2021, 58, 469580211060992. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, R. New Trends in Vaccine Characterization, Formulations, and Development. Vaccines 2024, 12, 338. https://doi.org/10.3390/vaccines12030338
Kumar R. New Trends in Vaccine Characterization, Formulations, and Development. Vaccines. 2024; 12(3):338. https://doi.org/10.3390/vaccines12030338
Chicago/Turabian StyleKumar, Ravinder. 2024. "New Trends in Vaccine Characterization, Formulations, and Development" Vaccines 12, no. 3: 338. https://doi.org/10.3390/vaccines12030338
APA StyleKumar, R. (2024). New Trends in Vaccine Characterization, Formulations, and Development. Vaccines, 12(3), 338. https://doi.org/10.3390/vaccines12030338